JPS6359461B2 - - Google Patents

Info

Publication number
JPS6359461B2
JPS6359461B2 JP56084970A JP8497081A JPS6359461B2 JP S6359461 B2 JPS6359461 B2 JP S6359461B2 JP 56084970 A JP56084970 A JP 56084970A JP 8497081 A JP8497081 A JP 8497081A JP S6359461 B2 JPS6359461 B2 JP S6359461B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
oxygen concentration
polarization
point
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56084970A
Other languages
Japanese (ja)
Other versions
JPS57200851A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP56084970A priority Critical patent/JPS57200851A/en
Publication of JPS57200851A publication Critical patent/JPS57200851A/en
Publication of JPS6359461B2 publication Critical patent/JPS6359461B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4067Means for heating or controlling the temperature of the solid electrolyte

Description

【発明の詳細な説明】 本発明は比較的低温度のガス中の酸素濃度を早
い応答速度と低インピーダンスの出力で正確迅速
に検出できる酸素濃度検出器に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxygen concentration detector that can accurately and quickly detect the oxygen concentration in gas at a relatively low temperature with a fast response speed and low impedance output.

従来、酸素イオン導電性固体電解質を用い酸素
濃淡電池の原理により内燃機関等より排出される
排気ガス中の酸素濃度を測定する酸素濃度検出器
が知られている。そしてこの酸素濃度検出器は、
例えば固体電解質としてイツトリア添加ジルコニ
ア磁器等を用い、電極として白金等を用いたもの
が一般的であるが、しかしながらこのものは、低
温度では白金の触媒能が低下するとともにジルコ
ニア磁器の電気抵抗が大きくなるため、酸素濃度
検出器としてのインピーダンスが高くなり、ノイ
ズ等の影響を受け信号が不安定となり、また応答
速度も遅くなる傾向にある等の問題点があるた
め、その実用的な使用温度の下限は約350℃程度
であつた。しかし内燃機関等の排気ガス温度は始
動時あるいは、アイドリング時にはこの温度を下
回る200℃〜300℃前後の場合があり、従つて、従
来の酸素濃度検出器は低温度ガスに対しては十分
作動しない欠点があつた。また酸素イオン導電性
固体電解質を用いて酸素濃淡電池の原理により被
測定ガス中の酸素濃度をネルンスト式に基いて正
確に測定するためには約600℃以上の温度に固体
電解質を加熱する必要があり、加熱用の電気炉、
温度調節計等が必要となり、測定装置が大型かつ
複雑となる欠点があつた。
2. Description of the Related Art Conventionally, oxygen concentration detectors have been known that use an oxygen ion conductive solid electrolyte and measure the oxygen concentration in exhaust gas discharged from an internal combustion engine or the like based on the principle of an oxygen concentration battery. And this oxygen concentration detector is
For example, it is common to use itria-doped zirconia porcelain as a solid electrolyte and platinum as an electrode. Therefore, there are problems such as the impedance as an oxygen concentration detector becomes high, the signal becomes unstable due to the influence of noise, and the response speed tends to be slow. The lower limit was about 350°C. However, the exhaust gas temperature of internal combustion engines, etc. may be around 200℃ to 300℃ below this temperature when starting or idling, and therefore conventional oxygen concentration detectors do not work well for low-temperature gas. There were flaws. In addition, in order to accurately measure the oxygen concentration in a gas to be measured based on the Nernst equation using the principle of an oxygen concentration battery using an oxygen ion conductive solid electrolyte, it is necessary to heat the solid electrolyte to a temperature of approximately 600°C or higher. Yes, electric furnace for heating,
This method requires a temperature controller, etc., and has the drawback that the measuring device is large and complicated.

本発明は従来のこのような欠点を解決するため
になされたものであり、特に低温度の雰囲気ガス
中においても酸素濃度を応答性よく、かつ、低イ
ンピーダンスで正確迅速に測定できる酸素濃度検
出器を提供するものであり、酸素イオン導電性固
体電解質に電極を付与して酸素濃淡電池を構成し
気体中の酸素分圧を検出する酸素濃度検出器にお
いて、固体電解質に設けられた電極に交流成分の
分極が主として固体電解質の分極よりなる周波数
の交流電圧を印加通電し固体電解質を自己発熱さ
せる第1の加熱手段と、固体電解質の周囲または
固体電解質中に配置した第2の加熱手段を有する
酸素濃度検出器である。
The present invention has been made to solve these conventional drawbacks, and provides an oxygen concentration detector that can accurately and quickly measure oxygen concentration with good responsiveness and low impedance even in low-temperature atmospheric gases. In an oxygen concentration detector that detects the partial pressure of oxygen in a gas by attaching an electrode to an oxygen ion conductive solid electrolyte and forming an oxygen concentration battery, A first heating means that generates self-heating of the solid electrolyte by applying an alternating voltage with a frequency whose polarization is mainly that of the solid electrolyte, and a second heating means disposed around or in the solid electrolyte. It is a concentration detector.

本発明の構成を更に詳しく説明すると、内燃機
関等の排気ガス中の酸素濃度を酸素イオン導電性
固体電解質を用いて酸素濃淡電池の原理より測定
する。酸素濃度検出器は、高温に耐えかつ低温度
でも早い応答速度を示すことが要求されるため、
その被測定ガス側の電極には触媒能が大きく、か
つ融点の高い例えば白金属の金属が用いられてい
る。
To explain the configuration of the present invention in more detail, the oxygen concentration in exhaust gas from an internal combustion engine or the like is measured using an oxygen ion conductive solid electrolyte based on the principle of an oxygen concentration battery. Oxygen concentration detectors are required to withstand high temperatures and exhibit fast response speeds even at low temperatures.
For the electrode on the side of the gas to be measured, a metal having a large catalytic ability and a high melting point, such as platinum metal, is used.

この酸素濃淡電池の交流の分極によるインピー
ダンス(Z)の周波数特性は、第1図に示すよう
にZ―Z′―jZ″の複素インピーダンス表示で2つ
の円弧の連なつた形となり、そのインピーダンス
特性は近似的に第2図の等価回路として表わされ
る。
The frequency characteristic of the impedance (Z) due to the polarization of alternating current in this oxygen concentration battery is a complex impedance representation of Z-Z'-jZ'', as shown in Figure 1, in the form of two series of circular arcs, and its impedance characteristic is approximately expressed as the equivalent circuit shown in FIG.

なお、第2図においてR1は電極と固体電解質
の界面における分極抵抗、R2は固体電解質の結
晶粒界の抵抗、R3は固体電解質の結晶粒子内の
抵抗、C1は電極と固体電解質の界面の分極に起
因する静電容量、C2に固体電解質の結晶粒界の
静電容量である。そして、第1図においてA点の
値は第2図におけるR1+R2+R3に相当し、B点
の値はR2+R3、C点の値はR3にそれぞれ相当す
る。またA点からB点までの酸素濃淡電池の分極
は主としてR1,C1に基くものでありB点からC
点までは主としてR2,R3,C2に基くものである。
各点と周波数との関係はA点では直流であり、円
弧上をB点に向うに従い周波数が高くなり、次の
円弧上をC点に向うに従い更に周波数が高くな
る。
In Figure 2, R 1 is the polarization resistance at the interface between the electrode and the solid electrolyte, R 2 is the resistance at the grain boundaries of the solid electrolyte, R 3 is the resistance within the crystal grains of the solid electrolyte, and C 1 is the resistance between the electrode and the solid electrolyte. The capacitance due to the polarization of the interface, C2 is the capacitance of the grain boundaries of the solid electrolyte. In FIG. 1, the value at point A corresponds to R 1 +R 2 +R 3 in FIG. 2, the value at point B corresponds to R 2 +R 3 , and the value at point C corresponds to R 3 . In addition, the polarization of the oxygen concentration battery from point A to point B is mainly based on R 1 and C 1 , and from point B to C
Up to this point, it is mainly based on R 2 , R 3 , and C 2 .
The relationship between each point and the frequency is that at point A, the frequency is direct current, and the frequency increases as you move along the arc toward point B, and the frequency further increases as you move along the next arc toward point C.

A点からB点に至る円弧は電極の付着状態、長
時間の使用等により大巾に変化するため、この範
囲の周波数の交流電圧を印加した場合、加熱に必
要な電力を安定に加えることが困難であり、かつ
電極と固体電解質との界面の大きな分極電圧のた
め、電極の剥離、固体電解質の変質等を生じ、ま
た両極の分極特性のわずかの差により直流成分の
片寄りを生ずる。
The arc from point A to point B changes greatly depending on the electrode attachment condition, long-term use, etc., so when applying an AC voltage with a frequency in this range, it is not possible to stably apply the power necessary for heating. This is difficult, and the large polarization voltage at the interface between the electrode and the solid electrolyte causes peeling of the electrode, deterioration of the solid electrolyte, etc., and a slight difference in the polarization characteristics of the two electrodes causes bias in the DC component.

本発明の第1の加熱手段はB点よりC点に至る
円弧上の周波数の交流電流、換言すれば交流成分
の分極が主として固体電解質の分極よりなる周波
数の交流電流を固体電解質に通電するものである
が、これらの電流を流した場合には、その電流が
固体電解質を加熱するに十分な程大きな値であつ
ても、電極の剥離、固体電解質の変質は起きずま
た直流成分の片寄りも無いものである。それはB
点より高い周波数の交流電圧を印加した場合、分
極の大部分はR2,C2,R3に相当する固体電解質
内部に加わるが固体電解質の内部では、分極が固
体電解質の厚み方向に均一に分散されるため通電
による劣化は起りにくく、一方通常劣化が起る
R1,C1に相当する電極と固体電解質との界面で
はほとんど分極が起らず界面への影響がないため
と考えられる。
The first heating means of the present invention is one in which an alternating current with a frequency on an arc from point B to point C is passed through the solid electrolyte, in other words, an alternating current with a frequency where the polarization of the alternating current component is mainly the polarization of the solid electrolyte. However, when these currents are passed, even if the current is large enough to heat the solid electrolyte, the electrodes will not peel off, the solid electrolyte will not change in quality, and the DC component will not be biased. There is no such thing. That is B
When an AC voltage with a higher frequency than the point is applied, most of the polarization is applied inside the solid electrolyte corresponding to R 2 , C 2 , and R 3 , but inside the solid electrolyte, the polarization is uniform in the thickness direction of the solid electrolyte. Because it is dispersed, deterioration due to electricity is unlikely to occur, whereas deterioration usually occurs.
This is thought to be because almost no polarization occurs at the interface between the electrode and the solid electrolyte corresponding to R 1 and C 1 and there is no effect on the interface.

更にB点よりC点に至る円弧上の周波数は、固
体電解質そのものの特性によつて定まるため、電
極の付着状態、耐久による変化等の影響を受ける
ことが少なく、この範囲の周波数すなわち、交流
成分の分極が主として固体電解質の成分よりなる
周波数の交流電圧を印加した場合、直流抵抗に比
べて数分の1から数十分の1の低いかつ安定なイ
ンピーダンスとなり、比較的低い印加電圧で固体
電解質を安定に加熱することができるものであ
る。
Furthermore, the frequency on the arc from point B to point C is determined by the characteristics of the solid electrolyte itself, so it is less affected by the adhesion state of the electrodes, changes due to durability, etc. When applying an AC voltage with a frequency where the polarization of the solid electrolyte is mainly due to the components of the solid electrolyte, the impedance becomes low and stable, ranging from a few times to several tenths of that of the DC resistance. can be heated stably.

すなわち通常R1の値は温度が低くなると共に
R2,R3に比べて急激に高くなり、このために酸
素濃度検出器の作動温度の下限が制約されるが、
本発明ではR1の値を小さくする手段として、酸
素濃淡電池の交流成分の分極が主として固体電解
質の分極となる周波数、すなわちB点よりC点に
至る円弧上の周波数の交流電圧を印加することに
よりR1の値に無関係に固体電解質の分極に起因
するR2+R3あるいはR3に電流を流して加熱する
ものである。
In other words, the value of R 1 usually decreases as the temperature decreases.
R 2 and R 3 suddenly become higher than that, and this limits the lower limit of the operating temperature of the oxygen concentration detector.
In the present invention, as a means to reduce the value of R 1 , an AC voltage is applied at a frequency at which the polarization of the AC component of the oxygen concentration battery is mainly the polarization of the solid electrolyte, that is, a frequency on a circular arc from point B to point C. Therefore, regardless of the value of R 1 , a current is passed through R 2 +R 3 or R 3 caused by the polarization of the solid electrolyte to heat it.

なお、交流成分の分極が主として固体電解質の
分極よりなる周波数の範囲内であつても局部加熱
を防止するために望ましくは第2図におけるC2
のインピーダンスがR2よりも小となる周波数で
加熱するのが良い。更に本発明においては固体電
解質内部のR2,C2,R3は単一の抵抗、あるいは
コンデンサーではなく、第3図に一具体例の拡大
図を模式的に示す様に負の抵抗温度係数を有する
固体電解質の微結晶粒子1とその微結晶粒子1間
に介在する高抵抗領域層2からなる固体電解質全
体に均一に分散されているため、例えば、この内
の一つのR′3の温度が何等かの理由で上昇し、抵
抗が下り電流が流れやすい状態になつた場合で
も、その電流1′はその特定のR′3につながるC′2
と印加される電圧v′と周波数により定まる値
i′=2πC′2v′以上は流れず、高抵抗領域層2の1
個所に加わる電圧v′と局部のC′2は極めて小さい
ため、結局局部的な電流の集中は防止され、例え
ば従来の固体電解質に単に直流を通電した場合ま
たは第1図のA点からB点の範囲に相当する低周
波の交流を印加した場合に見られる様な局部加熱
が無く、平板の両面に電極を設けた場合でも、全
体を均一な温度に加熱することができるものであ
る。
Note that even if the polarization of the AC component is within the frequency range mainly due to the polarization of the solid electrolyte, it is preferable to use C 2 in FIG. 2 to prevent local heating.
It is best to heat at a frequency where the impedance of R2 is smaller than R2 . Furthermore, in the present invention, R 2 , C 2 , and R 3 inside the solid electrolyte are not single resistors or capacitors, but have negative temperature coefficients of resistance, as shown schematically in an enlarged view of one specific example in Figure 3. For example, the temperature of one of these particles R ' Even if for some reason increases, the resistance decreases and current flows easily, that current 1' will connect to that specific R' 3 C' 2
The value determined by the applied voltage v′ and frequency
i′=2πC′ 2 v′ or more does not flow, and 1
Since the voltage v' applied to a point and the local C' 2 are extremely small, local concentration of current is eventually prevented.For example, when direct current is simply passed through a conventional solid electrolyte, or from point A to point B in Figure 1. There is no localized heating that occurs when low-frequency alternating current corresponding to the range is applied, and even when electrodes are provided on both sides of a flat plate, the entire plate can be heated to a uniform temperature.

なお、B点からC点間の周波数は固体電解質の
組成、温度、形状、電極の形状等で異なり一定で
ないが、例えばZrO295モル%、Y2O35モル%よ
りなる混合物100部に対して粘土3部を加えた先
端部の外径3.5mm、有効長さ10mm、厚さ0.75mmの
一端閉の磁器の内外面に白金電極を付けた酸素濃
淡電池では350℃においてB点は10Hz、C点はお
よそ50KHz以上である。
Note that the frequency between point B and point C varies depending on the composition, temperature, shape of the solid electrolyte, shape of the electrode, etc., and is not constant. On the other hand, in an oxygen concentration battery with platinum electrodes attached to the inner and outer surfaces of porcelain with an outer diameter of 3.5 mm at the tip, an effective length of 10 mm, and a thickness of 0.75 mm, with 3 parts of clay added, the B point is 10 Hz at 350°C. , point C is approximately 50KHz or higher.

また、ジルコニア磁器等の固体電解質は負の抵
抗温度特性をもち常温では第2図に示す固体電解
質の結晶粒界の抵抗R2および固体電解質の結晶
粒子内の抵抗R3がいちじるしく大きいので、低
電圧の交流電圧を印加通電して自己発熱させるた
めには固体電解質の温度を第4図に示す温度TS
(ジルコニア固体電解質の場合は約2000℃程度)
近く迄固体電解質の周囲あるいは固体電解質中に
設けた補助加熱源である第2の加熱手段により予
熱する必要がある。
In addition, solid electrolytes such as zirconia porcelain have negative resistance-temperature characteristics, and at room temperature, the resistance R 2 of the crystal grain boundaries of the solid electrolyte and the resistance R 3 within the crystal grains of the solid electrolyte shown in Figure 2 are significantly large. In order to generate self-heating by applying AC voltage, the temperature of the solid electrolyte must be set to the temperature T S shown in Figure 4.
(About 2000℃ for zirconia solid electrolyte)
It is necessary to preheat the solid electrolyte by means of a second heating means, which is an auxiliary heating source provided around or in the solid electrolyte.

そして、一旦固体電解質が交流電圧の印加通電
により自己発熱してその抵抗が低くなると第4図
の曲線Dに示すようないわゆる熱ヒステリシス特
性のため、第2の加熱手段による加熱を中止する
かあるいは弱くしても第1の加熱手段である交流
電流の通電による自己発熱によりTSより低い温
度でも加熱を継続することができ、極めて少ない
電力で且つ周囲への高周波誘導障害の少ない低電
圧の電源を用い、酸素濃度検出器を作動させるこ
とができる。
Once the solid electrolyte self-heats due to the application of AC voltage and its resistance decreases, heating by the second heating means is either stopped or Even if it is weakened, it can continue heating even at temperatures lower than T S due to self-heating caused by the supply of alternating current, which is the first heating means, and is a low-voltage power source that requires extremely little power and has little high-frequency induction interference to the surrounding area. can be used to operate the oxygen concentration detector.

更に、本発明の一具体例を第5図に基づいて説
明すれば、イツトリア添加ジルコニア磁器等より
なる有底円筒型固体電解質3の内面に白金等の内
部電極4が設けられているとともに、外表面上に
内部電極4と対をなして酸素濃淡電池を形成する
外部電極5が設けられ、そして既知の酸素濃度検
出器と同様に排ガスと接する部分が好ましくは多
孔質の保護層(図示せず)で覆われている。そし
て、内部抵抗4と外部抵抗5との間に交流成分の
分極が主として固体電解質の分極よりなる周波数
の交流電圧を印加する交流電源7や直流成分阻止
用コンデンサー8を介して接続され、さらに内部
電極4と外部電極5との間に直流電圧検出器9が
接続されている。そして更に有底円筒型固体電解
質の筒内の内部電極4の内側に第2の加熱手段で
ある発熱線6が挿入され直流電源12やスイツチ
13を介して接続された酸素濃度検出器である。
Further, a specific example of the present invention will be explained based on FIG. 5. An internal electrode 4 made of platinum or the like is provided on the inner surface of a bottomed cylindrical solid electrolyte 3 made of zirconia porcelain doped with ittria, etc. An external electrode 5 is provided on the surface to form an oxygen concentration cell in pair with the internal electrode 4, and the portion in contact with the exhaust gas is preferably covered with a porous protective layer (not shown), similar to known oxygen concentration detectors. ) is covered. The internal resistor 4 and the external resistor 5 are connected via an AC power supply 7 that applies an AC voltage with a frequency where the polarization of the AC component is mainly due to the polarization of the solid electrolyte, and a DC component blocking capacitor 8. A DC voltage detector 9 is connected between the electrode 4 and the external electrode 5. Further, a heating wire 6 serving as a second heating means is inserted inside the internal electrode 4 inside the bottomed cylindrical solid electrolyte tube, and is connected via a DC power source 12 and a switch 13 to form an oxygen concentration detector.

なお固体電解質3に設けられる交流電圧印加用
の電極は第5図に示すように酸素濃淡電池の内部
電極4と外部電極5とを兼用してもよく、また交
流電圧印加用の電極のみを独立して設けるかある
いはいずれか一方の電極を兼用しても良い。
Note that the electrode for applying an AC voltage provided on the solid electrolyte 3 may serve both as the internal electrode 4 and the external electrode 5 of the oxygen concentration battery, as shown in FIG. Alternatively, either one of the electrodes may be used also.

また、第2の加熱手段としては第5図に示す例
の外に第6図ないし第8図に示す様に固体電解質
3の外周にニクロム線あるいは炭化珪素等の発熱
体10を配置するかまたは固体電解質3表面にメ
タライズ層11等を配置するかあるいは、固体電
解質3中に埋設配置してもよい。更に第2の加熱
手段は電流による発熱体に限定されるものではな
く、例えば赤外線、火焔、電磁誘導等による加熱
であつても良い。
In addition to the example shown in FIG. 5, as the second heating means, a heating element 10 such as a nichrome wire or silicon carbide may be arranged around the outer periphery of the solid electrolyte 3 as shown in FIGS. 6 to 8. The metallized layer 11 and the like may be placed on the surface of the solid electrolyte 3 or buried in the solid electrolyte 3. Further, the second heating means is not limited to a heating element using an electric current, and may be heating using, for example, infrared rays, flame, electromagnetic induction, or the like.

次に本発明の実施例を述べる。 Next, examples of the present invention will be described.

実施例 1 ZrO295モル%、Y2O35モル%より成る混合物
100重量部に対し粘土3重量部を加えたジルコニ
ア磁器よりなる素子先端部の外径1.5mm、内径1
mmの有底円筒型固体電解質の内外面に、第5図に
示すように内部電極4、外部電極5をそれぞれ付
与し、さらに外表面にスピネルの多孔質層を付着
し、内部電極4の内側にニクロム線よりなる発熱
線6を挿入し、さらに、第5図に示すように内外
電極4,5間に交流電源7、直流成分阻止用コン
デンサー8および直流電圧検出器9をそれぞれ接
続した酸素濃度検出器を用意した。そして、酸素
濃度検出器を20℃の排気ガス中に設置し第2の加
熱手段である発熱線6に通電し、固体電解質を約
350℃に予熱した。その後更に第1の加熱手段で
ある交流成分の分極が主として固体電解質の分極
よりなる周波数の100KHz0.5Aの固流電流を固体
電解質に通電し、固体電解質を自己発熱させた。
その後、第2の加熱手段である発熱線6での加熱
を停止した。この結果、固体電解質は消費電力
5Wで自己発熱を継続して700℃に安定し、固体濃
淡電池の直流抵抗30Ωで排気ガス中の酸素濃度を
安定に長時間正確に測定することができた。
Example 1 A mixture consisting of 95 mol% ZrO 2 and 5 mol% Y 2 O 3
The outer diameter of the tip of the element is 1.5 mm, the inner diameter is 1.5 mm, and the tip is made of zirconia porcelain made by adding 3 parts by weight of clay to 100 parts by weight.
As shown in FIG. 5, an internal electrode 4 and an external electrode 5 are provided on the inner and outer surfaces of a bottomed cylindrical solid electrolyte of mm in size, and a porous layer of spinel is attached to the outer surface, and the inner electrode 4 is A heating wire 6 made of a nichrome wire is inserted into the electrode, and an AC power source 7, a DC component blocking capacitor 8, and a DC voltage detector 9 are connected between the inner and outer electrodes 4 and 5, respectively, as shown in FIG. A detector was prepared. Then, an oxygen concentration detector is installed in the exhaust gas at 20°C, and the heating wire 6, which is the second heating means, is energized, and the solid electrolyte is heated to approx.
Preheated to 350°C. Thereafter, a solid current of 100 KHz 0.5 A at a frequency in which the polarization of the alternating current component, which is the first heating means, mainly corresponds to the polarization of the solid electrolyte, was then applied to the solid electrolyte, thereby causing the solid electrolyte to self-heat.
Thereafter, heating by the heating wire 6, which is the second heating means, was stopped. As a result, solid electrolytes consume less power
It continued to self-heat at 5W and stabilized at 700℃, and with the solid-state concentration battery's DC resistance of 30Ω, it was possible to stably and accurately measure the oxygen concentration in exhaust gas for a long time.

以上のべたとおり本発明は、酸素イオン導電性
固体電解質に設けた電極に交流成分の分極が主と
して固体電解質の分極となる周波数の交流電圧を
印加することによつて固体電解質を自己発熱させ
る第1の加熱手段と、固体電解質の周囲又は固体
電解質中に配置した第2の加熱手段とを有する酸
素濃度検出器であるので、温度の低いガスに接し
た場合であつても安定して酸素濃淡電池の原理に
もとづいて応答性良く低インピーダンスで酸素濃
度を正確迅速に検出できる酸素濃度検出器であ
り、各種の排ガス中の酸素濃度を測定することが
できるので、省エネルギー上および排気ガス公害
防止上極めて有用な酸素濃度検出器である。
As described above, the present invention provides a first method for self-heating a solid electrolyte by applying an AC voltage at a frequency such that the polarization of the AC component is mainly the polarization of the solid electrolyte to the electrodes provided on the oxygen ion conductive solid electrolyte. This oxygen concentration detector has a heating means and a second heating means placed around or in the solid electrolyte, so it can stably operate the oxygen concentration battery even when in contact with low temperature gas. This is an oxygen concentration detector that can accurately and quickly detect oxygen concentration with good responsiveness and low impedance based on the principle of It is a useful oxygen concentration detector.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は酸素濃淡電池の複素インピーダンス特
性を示す説明図、第2図は酸素濃淡電池の等価回
路を示す説明図、第3図は固体電解質の微構造と
等価回路の関係を示す説明図、第4図は排ガス等
の雰囲気温度と固体電解質の温度の関係を示す説
明図、第5図は本発明の酸素濃度検出器の一具体
例を表わす説明図、第6図、第7図および第8図
は本発明の酸素濃度検出器の異なる一具体例を表
わす説明図である。 1……負の抵抗温度係数を有する微粒子、2…
…高抵抗領域層、3……固体電解質、4……内部
電極、5……外部電極、6,10,11……発熱
体、7……交流電源、8……コンデンサー、9…
…直流電圧検出器、12……直流電源、13……
スイツチ。
Fig. 1 is an explanatory diagram showing the complex impedance characteristics of the oxygen concentration battery, Fig. 2 is an explanatory diagram showing the equivalent circuit of the oxygen concentration battery, and Fig. 3 is an explanatory diagram showing the relationship between the microstructure of the solid electrolyte and the equivalent circuit. FIG. 4 is an explanatory diagram showing the relationship between the ambient temperature of exhaust gas etc. and the temperature of the solid electrolyte, FIG. 5 is an explanatory diagram showing a specific example of the oxygen concentration detector of the present invention, and FIGS. FIG. 8 is an explanatory diagram showing a different specific example of the oxygen concentration detector of the present invention. 1... Fine particles having a negative temperature coefficient of resistance, 2...
...High resistance region layer, 3... Solid electrolyte, 4... Internal electrode, 5... External electrode, 6, 10, 11... Heating element, 7... AC power supply, 8... Capacitor, 9...
...DC voltage detector, 12...DC power supply, 13...
Switch.

Claims (1)

【特許請求の範囲】[Claims] 1 酸素イオン導電性固体電解質に電極を付与し
て酸素濃淡電池を構成し気体中の酸素分圧を検出
する酸素濃度検出器において、固体電解質に設け
られた電極に交流成分の分極が主として固体電解
質の分極よりなる周波数の交流電圧を印加通電し
固体電解質を自己発熱させる第1の加熱手段と、
固体電解質の周囲または固体電解質中に配置した
第2の加熱手段を有する酸素濃度検出器。
1. In an oxygen concentration detector that detects the partial pressure of oxygen in a gas by attaching an electrode to an oxygen ion conductive solid electrolyte to configure an oxygen concentration battery, the polarization of the alternating current component is mainly caused by the polarization of the alternating current component at the electrode provided on the solid electrolyte. a first heating means that applies an AC voltage having a frequency corresponding to the polarization of the solid electrolyte to self-heat the solid electrolyte;
An oxygen concentration detector having a second heating means disposed around or in the solid electrolyte.
JP56084970A 1981-06-04 1981-06-04 Detector for oxygen concentration Granted JPS57200851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56084970A JPS57200851A (en) 1981-06-04 1981-06-04 Detector for oxygen concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56084970A JPS57200851A (en) 1981-06-04 1981-06-04 Detector for oxygen concentration

Publications (2)

Publication Number Publication Date
JPS57200851A JPS57200851A (en) 1982-12-09
JPS6359461B2 true JPS6359461B2 (en) 1988-11-18

Family

ID=13845479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56084970A Granted JPS57200851A (en) 1981-06-04 1981-06-04 Detector for oxygen concentration

Country Status (1)

Country Link
JP (1) JPS57200851A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6354791B2 (en) * 2015-10-09 2018-07-11 株式会社デンソー Gas sensor

Also Published As

Publication number Publication date
JPS57200851A (en) 1982-12-09

Similar Documents

Publication Publication Date Title
US4541899A (en) Method of heating a solid electrolyte body
US4500412A (en) Oxygen sensor with heater
US4505783A (en) Oxygen concentration detector and method of using same
CA1160684A (en) Oxygen concentration detector
US4505803A (en) Oxygen concentration detector
JPH0352197B2 (en)
CA1160686A (en) Oxygen concentration detector
JPS6118854A (en) Oxygen concentration detecting element
US4505805A (en) Oxygen concentration detector
US4057996A (en) Systems for monitoring the composition of exhaust gases
JPS6359461B2 (en)
US5681111A (en) High-temperature thermistor device and method
JPS601546A (en) Smoke sensor
JP2815125B2 (en) Contact combustion type gas detection element
EP0086415B1 (en) Humidity sensitive device
JPH06288952A (en) Gas sensor
JP2955583B2 (en) Detection element for gas sensor
JPS5614151A (en) Air fuel ratio detector
JP2000019139A (en) Ceramic chlorine gas sensor
JPH079082Y2 (en) Oxygen concentration sensor
KR950008861B1 (en) Ceramic semiconductor control sensor
JP2000321231A (en) Gas sensor and gas detection method
JPH07107523B2 (en) Gas detector manufacturing method
JPH0545322A (en) Gas detecting apparatus
JPS61254847A (en) Flame sensor