KR950008861B1 - Ceramic semiconductor control sensor - Google Patents

Ceramic semiconductor control sensor Download PDF

Info

Publication number
KR950008861B1
KR950008861B1 KR1019920007460A KR920007460A KR950008861B1 KR 950008861 B1 KR950008861 B1 KR 950008861B1 KR 1019920007460 A KR1019920007460 A KR 1019920007460A KR 920007460 A KR920007460 A KR 920007460A KR 950008861 B1 KR950008861 B1 KR 950008861B1
Authority
KR
South Korea
Prior art keywords
sensor
anode
oxygen concentration
temperature
fuel ratio
Prior art date
Application number
KR1019920007460A
Other languages
Korean (ko)
Other versions
KR930024205A (en
Inventor
권철한
Original Assignee
엘지전자주식회사
이헌조
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자주식회사, 이헌조 filed Critical 엘지전자주식회사
Priority to KR1019920007460A priority Critical patent/KR950008861B1/en
Publication of KR930024205A publication Critical patent/KR930024205A/en
Application granted granted Critical
Publication of KR950008861B1 publication Critical patent/KR950008861B1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

The sensor consists of a platinum cathod, a platinum anode, a positive temperature coefficient thermistor between the cathod and the anode. The PTC thermistor for detecting the air fuel ratio of exhaust gas, is composed of porous BaTiO3. Pref. PbTiO3 is added to the BaTiO3. The sensor can exactly detects fine change of oxygen concentration.

Description

세라믹 반도체형 공연비 제어센서.Ceramic semiconductor air-fuel ratio control sensor.

제1도는 종래의 농담전지형 산소센서의 구조도.1 is a structural diagram of a conventional shade-type oxygen sensor.

제2도는 본 발명의 산소농도 센서의 구동회로도.2 is a driving circuit diagram of an oxygen concentration sensor of the present invention.

제3도는 본 발명의 센서에 대한 산소농도 변화에 따른 큐리온도(Tc)에서의 저항변화를 나타낸 그래프.3 is a graph showing a change in resistance at the Curie temperature (Tc) according to the oxygen concentration change for the sensor of the present invention.

본 발명은 세라믹 반도체형 공연비 제어센서에 관한 것으로서, 특히 미세한 산소농도 변화를 감지하여 연소기기의 연소상태 제어시 희박 연소영역에서의 제어가 가능하도록 한 것에 관한 것이다.The present invention relates to a ceramic semiconductor air-fuel ratio control sensor, and in particular, to detect a small change in oxygen concentration to enable the control in the lean combustion region when controlling the combustion state of the combustion device.

일반적으로 산소센서는 3가지 형태로 나눌수 있는데, 이를 살펴보기로 하면, 첫째, 농담전지형(ZrO2계의 세라믹스가 원료)으로서, 그 구조는 제1도에서와 같이 히터(11)에 음극의 백금전극(12)과 ZrO2센서(13)의 양극백금 전극(14)으로 이루어진 것으로서, 양극전극(P1)과 음극전극(P2) 사이의 산소분압차에 의해서 음극에서 양극으로 산소이온이 이동하게 됨에 따라서 두전극 사이에 기전력이 발생하게 되는 현상을 이용한 센서이다.Generally, the oxygen sensor is divided into three types, you look at it, first, as a joke Terrain (Z r O ceramic as a raw material of the second type), the structure is in the heater 11 as in the first Fig. It is composed of the platinum electrode 12 of the cathode and the anode platinum electrode 14 of the Z r O 2 sensor 13, and the anode at the anode by the oxygen partial pressure difference between the anode electrode P 1 and the cathode electrode P 2 . As the oxygen ion moves, the electromotive force is generated between the two electrodes.

둘째, 한계전류형(ZrO2계 세라믹스)으로서 구조는 상기 농담전지형과 유사하며, 두전극에 일정한 전압을 가하였을때, 센서에 흐르는 전류를 측정하는 방식이다. 이때 전류치는 산소농도차에 비례하여 증가하게 되는 것이 있다.Second, as a limit current type (Z r O 2 based ceramics), the structure is similar to the light battery type, and a method of measuring a current flowing through a sensor when a constant voltage is applied to two electrodes. At this time, the current value may increase in proportion to the oxygen concentration difference.

세째, 반도체형(TiO2계 세라믹스)으로서 대기중의 산소분압에 따라 TiO2결정(Crystal)내의 산소공위(Oxygen Vacancy)의 양이 변화하게 되고, 그에 따라서 전기저항이 변화되는 것을 이용한 센서가 있다.Third, as the semiconductor type (T i O 2 based ceramics), the amount of oxygen vacancies in the Ti i 2 crystal (Crystal) changes according to the oxygen partial pressure in the atmosphere, and accordingly the electric resistance changes. There is a sensor used.

상기 전기저항(R)은 다음 식과 같이 산소분압(Po2)에 의해 결정된다.The electrical resistance (R) is determined by the oxygen partial pressure (Po 2 ) as shown in the following equation.

Rα(Po2)n*ARα (Po 2 ) n * A

상기에서From above

A=상수이다.A = constant.

상기에서, 서술한 3가지 형태의 센서중 반도형 센서가 생산원가가 저렴하고 제조가 용이한 장점을 가지고 있으나, 희박연소영역(lean burn region)에서는 산소농도의 변화가 미세하기 때문에 센서신호의 변화가 거의 없어서 사용할 수가 없다.In the above-described three types of sensors, the semi-conductor type sensor has the advantages of low production cost and easy manufacturing, but the change in the sensor signal is small because the oxygen concentration is small in the lean burn region. Is almost impossible to use.

따라서 희박연소제어에는 고가의 한계전류형 센서가 적용되고 있다. 희박연소(lean burn) 영역에서의 제어가 가능한 것은 한계전류형으로 제조 공정이 복잡하고 제조단가가 고가인 문제가 따른다.Therefore, an expensive limit current sensor is used for lean burn control. The control in the lean burn area is limited current type, which is complicated by the manufacturing process and expensive.

또한 약 700℃ 부근의 동작온도가 필요하기 때문에 센서에 히터를 내장시켜야만 되므로서 히터에 따른 문제점을 가지고 있었다.In addition, since the operating temperature is required around 700 ℃ to have a heater built in the sensor had a problem according to the heater.

본 발명은 상기와 같은 종래의 문제점을 해소하고자, PTC 써미스터로 사용되는 재질을 다공질로 제조하여 미세한 산소 농도 변화를 감지하도록 하므로서 정밀제어가 가능하도록 한 것에 목적을 둔 것이다.The present invention has been made in order to solve the conventional problems as described above, by making a material used as a PTC thermistor porous to sense the minute oxygen concentration change to enable precise control.

상기와 같은 목적을 가진 본 발명은 음극백금전극과, BaTiO3계 다결정재질과, 양극 백금전극으로 형성하여서 된 것이다.The present invention having the above object is made of a cathode platinum electrode, a B a T i O 3 based polycrystalline material, and an anode platinum electrode.

이하 첨부도면에 따라서 본 발명의 작용 효과를 상세히 설명하면 다음과 같다.Hereinafter, the operational effects of the present invention according to the accompanying drawings in detail as follows.

제2도는 상기 본 발명의 산소농도센서의 구동회로도로서, 전원(VCC)을 센서에 인가하고 기준저항(R1)을 연결하였다. 제3도는 본 발명의 센서에 대한 산소농도 변화에 따른 큐리온도(TC)에서의 저항변화를 나타는 그래프이다.2 is a driving circuit diagram of the oxygen concentration sensor of the present invention, and a power source V CC is applied to the sensor and a reference resistor R 1 is connected. 3 is a graph showing a change in resistance at the Curie temperature (T C ) according to the oxygen concentration change for the sensor of the present invention.

본 발명은 양극 백금전극과 음극 백금전극 사이에, 배기가스 공연비를 감지하는 것을 PTC(Positive Temperature Coefficient) 서어미스터(thernistor)로 쓰이는 재질인 BaTiO3을 다공질로 제조하여 형성시켜서, 센서로 응용하는 것이다. 그리고 상기 BaTiO3재질에 PbTiO3을 첨가하여 사용하여도 좋다.The present invention is to produce a BaTiO 3 made of a porous material used as a PTC (Positive Temperature Coefficient) thermistor between the anode platinum electrode and the cathode platinum electrode to detect the exhaust gas air-fuel ratio to be applied as a sensor . And it may be used by the addition of P b T i O 3 in the BaTiO 3 material.

상기 양 전극 사이에 사용되는 BaTiO3계의 재질은 결정구조의 전이가 나타나는 큐리온도(Curie Temperature)를 갖고 있으며, 큐리온도에서 저항이 105∼107정도 급격하게 변화되는 특성을 제3도에 도시하고 있다.The material of the B a T i O 3 system used between the two electrodes has a Curie Temperature (Curie Temperature) in which the transition of the crystal structure occurs, and the resistance changes rapidly from 10 5 to 10 7 at the Curie Temperature. 3 is shown.

이때 큐리 임계점에서의 상기 BaTiO3재질의 저항 변화폭은 Heywang의 이론에 의해서 임계점에서의 산소흡착량에 따라서 변하게 된다. 즉 산소흡착량이 많을수록 상기 BaTiO3재질의 저항변화폭이 커지며, 적을수록 저항변화폭은 작아진다.At this time, the resistance change width of the BaTiO 3 material at the Curie critical point is changed according to the oxygen adsorption at the critical point according to Heywang's theory. That is, the larger the oxygen adsorption amount, the larger the resistance change range of the BaTiO 3 material, and the smaller the decrease in resistance change.

따라서 배기가스 중에 산소농도가 약간씩만 변화되어도 입계에 흡착되는 산소량이 달라지고 그에 따라 큰폭으로 상기 BaTiO3재질의 저항값(다시 말해서 상기 BaTiO3재질의 저항의 변화가 센서의 출력이 되므로, 상기 BaTiO3재질의 저항값은 센서저항의 저항값이 된다)이 급격하게 변화한다.Therefore, even if the oxygen concentration in the exhaust gas is only slightly changed, the amount of oxygen adsorbed at the grain boundary varies, and accordingly, the resistance value of the BaTiO 3 material (that is, the change in the resistance of the BaTiO 3 material becomes the output of the sensor, so that the BaTiO (3 ) Resistance value of material becomes resistance value of sensor resistance).

한편 센서의 BaTiO3게의 재질에 PbTiO3를 첨가하여 고용체를 형성시키면, PbTiO3량의 증가에 따라서 큐리온도가 고온쪽으로 상승하게 되므로 센서가 작동하게 될 온도에 따라 BaTiO3와 PbTiO3비를 조절하여 제조하게 되면, 센서의 동작온도를 임의로 설정할 수 있게 되어 배기가스 온도를 곧 동작온도로 설정할 수도 있다.On the other hand, if P b T i O 3 is added to the material of the B a T i O 3 crab to form a solid solution, the Curie temperature rises toward the high temperature according to the increase in the amount of P b T i O 3 so that the sensor operates. When manufacturing by adjusting the ratio of B a T i O 3 and P b T i O 3 according to the temperature to be, the operating temperature of the sensor can be set arbitrarily and the exhaust gas temperature can be set to the operating temperature soon.

그러므로 본 발명의 센서를 사용할때 별도의 히터나 온도보상소자를 사용하지 않고서도 간단한 회로 구성이 가능하게 된다.Therefore, when using the sensor of the present invention, a simple circuit configuration is possible without using a separate heater or a temperature compensating element.

이와같이 본 발명의 센서는 미세한 산소농도 변화를 정확하게 감지할 수 있게 되므로 이를 이용하여 희박 연소제어를 위해서 사용될 수 있게 되고, 센서의 생산원가가 저렴한 잇점이 있다.As described above, the sensor of the present invention can accurately detect the minute oxygen concentration change, and thus can be used for the lean burn control using the sensor, and the production cost of the sensor is low.

더불어 특정동작온도를 유지시키기 위하여 히터등의 온도보상회로를 별도로 부가시키지 않아도 배기 가스 온도를 동작 온도로 설정할 수 있게 된다.In addition, it is possible to set the exhaust gas temperature to an operating temperature without additionally adding a temperature compensation circuit such as a heater to maintain a specific operating temperature.

또한 비교적 저온(300℃ 이하)에서 작동시킬 수 있게 되므로 수명이 매우 길게 되며, 높은 온도에서의 동작 설정도 가능하게 된 유용한 것이다.In addition, since it can be operated at a relatively low temperature (300 ℃ or less), the life is very long, it is useful to be able to set the operation at a high temperature.

Claims (2)

양극의 백금전극과 음극의 백금전극 사이에, 배기가스 공연비를 감지하기 위한 물질을, 다결정의 BaTiO3재질(3)을 사용한 것을 특징으로 하는 세라믹 반도체형 공연비센서.A ceramic semiconducting air-fuel ratio sensor using a polycrystalline B a T i O 3 material (3) as a material for sensing an exhaust gas air-fuel ratio between a platinum electrode of an anode and a platinum electrode of a cathode. 제1항에 있어서, 상기 다결정의 BaTiO3재질에 PbTiO3를 첨가시킨 것을 특징으로 하는 세라믹 반도체형 공연비센서.The method of claim 1, wherein the ceramic semiconductor-type air-fuel ratio sensor to a B a T i O 3 material of the polycrystalline characterized in that that the addition of P b T i O 3.
KR1019920007460A 1992-05-01 1992-05-01 Ceramic semiconductor control sensor KR950008861B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019920007460A KR950008861B1 (en) 1992-05-01 1992-05-01 Ceramic semiconductor control sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019920007460A KR950008861B1 (en) 1992-05-01 1992-05-01 Ceramic semiconductor control sensor

Publications (2)

Publication Number Publication Date
KR930024205A KR930024205A (en) 1993-12-22
KR950008861B1 true KR950008861B1 (en) 1995-08-08

Family

ID=19332629

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920007460A KR950008861B1 (en) 1992-05-01 1992-05-01 Ceramic semiconductor control sensor

Country Status (1)

Country Link
KR (1) KR950008861B1 (en)

Also Published As

Publication number Publication date
KR930024205A (en) 1993-12-22

Similar Documents

Publication Publication Date Title
US4905652A (en) Device for measuring a component of a gaseous mixture
US4543176A (en) Oxygen concentration detector under temperature control
US4902400A (en) Gas sensing element
EP0001510A1 (en) Gas sensor
KR950014742B1 (en) Air-fuel ratio detection system for engine exhaust gas
Sheng et al. Platinum doped titania film oxygen sensor integrated with temperature compensating thermistor
JP3133071B2 (en) Polarographic sensor
US4233033A (en) Method and apparatus for measuring the O2 content of a gas
US4875981A (en) Oxygen analyzing method and device
JP3736921B2 (en) Air-fuel ratio sensor
KR950008861B1 (en) Ceramic semiconductor control sensor
Yagi et al. Humidity sensing characteristics of a limiting current type planar oxygen sensor for high temperatures
EP0962765B1 (en) Exhaust oxygen sensing
US4485369A (en) Sensor for measuring air-fuel ratio
JPS63138256A (en) Air-fuel ratio measuring method for exhaust gas of internal combustion engine
Ma Study of the oxygen‐sensitive behavior of yellow lead oxide by defect chemistry
US4857164A (en) Oxygen analyzer
JPH0234605Y2 (en)
JPS61155746A (en) Exhaust gas sensor
JPH04256851A (en) Gas detecting apparatus
US4228675A (en) Exhaust gas sensor electrical circuit improvement
JP3444640B2 (en) Gas sensor for water vapor and gas sensor for both oxygen and water vapor
JPH053902B2 (en)
JP3468348B2 (en) Carbon monoxide sensor and carbon monoxide concentration measuring method
JPS63293456A (en) Gas sensor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee