JPS6361382B2 - - Google Patents

Info

Publication number
JPS6361382B2
JPS6361382B2 JP14518781A JP14518781A JPS6361382B2 JP S6361382 B2 JPS6361382 B2 JP S6361382B2 JP 14518781 A JP14518781 A JP 14518781A JP 14518781 A JP14518781 A JP 14518781A JP S6361382 B2 JPS6361382 B2 JP S6361382B2
Authority
JP
Japan
Prior art keywords
cutting
alloy
processing
aluminum
conditions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14518781A
Other languages
Japanese (ja)
Other versions
JPS5845365A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14518781A priority Critical patent/JPS5845365A/en
Publication of JPS5845365A publication Critical patent/JPS5845365A/en
Publication of JPS6361382B2 publication Critical patent/JPS6361382B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、切削用アルミニウム合金の製造方
法、更に詳しくは切削加工を施して光学機器部
品、電気機器部品、自動車部品等に使用される切
削用Al−Mg系合金の製造方法に関する。 切削性に優れたアルミニウム合金としては、
Cuを必須成分としてそれに少量のPb,Biを添加
したAA2011合金がよく知られている。この合金
は切削性の点で優れたものであるが、反面熱処理
型合金であつて製造時溶体化処理、焼入れの工程
を必須とし、製造上コスト高になると共に、耐食
性が極めて悪いという本質的な欠点がある。 このため、光学機器や通信機器等の特に表面処
理特性が大きく要求されれる用途には、切削性を
ある程度犠牲にした上で、耐食性を向上させるた
め表面処理特性に優れた非熱処理型合金である
AA5056合金等のAl−Mg系合金が広く使用され
ている。。しかしながら、このAl−Mg系合金は、
材料の本質から、本来機械的強度に優れた硬化型
合金であるために、切削時における切削抵抗が大
きく切削工具の摩耗が激しいという難点がある。
特に昨今、自動切削機による高速切削が行われる
実情下においては、工具摩耗が早いことは作業上
重大な支障要因となるものであり、近時益々この
点の改善された工具寿命に優れた切削用アルミニ
ウム合金の出現が渇望されるに至つている。 本発明者等は上記実情に鑑み、特に工具寿命の
改善を意図してアルミニウム合金の組成と、その
製造条件につき種々検討を重ねたところ、前記の
諸特性を備えたAl−Mg系合金にあつても特にそ
の製造条件によつて切削工具の摩耗性が大きく影
響を受けることを見出し、かかる知見に基づいて
この発明を完成するに至つたものである。 即ち、この発明は、Mg2.0〜8.0%を含有し、
必要に応じてMnおよびCrの少なくともいずれか
一方を0.20%以下含むアルミニウム基合金を用
い、該アルミニウム基合金の鋳塊を、特に500℃
以上の温度で均質化処理したのち押出加工すると
共に、次いでこの押出品を更に引抜加工するに際
して該引抜加工を10%以下の加工率で行うことを
特徴とする切削用アルミニウム合金の製造方法を
提供するものである。 以下、これを更に詳しく説明する。 先ず、上記合金成分の限定理由について述べる
と、MgはAl合金の機械的強度を確保し、かつ切
削性を向上させるための必須成分であり、その含
有率が2%未満の場合は上記効果が充分でなく、
8%を超えると靭性の低下、応力腐食割れ、押出
性の低下等の問題が派生する。従つて、特に好ま
しい範囲は3〜5%程度である。また必要に応じ
て添加すべきMnおよび/またはCrは、相俟つて
応力腐食割れの防止、結晶粒の調整等に効果があ
るが、その含有率が0.20%を超えると、表面処理
性を阻害する。 次に、均質化処理について述べると、該均質化
処理自体は、切削用のAl−Mg系合金において、
押出性、靭性、耐食性等の向上をはかるために従
来から通例的に行われている処理である。而し
て、この処理は上記諸特性に所期の満足度を得る
ために、Al−Mg系合金においては一般的に530
〜540℃の温度条件下で行われるものである。と
ころが、本発明者等の実験と研究の結果から得た
知見によれば、上記のような温度条件で行う均質
化処理は、これによつて合金中のMg系晶出物等
のマトリツクス中への固溶量を増大せしめ、その
結果切削工具に悪影響を及ぼすものであり、工具
寿命の点からいえば、500℃未満の温度で処理す
る方が好ましいものであることが分つた。即ち、
500℃未満の温度で均質化処理を施す場合には、
Mg系晶出物が多く生成されるため、切削摩耗を
減少せしめることができる。ところが実際上、合
金中のMg含量との関係、そしてまた均質化処理
によつて所期する押出性、靭性、耐食性等の諸特
性との関係において、なお530〜540℃程度の温度
で均質化処理すべきことが要請されることも多
い。そこで、この発明は、このような場合におい
てなお、その後の加工処理条件、特に押出加工後
に通例的に行われる引抜加工条件を特定の範囲に
選ぶことによつて、工具摩耗の点に関する技術的
問題点の改善をはかることを主題としているもの
である。従つて、この発明において500℃以上と
する均質化処理条件の限定は、そのこと自体がこ
の発明の主たる特徴をなすものではなく、次に述
べる引抜加工の特定条件によつて工具摩耗性の改
善をはかるべき対象物の特定のための前提をなす
ものであるところにその限定意義を有するもので
ある。実際上、この発明を適用する場合の均質化
処理は、500〜550℃の範囲で施される。 そこで次に引抜加工について説明すると、該引
抜加工は押出加工後の押出製品に対して、その寸
法歪矯正、機械的強度の増大等を目的として一般
的に行われるものである。ところが、この引抜加
工もまた、その加工率が切削工具の摩耗に大きな
影響を及ぼす。即ち本発明者等が解明し得た知見
によれば、一般的に引抜加工率もこれが低ければ
低いほど、工具寿命の点からは好ましい結果が得
られる。従つて、この引抜加工も工具寿命の点だ
けからいえば、これを行わないのが最も好ましい
ものであり、加工率0%の場合、即ち引抜加工を
施さない場合もこの発明の範囲に含まれるが、実
際上、引抜加工を行う場合においても、均質化処
理を前記のように500℃以上の温度に設定して行
う場合においては、その加工率の最大許容範囲は
10%以下に限定される。即ち、10%を超える加工
率で引抜加工を施すときは、均質化処理を前記の
ような温度で行うことと相俟つて切削抵抗の顕著
な増大を招き、切削工具の摩耗性の点で満足すべ
き結果を得ることができない。従つてこの発明
は、引抜加工を施す場合においてその加工率を10
%以下に限定するものである。 なお、前記の均質化処理後引抜加工前に行われ
る押出加工は、その加工条件によつて、Al−Mg
系合金の切削性、切削工具摩耗性等に格別大きな
影響を与えるものではなく、従来の常法による
400〜500℃程度の押出温度で加工されるものであ
る。 次にこの発明の実施例を比較例との対比におい
て示し、得られた切削用アルミニウム合金の性能
を比較する。 実施例 表1に、この発明の合金組成条件範囲に適合す
る各種のAl−Mg系合金の化学成分を示す。これ
らをそれぞれ常法に従つて溶解鋳造した後、この
鋳塊を表2に示す各種条件で均質化処理し、次い
でいずれも押出温度400℃にて押出加工して直径
20mmの棒に製作した。そして、この棒を表2に示
す各種の加工率で引抜加工を施したものを試料と
し、それぞれの性質を調べた。
The present invention relates to a method for manufacturing an aluminum alloy for cutting, and more particularly to a method for manufacturing an Al-Mg alloy for cutting, which is subjected to cutting processing and used for optical equipment parts, electrical equipment parts, automobile parts, etc. As an aluminum alloy with excellent machinability,
The AA2011 alloy, which has Cu as an essential component and small amounts of Pb and Bi added to it, is well known. This alloy has excellent machinability, but on the other hand, it is a heat-treatable alloy and requires solution treatment and quenching processes during manufacturing, making it expensive to manufacture and having extremely poor corrosion resistance. There are some drawbacks. For this reason, for applications that require particularly high surface treatment properties, such as optical equipment and communication equipment, non-heat-treated alloys with excellent surface treatment properties are used to improve corrosion resistance at the expense of machinability to some extent.
Al-Mg alloys such as AA5056 alloy are widely used. . However, this Al-Mg alloy
Due to the nature of the material, since it is a hardening alloy with excellent mechanical strength, it has the disadvantage that cutting resistance during cutting is large and cutting tools are subject to severe wear.
Particularly in recent years, when high-speed cutting is performed using automatic cutting machines, rapid tool wear is a serious hindrance to work. There is a growing desire for an aluminum alloy for aluminum alloys. In view of the above circumstances, the present inventors conducted various studies on the composition of aluminum alloy and its manufacturing conditions with the intention of improving tool life, and found that an Al-Mg alloy with the above-mentioned properties was found. In particular, the inventors discovered that the abrasion properties of cutting tools are greatly affected by the manufacturing conditions, and based on this knowledge, they completed the present invention. That is, this invention contains 2.0 to 8.0% Mg,
If necessary, an aluminum-based alloy containing 0.20% or less of at least one of Mn and Cr is used, and an ingot of the aluminum-based alloy is heated particularly at 500°C.
Provided is a method for producing an aluminum alloy for cutting, which comprises extruding after homogenizing at a temperature above, and then further drawing the extruded product at a processing rate of 10% or less. It is something to do. This will be explained in more detail below. First, to explain the reasons for limiting the alloy components mentioned above, Mg is an essential component to ensure the mechanical strength of the Al alloy and improve machinability, and if its content is less than 2%, the above effects will not be achieved. not enough,
If it exceeds 8%, problems such as decreased toughness, stress corrosion cracking, and decreased extrudability will arise. Therefore, a particularly preferable range is about 3 to 5%. Additionally, Mn and/or Cr, which should be added as necessary, are effective in preventing stress corrosion cracking and adjusting crystal grains, but if their content exceeds 0.20%, it impairs surface treatment properties. do. Next, regarding the homogenization process, the homogenization process itself is used in Al-Mg alloys for cutting.
This is a treatment that has been conventionally carried out in order to improve extrudability, toughness, corrosion resistance, etc. Therefore, in order to obtain the desired satisfaction with the above-mentioned properties, this treatment is generally performed using 530
It is carried out at a temperature of ~540°C. However, according to the findings of the inventors' experiments and research, the homogenization treatment performed under the above temperature conditions causes Mg-based crystallized substances in the alloy to enter the matrix. It has been found that processing at a temperature of less than 500°C is preferable from the viewpoint of tool life, as it increases the amount of solid solution in the cutting tool and as a result has a negative effect on the cutting tool. That is,
When homogenizing at temperatures below 500℃,
Since a large amount of Mg-based crystallized substances are generated, cutting wear can be reduced. However, in practice, in relation to the Mg content in the alloy and also in relation to various properties such as extrudability, toughness, and corrosion resistance that are expected by homogenization treatment, homogenization cannot be achieved at a temperature of about 530 to 540℃. There are also many requests for processing. Therefore, in such a case, the present invention solves the technical problem regarding tool wear by selecting the subsequent processing conditions, especially the drawing processing conditions usually performed after extrusion processing, within a specific range. The main theme is to improve these points. Therefore, in this invention, the limitation of the homogenization treatment conditions to 500°C or higher does not itself constitute the main feature of the invention, but the tool wear resistance can be improved by the specific conditions of the drawing process described below. Its limiting significance lies in the fact that it forms the premise for specifying the object to be measured. In practice, the homogenization treatment when applying this invention is performed at a temperature in the range of 500 to 550°C. Next, the drawing process will be explained. The drawing process is generally performed on an extruded product after extrusion processing for the purpose of correcting dimensional distortion, increasing mechanical strength, etc. However, in this drawing process, the processing rate also has a large effect on the wear of the cutting tool. That is, according to the knowledge that the present inventors have been able to elucidate, generally speaking, the lower the drawing rate, the more favorable results can be obtained in terms of tool life. Therefore, from the point of view of tool life, it is most preferable not to perform this drawing process, and the scope of the present invention also includes the case where the processing rate is 0%, that is, the case where no drawing process is performed. However, in practice, even when performing drawing processing, if the homogenization treatment is performed at a temperature of 500℃ or higher as mentioned above, the maximum allowable range of the processing rate is
Limited to 10% or less. In other words, when drawing is performed at a processing rate of more than 10%, the homogenization process is performed at the above-mentioned temperature, which results in a significant increase in cutting force, and the wear resistance of the cutting tool becomes unsatisfactory. I can't get the results I want. Therefore, this invention reduces the processing rate to 10 when performing drawing processing.
% or less. Note that the extrusion process performed after the homogenization process and before the drawing process may cause Al-Mg depending on the process conditions.
It does not have a particularly large effect on the machinability of the alloy, the wear resistance of cutting tools, etc.
It is processed at an extrusion temperature of about 400 to 500°C. Next, examples of the present invention will be shown in comparison with comparative examples, and the performance of the obtained cutting aluminum alloys will be compared. Examples Table 1 shows the chemical compositions of various Al-Mg alloys that meet the range of alloy composition conditions of the present invention. After melting and casting each of these in accordance with conventional methods, the ingots were homogenized under the various conditions shown in Table 2, and then extruded at an extrusion temperature of 400°C to
It was made into a 20mm rod. This rod was then subjected to drawing processing at various processing rates shown in Table 2, and the properties of each were investigated.

【表】【table】

【表】 表3は、上記各種試料の機械的性質、耐食性、
切削工具の耐摩耗性を比較して示す。機械的性質
はJIS4号試験片で標点間距離50mmにて測定したも
のであり、耐食性は、JIS・Z2371による塩水噴
霧×500時間の腐食促進処理後の表面の腐食状況
を観察したものである。また、切削工具の耐摩耗
性は、 前すくい角 0゜ 横すくい角 20゜ 前逃げ角 7゜ 横逃げ角 7゜ 前切刃角 8゜ 横切刃角 0゜ ノーズ半径 0゜ 取付角 90゜ の諸元を有する高速度硬バイト(SKH4)を使用
し、自動切削機にて下記の切削条件で30分間各試
料の切削加工を行つたのち、バイトの逃げ面の摩
耗幅を測定したものである。 (切削条件) 切削速度 300m/min 切込深さ 1mm 送り速度 0.2mm/rev 潤滑剤 無潤滑 表3に示す結果において、本発明の実施例によ
るものは機械的性質、耐食性に関しては比較例と
略同等である。これに対して、切削工具の耐摩耗
性の点に関しては、本発明の実施例により切削用
Al−Mg系合金はMg含量の同じ合金を用いた比
較例に較べて明らかに工具寿命の向上効果が認め
られる。従つてこの発明による切削用アルミニウ
ム合金は、工具寿命の点で従来品より優れた性質
を有するものであり、自動切削機による高速切削
用のものとして好適するものである。
[Table] Table 3 shows the mechanical properties, corrosion resistance,
The wear resistance of cutting tools is shown in comparison. Mechanical properties were measured using a JIS No. 4 test piece at a gauge distance of 50 mm, and corrosion resistance was measured by observing the surface corrosion after 500 hours of salt spray acceleration treatment according to JIS Z2371. . In addition, the wear resistance of cutting tools is as follows: Front rake angle 0° Side rake angle 20° Front relief angle 7° Side relief angle 7° Front cutting edge angle 8° Side cutting angle 0° Nose radius 0° Mounting angle 90° Using a high-speed hard cutting tool (SKH4) with the following specifications, each sample was cut using an automatic cutting machine under the following cutting conditions for 30 minutes, and then the wear width on the flank surface of the cutting tool was measured. be. (Cutting conditions) Cutting speed 300m/min Depth of cut 1mm Feed rate 0.2mm/rev Lubricant No lubrication In the results shown in Table 3, the examples of the present invention are compared with the comparative examples in terms of mechanical properties and corrosion resistance. are equivalent. On the other hand, with regard to the wear resistance of cutting tools, the embodiments of the present invention
The Al-Mg alloy clearly shows an improvement in tool life compared to a comparative example using an alloy with the same Mg content. Therefore, the aluminum alloy for cutting according to the present invention has properties superior to conventional products in terms of tool life, and is suitable for high-speed cutting with automatic cutting machines.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 Mg2.0〜8.0%(重量%、以下同じ)を含有
し、必要に応じてMnおよびCrの少なくともいず
れか一方を0.20%以下含むアルミニウム基合金を
用い、該アルミニウム基合金の鋳塊を、特に500
℃以上の温度で均質化処理したのち押出加工する
と共に、次いでこの押出品を更に引抜加工するに
際して該引抜加工を10%以下の加工率で行うこと
を特徴とする切削用アルミニウム合金の製造方
法。
1 Using an aluminum-based alloy containing 2.0 to 8.0% Mg (wt%, same hereinafter) and containing at least 0.20% or less of at least one of Mn and Cr as necessary, an ingot of the aluminum-based alloy, Especially 500
A method for producing an aluminum alloy for cutting, characterized in that the aluminum alloy is extruded after being homogenized at a temperature of ℃ or higher, and then the extruded product is further subjected to drawing processing at a processing rate of 10% or less.
JP14518781A 1981-09-14 1981-09-14 Manufacture of aluminum alloy for cutting Granted JPS5845365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14518781A JPS5845365A (en) 1981-09-14 1981-09-14 Manufacture of aluminum alloy for cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14518781A JPS5845365A (en) 1981-09-14 1981-09-14 Manufacture of aluminum alloy for cutting

Publications (2)

Publication Number Publication Date
JPS5845365A JPS5845365A (en) 1983-03-16
JPS6361382B2 true JPS6361382B2 (en) 1988-11-29

Family

ID=15379432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14518781A Granted JPS5845365A (en) 1981-09-14 1981-09-14 Manufacture of aluminum alloy for cutting

Country Status (1)

Country Link
JP (1) JPS5845365A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182941A (en) * 1983-03-31 1984-10-17 Showa Alum Corp Aluminum alloy excellent in life of cutting tool
JP2009013503A (en) * 2008-09-29 2009-01-22 Showa Denko Kk Aluminum alloy extruded material for machining, machined article made of aluminum alloy, and valve material for automotive part

Also Published As

Publication number Publication date
JPS5845365A (en) 1983-03-16

Similar Documents

Publication Publication Date Title
JP3301919B2 (en) Aluminum alloy extruded material with excellent chip breaking performance
JP3335732B2 (en) Hypoeutectic Al-Si alloy and casting method thereof
EP2664687A1 (en) Improved free-machining wrought aluminium alloy product and manufacturing process thereof
JP3886270B2 (en) High corrosion resistance aluminum alloy with excellent machinability
JPH0557348B2 (en)
JP2001131720A (en) Aluminum alloy extruded material excellent in chip breakability, finish machinability, corrosion resistance and extrudability
JPH09249949A (en) Production of aluminum extruded material forged product
JPH04176836A (en) Aluminum alloy excellent in wear resistance
JPH07145440A (en) Aluminum alloy forging stock
JPS6361382B2 (en)
JPS63140060A (en) Free-cutting aluminum-alloy casting and its production
WO2022181307A1 (en) Method for manufacturing aluminum alloy extruded material
KR20030084727A (en) Aluminum alloy with good cuttability, method for producing a forged article, and forged article
JPS59193236A (en) Free cutting aluminum alloy and preparation thereof
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JPS6361381B2 (en)
JPS60138038A (en) Aluminum alloy having superior wear resistance and machinability
JPH0925533A (en) Production of aluminum alloy for machining, excellent in cold forgeability, and cold forged aluminum alloy material for machining
JPS6158546B2 (en)
JPS6210290B2 (en)
JPH0353378B2 (en)
JPH0557346B2 (en)
JPH11323472A (en) Al-mg-si alloy extrusion material excellent in machinability and its production
JPH08199276A (en) Aluminum alloy for cold forging
JPS6214206B2 (en)