JP3736921B2 - Air-fuel ratio sensor - Google Patents

Air-fuel ratio sensor Download PDF

Info

Publication number
JP3736921B2
JP3736921B2 JP31061196A JP31061196A JP3736921B2 JP 3736921 B2 JP3736921 B2 JP 3736921B2 JP 31061196 A JP31061196 A JP 31061196A JP 31061196 A JP31061196 A JP 31061196A JP 3736921 B2 JP3736921 B2 JP 3736921B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
signal
voltage
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31061196A
Other languages
Japanese (ja)
Other versions
JPH10153576A (en
Inventor
繁 宮田
稔明 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP31061196A priority Critical patent/JP3736921B2/en
Publication of JPH10153576A publication Critical patent/JPH10153576A/en
Application granted granted Critical
Publication of JP3736921B2 publication Critical patent/JP3736921B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関等各種燃焼機器に供給される混合気の空燃比を排ガス中の酸素濃度より検出する空燃比センサに関する。
【0002】
【従来の技術】
従来より、この種の空燃比センサの一つとして、板状の酸素イオン伝導性固体電解質の両面に多孔質電極を備えた二個の検出素子を、各検出素子の一方の多孔質電極が排ガスの拡散が制限された測定ガス室に接するように配設すると共に、一方の検出素子の測定ガス室に接しない側の多孔質電極が大気等の基準ガスに接するように配設してなる空燃比センサ(例えば、特開昭61−138156号公報、特開昭61−186849号公報)が知られている。
【0003】
この種の空燃比センサでは、基準ガスに接する側の検出素子を酸素濃淡電池素子、他方の検出素子を酸素ポンプ素子として用い、酸素濃淡電池素子両端に生じる電圧が一定となるよう酸素ポンプ素子に流れるポンプ電流を双方向に制御し、このポンプ電流に応じた信号を取り出すことによって、空燃比のリーン域からリッチ域にかけて連続的に変化する空燃比信号が得られる。
【0004】
つまり、酸素濃淡電池素子では、基準ガスの酸素分圧と、測定ガス室内の酸素分圧との比に応じた電圧が生じることから、この電圧が一定となるよう、即ち測定ガス室内の酸素分圧が一定となるよう酸素ポンプ素子に流れるポンプ電流を双方向に制御し、その電流値を検出すれば空燃比に対応した検出信号が得られることになるのである。
【0005】
ところで、このような空燃比センサの出力は、A/Dコンバータを介してCPU等に取り込まれて、内燃機関の制御等に利用されるのであるが、A/DコンバータやCPUは、通常、+5V等の単一電源で動作させる場合が多い。
このため、空燃比センサでは、正負の両極性を有するポンプ電流に応じた検出信号を、単極性の信号として取り出す必要があり、通常、ポンプ電流の電流経路に検出抵抗を配設して、その両端電圧を検出して増幅すると共に、増幅された電圧信号が所定の基準電圧(例えば電源電圧の1/2)を中心にして変動するようにレベルシフトしたものを検出信号として出力する出力回路が設けられている。
【0006】
つまり、このような空燃比センサを用いる場合、予め設定された所定の電圧を排ガスが理論空燃比である場合に対応する出力電圧とし、その所定の電圧を基準値として、検出信号の出力電圧から空燃比を求めることになる。
【0007】
【発明が解決しようとする課題】
しかし、排ガスが理論空燃比であるときに、空燃比センサから所定の電圧が出力されるようにするには、通常、ツェナーダイオードや分圧抵抗を用いて電源電圧を降下させたり分圧したりすることにより、検出回路内部に基準となる電圧(基準電圧)を作成しなければならない。しかし、電源電圧が変動したり、周囲温度の変動によってそれら回路素子の特性が変化すると基準電圧も変化する。即ち、電源電圧や周囲温度が変化すると、予め設定されていた所定の電圧と、理論空燃比の時に実際に空燃比センサから出力される電圧とが対応しなくなり、検出値に誤差が生じてしまうという問題があった。
【0008】
特に、近年、内燃機関からの排ガスを浄化するために、空燃比が精密に理論空燃比(即ち、空気過剰率λ=1)近傍となるように、内燃機関を制御する所謂精密λ制御が知られているが、この制御では、λを0.001単位で検出する必要がある。一方、リーンバーン状態でエンジンを制御する場合には、この種の空燃比センサでは、λ=3.0の範囲まで空燃比を検出しなければならないため、結局、検出信号を0.001/3.0=1/3000以上の分解能で検出する必要がある。これは、A/Dコンバータにおいて12ビットで符号化することに相当するが、このように高い分解能で出力電圧を検出する必要がある場合、外乱によって上記の基準電圧が少しでも変化すると、精度のよい制御を行うことができなくなってしまうのである。
【0009】
本発明は、上記問題点を解決するために、電源電圧や周囲温度の変動によらず、空燃比を精度よく検出可能な空燃比センサを提供することを目的とする。
【0010】
【課題を解決するための手段及び発明の効果】
上記目的を達成するためになされた本発明は、
酸素イオン伝導性の固体電解質体の両面に多孔性電極が形成された2つの検出素子を、排ガスの流入が制限された測定ガス室に面して配設してなる検出素子部と、
上記検出素子の一方を上記測定ガス室内の酸素濃度に応じた信号を出力する酸素濃淡電池素子、他方を該検出素子の両面に形成された多孔性電極間で酸素イオンを移動させる酸素ポンプ素子として動作させ、上記酸素濃淡電池素子の出力信号が、上記測定ガス室内の酸素濃度が理論空燃比に対応した酸素濃度であることを示すものとなるように、上記酸素ポンプ素子に流れるポンプ電流を双方向に制御する電流制御手段と、
上記ポンプ電流の電流経路に配設された検出抵抗と、
該検出抵抗の両端電圧に応じて変化し、且つ排ガスが理論空燃比であるときに所定の電圧となるように設定された第1の空燃比信号を出力する空燃比信号出力手段と、
を備えた空燃比センサであって、
上記検出抵抗の両端電圧の大小を比較し、該比較結果を第2の空燃比信号として出力する比較手段を設けたことを特徴とする。
【0011】
このように構成された本発明の空燃比センサにおいては、電流制御手段が、酸素濃淡電池素子の出力信号が測定ガス室内の酸素濃度が理論空燃比に対応した酸素濃度にあることを示すものとなるように、酸素ポンプ素子に流れるポンプ電流を制御することにより、検出抵抗には、排ガス中の酸素濃度、延いては内燃機関に供給される混合気の空燃比に応じたポンプ電流が流れる。
【0012】
つまり、空燃比がリッチ(理論空燃比より低い:λ<1)であれば、測定ガス室に酸素を供給する方向のポンプ電流が流れ、一方、空燃比がリーン(理論空燃比より高い:λ>1)であれば、これとは逆に、測定ガス室から酸素をくみ出す方向のポンプ電流が流れる。
【0013】
そして、空燃比信号出力手段は、検出抵抗の両端電圧に応じて変化し、且つ排ガスが理論空燃比であるときに所定の電圧となるように設定された第1の空燃比信号を生成する。即ち、第1の空燃比信号は、ポンプ電流に対応し、延いては空燃比に対応したものとなる。
【0014】
一方、比較手段は、検出抵抗の両端電圧の大小を比較して、その比較結果を第2の空燃比信号として出力する。即ち、第2の空燃比信号は、ポンプ電流の流れる方向が反転すると、信号レベルが反転し、即ち空燃比の状態がリーンかリッチかにより、信号レベルが異なったものとなる。
【0015】
従って、本発明の空燃比センサによれば、第2の空燃比信号が反転するタイミングで第1の空燃比信号を検出する基準値設定手段等を設ければ、理論空燃比に対応する第1の空燃比信号の値を実測して、該実測値を第1の空燃比信号から空燃比を求める際の基準値として設定することができるため、電源電圧や周囲温度の変動によって空燃比センサ内部で作成された基準電圧が変化しても、精度よく空燃比を求めることができる。
【0016】
【発明の実施の形態】
以下に本発明の一実施例を図面と共に説明する。
図1は、本発明が適用された実施例の空燃比センサ及びその周辺装置を表す概略構成図、図2は空燃比センサの検出素子部の断面図である。
【0017】
図1に示すように、本実施例の空燃比センサ2は、内燃機関の排気管に設けられる検出素子部2aと、検出素子部2aを制御して排ガス中の酸素濃度に対応した後述する第1及び第2の空燃比信号を出力する検出回路部2bとにより構成されている。
【0018】
ここでまず検出素子部2aは、図2に示すように、固体電解質基板4の両側に多孔質電極5,6を形成した第1のセンサ素子(ポンプ素子)7と、同じく固体電解質基板8の両側に多孔質電極9,10を形成した第2のセンサ素子(電池素子)11と、これら両素子7,11の間に積層されて測定ガス室aを形成するスペーサ12とを備えている。そして、電池素子11の測定ガス室aとは反対側には、多孔質電極10を大気に接触させるため、セラミックス等の耐熱性で気密な部材からなる壁面13により形成された空気室bが設けられている。
【0019】
また、ポンプ素子7の一方の多孔質電極5にはポンプ素子制御端子A、電池素子11の一方の多孔質電極10には電池素子制御端子B、ポンプ素子7及び電池素子11の残りの多孔質電極6,9には共通端子Cが接続されている。
更に、ポンプ素子7,電池素子11及び壁面13の下部周縁部には、排気管への取付用ネジ部14が刻設された支持台15が、耐熱かつ絶縁性の接着部材16を介して取り付けられている。つまり、検出素子部2aは、支持台15のネジ部14を、排気管1に形成された検出素子部取付用のネジ部17に螺合し、締め付けることによって、排気管1に取り付けられるようにされている。
【0020】
なお、ポンプ素子7及び電池素子11を構成する固体電解質基板4,8の材料としては、イットリア−ジルコニア固溶体,カルシア−ジルコニア固溶体が知られており、その他に二酸化セリウム,二酸化トリウム,二酸化ハフニウムの各固溶体、ペロブスカイト型固溶体、3価金属酸化物固溶体等が使用できる。また、固体電解質基板4,8の両面に設けられる多孔質電極としては、酸化反応の触媒作用を有する白金やロジウム等が用いられ、更に、スペーサ12の材料としては、アルミナ,スピネル,フォルステライト,ステアタイト,ジルコニア等が用いられる。
【0021】
次に、検出回路部2bは、図1に示すように、端子B,C間、即ち電池素子11の出力電圧Vsが、測定ガス室aが理論空燃比である場合に対応した所定値(本実施例では450mV)となるように、端子A,C間、即ちポンプ素子7に流れるポンプ電流Ipを双方向に制御する電流制御回路20と、演算増幅器OP3及び抵抗R11〜R17により構成され、後述する検出抵抗Rdの両端電圧に対応した第1の空燃比信号Voを出力する第1出力回路22と、演算増幅器OP4,抵抗R21〜R25,及びトランジスタTRにより構成され、検出抵抗Rdの両端電圧の大小関係、即ち検出抵抗Rdを通ってポンプ電流Ipが流れるその電流方向に従ってレベルが変化する第2の空燃比信号Doを出力する第2出力回路24とを備えている。
【0022】
このうち電流制御回路20は、出力がポンプ素子制御端子Aに接続されると共に、非反転入力に所定電圧Vb(本実施例では4V)が印加され、抵抗Rxを介して共通端子Cに接続された反転入力の電位を所定電圧Vbに保持するように動作する演算増幅器OP1と、電池素子制御端子Bから得られる電圧信号に基づいて、電池素子11の出力電圧Vsが理論空燃比に対応した所定値となるようにPID制御を行うPID回路21と、一端が演算増幅器OP1の反転入力に接続され、他端がPID回路21の出力に接続された検出抵抗Rdと、検出抵抗Rdの演算増幅器OP1側端の電位を、ポンプ電流Ipに影響を与えることなく取り出すためのバッファ回路として設けられた演算増幅器OP2とにより構成されている。
【0023】
なお、演算増幅器OP1及び検出抵抗Rdと共通端子Cとの間に接続された抵抗Rxの抵抗値は、ポンプ電流Ipによる電圧降下が十分に小さいように選ばれる。また、PID回路21が行うPID制御とは、非制御信号(制御端子Bからの電圧信号)の偏差信号に比例した信号,偏差信号を積分した信号,及び偏差信号を微分した信号の夫々に、適当な重みをつけて加え合わせた値を出力として制御を行う周知の制御である。
【0024】
このように構成された電流制御回路20では、電池素子11の出力電圧Vsが、測定ガス室a内の酸素濃度が理論空燃比に対応した酸素濃度であることを示すものとなるように動作するだけでなく、電源電圧VDD(本実施例では8V)の変動等により所定電圧Vbが変動したとしても、常に、出力電圧Vsが、測定ガス室a内の酸素濃度が理論空燃比に対応した酸素濃度であることを示すものとなった時にポンプ電流Ip=0となるように動作する。
【0025】
なお、ポンプ電流Ipは、検出すべき空燃比がリーン(λ>1)である場合、測定ガス室aから酸素をくみ出すために、ポンプ素子制御端子Aから共通端子Cに向け、即ち検出抵抗Rdを演算増幅器OP1側からPID回路21側に向けて流れ、リッチ(λ<1)である場合、測定ガス室aに酸素を供給するために、共通端子Cからポンプ素子制御端子Aに向け、即ち検出抵抗RdをPID回路21側から演算増幅器OP1側に向けて流れる。
【0026】
つまり、リーンであれば、検出抵抗Rdの演算増幅器OP1側端の電位が高くなり、リッチであれば、逆に検出抵抗RdのPID回路21側端の電位が高くなる。
そして、第1出力回路22は、演算増幅器OP3を中心にした周知の差動増幅回路として構成されており、抵抗R15,R16による電源電圧VDDの分圧値を基準電圧Vc(本実施例では4V)として、図3(a)に示すように、空燃比がリーンであるほど基準電圧Vcより大きく、リッチであるほど基準電圧Vcより小さくなり、理論空燃比(λ=1)の時に基準電圧Vcに等しくなる第1の空燃比信号Voを出力する。
【0027】
一方、第2出力回路24は、コンパレータとして用いられる演算増幅器OP4と、この演算増幅器OP4の出力を反転し所定の信号レベルに変換する反転出力回路として構成された抵抗R21〜R25及びトランジスタTRとにより、図3(b)に示すように、空燃比がリーンの時にHighレベル、リッチの時にLow レベルとなり、理論空燃比の時に信号レベルが反転する第2の空燃比信号Doを出力する。
【0028】
このように構成された空燃比センサ2は、例えば、車両用の内燃機関を制御するECU26とともに用いられる。
なお、ECU26は、CPU,ROM,RAMからなるマイクロコンピュータを中心に構成されており、内燃機関の始動と共に、空燃比センサ2を動作させ、A/D変換器を介して入力される第1の空燃比信号Voと、理論空燃比に対応させた基準値Vfとから内燃機関に供給される混合気の空燃比を求め、この求めた空燃比に基づいて内燃機関の運転制御を行うものである。
【0029】
ここで、図5は、ECU26において、上記運転制御の空き時間を利用して、繰り返し実行される基準値設定処理を表すフローチャートである。
本処理が開始される前に、ECU26への電源投入直後に実行される初期化処理により、基準値Vfは、電源電圧VDD、及び抵抗R15,R16の抵抗値に基づいて予め求められる基準電圧Vcに初期設定されると共に、第2の空燃比信号Doが読み込まれ、その信号レベルが後述する比較値Dpとして設定されている。
【0030】
本処理が起動されると、まずS110にて、第2の空燃比信号Doを読み込み、続くS120では、その信号レベルが、前回の本処理が実行された時の第2の空燃比信号Doの信号レベルを表す比較値Dpに等しいか否かを判断し、比較値Dpに等しければ、即ち、空燃比がリーンのまま、或はリッチのまま継続しているのであれば、そのまま本処理を終了する。
【0031】
一方、S120にて、先に読み込んだ第2の空燃比信号Doが比較値Dpに等しくないのであれば、即ち、空燃比がリーンからリッチ、あるいはリッチからリーンに状態が変化しているのであれば、S130に移行する。
そして、S130では、第1の空燃比信号Voを読み込み、続くS140にて、その読み込んだ値Voを、新たな基準値Vfとして設定し、続くS150では、先のS110にて読み込んだ第2の空燃比信号Doの信号レベルを、新たな比較値Dpとして設定した後、本処理を終了する。
【0032】
以上説明したように、本実施例の空燃比センサ2によれば、空燃比に対応した第1の空燃比信号Voだけでなく、理論空燃比の時に、信号レベルが反転する第2の空燃比信号Doを出力するように構成されているので、第2の空燃比信号Doの信号レベルが反転するタイミングで、第1の空燃比信号Voを検出することにより、理論空燃比(λ=1)に対応する第1の空燃比信号Voの信号レベル、即ち基準電圧Vcを実測することができる。
【0033】
そして、この空燃比センサ2の出力を用いて制御を行うECU26によれば、第2の空燃比信号Doの信号レベルが変化するタイミングで検出される第1の空燃比信号Voにより、基準値Vfを再設定するようにされている。従って、電源電圧が変動したり、周囲温度の影響により分圧抵抗R15,R16の抵抗値が変化することにより基準電圧Vcが変化し、ECU26に設定された基準値Vfが理論空燃比に対応しなくなったとしても、第2の空燃比信号Doの信号レベルが反転すれば、基準値Vfは理論空燃比に正しく対応したものに速やかに再設定されるため、この基準値Vfに基づいて第1の空燃比信号Voから精度よく空燃比を求めることができ、延いては内燃機関の運転制御を精度よく行うことができる。
【0034】
以上、本発明の一実施例について説明したが、本発明は上記実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において、様々な態様で実施することができる。
例えば、上記実施例では、検出素子部2aとして、電池素子11の測定ガス室aとは反対側の面に形成された多孔質電極10が、大気と接するように構成したものを用いたが、電池素子に微小なポンピング電流を流して基準酸素源を作るもの等を用いてもよい。
【0035】
また、上記実施例では、ECU26が制御プログラムに従って第2の空燃比信号Doの信号レベルの変化を検出してから、第1の空燃比信号Voを読み取るように構成したが、第2の空燃比信号Doで第1の空燃比信号Voの信号レベルをラッチする回路を設けるようにしてもよい。
【0036】
更に、上記実施例では、第1及び第2の空燃比信号Vo,Doを別々にECU26に入力しているが、第1及び第2の空燃比信号Vo,Doを加算する加算回路を設けて、加算結果がECU26のA/Dコンバータに入力されるように構成してもよい。
【図面の簡単な説明】
【図1】 実施例の空燃比センサの概略構成図である。
【図2】 検出素子部の構成及び取付状態を表す断面図である。
【図3】 第1及び第2の空燃比信号の特性を表すグラフである。
【図4】 第1及び第2の空燃比信号の波形を表す説明図である。
【図5】 ECUが実行する基準値設定処理を表すフローチャートである。
【符号の説明】
1…排気管 2…空燃比センサ 2a…検出素子部
2b…検出回路部 4,8…固体電解質基板
5,6,9,10…多孔質電極 7…ポンプ素子 11…電池素子
12…スペーサ 13…壁面 14…ネジ部 15…支持台
16…接着部材 17…ネジ部 20…電流制御回路
21…PID回路 22…第1出力回路 24…第2出力回路
26…ECU OP1〜OP4…演算増幅器 TR…トランジスタ
R11〜R17,R21〜R25…抵抗
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air-fuel ratio sensor that detects an air-fuel ratio of an air-fuel mixture supplied to various combustion equipment such as an internal combustion engine from an oxygen concentration in exhaust gas.
[0002]
[Prior art]
Conventionally, as one of the air-fuel ratio sensors of this type, two detection elements having porous electrodes on both sides of a plate-like oxygen ion conductive solid electrolyte are used, and one porous electrode of each detection element is an exhaust gas. And a porous electrode on the side not contacting the measurement gas chamber of one of the detection elements is arranged so as to be in contact with a reference gas such as the atmosphere. Fuel ratio sensors (for example, Japanese Patent Laid-Open Nos. 61-138156 and 61-186849) are known.
[0003]
In this type of air-fuel ratio sensor, the oxygen sensor device is used as a detection element on the side in contact with the reference gas, and the other sensor element is used as an oxygen pump device, so that the voltage generated at both ends of the oxygen concentration cell device is constant. By controlling the flowing pump current bidirectionally and taking out a signal corresponding to the pump current, an air-fuel ratio signal that continuously changes from the lean region to the rich region of the air-fuel ratio can be obtained.
[0004]
In other words, in the oxygen concentration cell element, a voltage corresponding to the ratio of the oxygen partial pressure of the reference gas and the oxygen partial pressure in the measurement gas chamber is generated, so that this voltage becomes constant, that is, the oxygen content in the measurement gas chamber. If the pump current flowing through the oxygen pump element is controlled bidirectionally so that the pressure becomes constant and the current value is detected, a detection signal corresponding to the air-fuel ratio can be obtained.
[0005]
By the way, the output of such an air-fuel ratio sensor is taken into a CPU or the like via an A / D converter and used for control of an internal combustion engine or the like. In many cases, it is operated with a single power source.
For this reason, in an air-fuel ratio sensor, it is necessary to take out a detection signal corresponding to a pump current having both positive and negative polarities as a unipolar signal. Usually, a detection resistor is provided in the current path of the pump current, An output circuit that detects and amplifies the voltage at both ends, and outputs as a detection signal a signal whose level is shifted so that the amplified voltage signal fluctuates around a predetermined reference voltage (for example, 1/2 of the power supply voltage). Is provided.
[0006]
That is, when such an air-fuel ratio sensor is used, a predetermined voltage set in advance is used as an output voltage corresponding to the case where the exhaust gas has the stoichiometric air-fuel ratio, and the predetermined voltage is used as a reference value from the output voltage of the detection signal. The air-fuel ratio will be obtained.
[0007]
[Problems to be solved by the invention]
However, when the exhaust gas has the stoichiometric air-fuel ratio, in order to output a predetermined voltage from the air-fuel ratio sensor, the power supply voltage is usually lowered or divided using a Zener diode or a voltage dividing resistor. Thus, a reference voltage (reference voltage) must be created in the detection circuit. However, when the power supply voltage fluctuates or the characteristics of those circuit elements change due to fluctuations in ambient temperature, the reference voltage also changes. That is, when the power supply voltage or the ambient temperature changes, the predetermined voltage set in advance does not correspond to the voltage actually output from the air-fuel ratio sensor at the theoretical air-fuel ratio, and an error occurs in the detected value. There was a problem.
[0008]
In particular, in recent years, so-called precision λ control for controlling an internal combustion engine so that the air-fuel ratio is close to the theoretical air-fuel ratio (that is, the excess air ratio λ = 1) is known in order to purify exhaust gas from the internal combustion engine. However, in this control, it is necessary to detect λ in 0.001 units. On the other hand, when the engine is controlled in the lean burn state, this type of air-fuel ratio sensor must detect the air-fuel ratio up to a range of λ = 3.0. It is necessary to detect with a resolution of 0.0 = 1/3000 or more. This is equivalent to encoding with 12 bits in the A / D converter, but when the output voltage needs to be detected with such high resolution, if the reference voltage changes even slightly due to disturbance, the accuracy of This makes it impossible to perform good control.
[0009]
In order to solve the above problems, an object of the present invention is to provide an air-fuel ratio sensor capable of accurately detecting an air-fuel ratio regardless of fluctuations in power supply voltage and ambient temperature.
[0010]
[Means for Solving the Problems and Effects of the Invention]
The present invention made to achieve the above object
A detection element unit comprising two detection elements each having a porous electrode formed on both sides of an oxygen ion conductive solid electrolyte body facing a measurement gas chamber in which inflow of exhaust gas is restricted;
One of the detection elements is an oxygen concentration cell element that outputs a signal corresponding to the oxygen concentration in the measurement gas chamber, and the other is an oxygen pump element that moves oxygen ions between porous electrodes formed on both sides of the detection element. The pumping current flowing through the oxygen pump element is controlled so that the output signal of the oxygen concentration cell element indicates that the oxygen concentration in the measurement gas chamber is an oxygen concentration corresponding to the stoichiometric air-fuel ratio. Current control means for controlling in the direction,
A detection resistor disposed in the current path of the pump current;
An air-fuel ratio signal output means that outputs a first air-fuel ratio signal that changes according to the voltage across the detection resistor and that is set to a predetermined voltage when the exhaust gas has a stoichiometric air-fuel ratio;
An air-fuel ratio sensor comprising:
Comparing means is provided for comparing the magnitude of the voltage across the detection resistor and outputting the comparison result as a second air-fuel ratio signal.
[0011]
In the air-fuel ratio sensor of the present invention configured as described above, the current control means indicates that the output signal of the oxygen concentration cell element indicates that the oxygen concentration in the measurement gas chamber is at an oxygen concentration corresponding to the stoichiometric air-fuel ratio. As described above, by controlling the pump current flowing through the oxygen pump element, a pump current corresponding to the oxygen concentration in the exhaust gas and, further, the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine flows through the detection resistor.
[0012]
That is, if the air-fuel ratio is rich (lower than the theoretical air-fuel ratio: λ <1), a pump current flows in the direction of supplying oxygen to the measurement gas chamber, while the air-fuel ratio is lean (higher than the theoretical air-fuel ratio: λ If> 1), on the contrary, a pump current flows in the direction of drawing out oxygen from the measurement gas chamber.
[0013]
The air-fuel ratio signal output means generates a first air-fuel ratio signal that changes according to the voltage across the detection resistor and is set to a predetermined voltage when the exhaust gas has the stoichiometric air-fuel ratio. In other words, the first air-fuel ratio signal corresponds to the pump current and eventually corresponds to the air-fuel ratio.
[0014]
On the other hand, the comparison means compares the magnitude of the voltage across the detection resistor and outputs the comparison result as a second air-fuel ratio signal. In other words, the signal level of the second air-fuel ratio signal is reversed when the direction in which the pump current flows is reversed, that is, the signal level varies depending on whether the air-fuel ratio is lean or rich.
[0015]
Therefore, according to the air-fuel ratio sensor of the present invention, if the reference value setting means for detecting the first air-fuel ratio signal is provided at the timing when the second air-fuel ratio signal is inverted, the first air fuel ratio sensor corresponding to the theoretical air-fuel ratio is provided. The value of the air-fuel ratio signal can be measured and the measured value can be set as a reference value for determining the air-fuel ratio from the first air-fuel ratio signal. Even if the reference voltage created in step 1 changes, the air-fuel ratio can be obtained with high accuracy.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing an air-fuel ratio sensor and its peripheral devices according to an embodiment to which the present invention is applied, and FIG. 2 is a cross-sectional view of a detection element portion of the air-fuel ratio sensor.
[0017]
As shown in FIG. 1, an air-fuel ratio sensor 2 according to this embodiment includes a detection element unit 2a provided in an exhaust pipe of an internal combustion engine, and a later-described first element corresponding to the oxygen concentration in exhaust gas by controlling the detection element unit 2a. And a detection circuit unit 2b for outputting the first and second air-fuel ratio signals.
[0018]
First, as shown in FIG. 2, the detection element unit 2 a includes a first sensor element (pump element) 7 in which porous electrodes 5 and 6 are formed on both sides of the solid electrolyte substrate 4, and a solid electrolyte substrate 8. A second sensor element (battery element) 11 in which porous electrodes 9 and 10 are formed on both sides, and a spacer 12 that is stacked between these elements 7 and 11 to form a measurement gas chamber a are provided. On the opposite side of the battery element 11 from the measurement gas chamber a, an air chamber b formed by a wall surface 13 made of a heat-resistant and airtight member such as ceramics is provided in order to bring the porous electrode 10 into contact with the atmosphere. It has been.
[0019]
Further, one porous electrode 5 of the pump element 7 has a pump element control terminal A, and one porous electrode 10 of the battery element 11 has a battery element control terminal B, the remaining porous parts of the pump element 7 and the battery element 11. A common terminal C is connected to the electrodes 6 and 9.
Further, a support base 15, which is provided with a screw portion 14 for attachment to the exhaust pipe, is attached to the lower peripheral edge portions of the pump element 7, the battery element 11, and the wall surface 13 via a heat-resistant and insulating adhesive member 16. It has been. That is, the detection element portion 2a is attached to the exhaust pipe 1 by screwing the screw portion 14 of the support base 15 into the screw portion 17 for attaching the detection element portion formed on the exhaust pipe 1 and tightening. Has been.
[0020]
In addition, yttria-zirconia solid solution and calcia-zirconia solid solution are known as materials of the solid electrolyte substrates 4 and 8 constituting the pump element 7 and the battery element 11, and each of cerium dioxide, thorium dioxide, and hafnium dioxide. A solid solution, a perovskite solid solution, a trivalent metal oxide solid solution, or the like can be used. In addition, as the porous electrodes provided on both surfaces of the solid electrolyte substrates 4 and 8, platinum, rhodium or the like having a catalytic action for oxidation reaction is used. Further, as the material of the spacer 12, alumina, spinel, forsterite, Steatite, zirconia, etc. are used.
[0021]
Next, as shown in FIG. 1, the detection circuit unit 2b has a predetermined value (this value) corresponding to a case where the output voltage Vs between the terminals B and C, that is, the battery element 11, is the stoichiometric air-fuel ratio. In the embodiment, it is constituted by a current control circuit 20 for controlling the pump current Ip flowing between the terminals A and C, that is, the pump element 7 in two directions, an operational amplifier OP3, and resistors R11 to R17. A first output circuit 22 that outputs a first air-fuel ratio signal Vo corresponding to a voltage across the detection resistor Rd, an operational amplifier OP4, resistors R21 to R25, and a transistor TR. And a second output circuit 24 that outputs a second air-fuel ratio signal Do whose level changes in accordance with the magnitude relationship, that is, the current direction in which the pump current Ip flows through the detection resistor Rd.
[0022]
Among these, the current control circuit 20 has an output connected to the pump element control terminal A, a predetermined voltage Vb (4 V in this embodiment) is applied to the non-inverting input, and the output is connected to the common terminal C via the resistor Rx. Based on the operational amplifier OP1 that operates to hold the potential of the inverted input at the predetermined voltage Vb and the voltage signal obtained from the battery element control terminal B, the output voltage Vs of the battery element 11 corresponds to a predetermined air / fuel ratio. A PID circuit 21 that performs PID control so as to be a value, a detection resistor Rd having one end connected to the inverting input of the operational amplifier OP1 and the other end connected to the output of the PID circuit 21, and an operational amplifier OP1 of the detection resistor Rd The operational amplifier OP2 is provided as a buffer circuit for taking out the potential of the side end without affecting the pump current Ip.
[0023]
The resistance value of the resistor Rx connected between the operational amplifier OP1 and the detection resistor Rd and the common terminal C is selected so that the voltage drop due to the pump current Ip is sufficiently small. The PID control performed by the PID circuit 21 is a signal proportional to the deviation signal of the non-control signal (voltage signal from the control terminal B), a signal obtained by integrating the deviation signal, and a signal obtained by differentiating the deviation signal. This is a well-known control in which control is performed by using a value added with an appropriate weight as an output.
[0024]
In the current control circuit 20 configured as described above, the output voltage Vs of the battery element 11 operates so as to indicate that the oxygen concentration in the measurement gas chamber a is an oxygen concentration corresponding to the stoichiometric air-fuel ratio. In addition, even if the predetermined voltage Vb fluctuates due to fluctuations in the power supply voltage VDD (8 V in this embodiment), the output voltage Vs is always the oxygen concentration in the measurement gas chamber a corresponding to the stoichiometric air-fuel ratio. The operation is performed so that the pump current Ip = 0 when the concentration is indicated.
[0025]
When the air-fuel ratio to be detected is lean (λ> 1), the pump current Ip is directed from the pump element control terminal A to the common terminal C in order to draw oxygen from the measurement gas chamber a, that is, the detection resistance. When Rd flows from the operational amplifier OP1 side to the PID circuit 21 side and is rich (λ <1), in order to supply oxygen to the measurement gas chamber a, the common terminal C is directed to the pump element control terminal A, That is, the detection resistor Rd flows from the PID circuit 21 side toward the operational amplifier OP1 side.
[0026]
That is, if it is lean, the potential at the end of the detection resistor Rd on the side of the operational amplifier OP1 is increased, and if it is rich, the potential on the end of the detection resistor Rd on the side of the PID circuit 21 is increased.
The first output circuit 22 is configured as a known differential amplifier circuit centered on the operational amplifier OP3, and the divided voltage value of the power supply voltage VDD by the resistors R15 and R16 is used as the reference voltage Vc (4V in this embodiment). 3), as shown in FIG. 3A, the leaner the air-fuel ratio, the higher the reference voltage Vc, and the richer the lower the reference voltage Vc. When the stoichiometric air-fuel ratio (λ = 1), the reference voltage Vc. The first air-fuel ratio signal Vo that is equal to is output.
[0027]
On the other hand, the second output circuit 24 includes an operational amplifier OP4 used as a comparator, and resistors R21 to R25 and a transistor TR configured as an inverting output circuit that inverts the output of the operational amplifier OP4 and converts it into a predetermined signal level. As shown in FIG. 3B, a second air-fuel ratio signal Do is output, which is at a high level when the air-fuel ratio is lean and at a low level when the air-fuel ratio is rich, and the signal level is inverted when the air-fuel ratio is the stoichiometric air-fuel ratio.
[0028]
The air-fuel ratio sensor 2 configured in this way is used together with an ECU 26 that controls an internal combustion engine for a vehicle, for example.
The ECU 26 is mainly composed of a microcomputer comprising a CPU, a ROM, and a RAM. The ECU 26 operates the air-fuel ratio sensor 2 when the internal combustion engine is started, and is input via an A / D converter. The air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine is obtained from the air-fuel ratio signal Vo and the reference value Vf corresponding to the stoichiometric air-fuel ratio, and operation control of the internal combustion engine is performed based on the obtained air-fuel ratio. .
[0029]
Here, FIG. 5 is a flowchart showing a reference value setting process that is repeatedly executed in the ECU 26 using the idle time of the operation control.
The reference value Vf is determined in advance based on the power supply voltage VDD and the resistance values of the resistors R15 and R16 by the initialization process executed immediately after the power supply to the ECU 26 is turned on before this process is started. The second air-fuel ratio signal Do is read, and the signal level is set as a comparison value Dp described later.
[0030]
When this process is started, first, the second air-fuel ratio signal Do is read in S110, and in the subsequent S120, the signal level of the second air-fuel ratio signal Do when the previous main process is executed is determined. It is determined whether or not it is equal to the comparison value Dp representing the signal level, and if it is equal to the comparison value Dp, that is, if the air-fuel ratio continues to be lean or rich, this processing is terminated. To do.
[0031]
On the other hand, if the previously read second air-fuel ratio signal Do is not equal to the comparison value Dp in S120, that is, the air-fuel ratio has changed from lean to rich or from rich to lean. If so, the process proceeds to S130.
In S130, the first air-fuel ratio signal Vo is read. In the subsequent S140, the read value Vo is set as a new reference value Vf. In the subsequent S150, the second air read in the previous S110 is set. After the signal level of the air-fuel ratio signal Do is set as a new comparison value Dp, this process is terminated.
[0032]
As described above, according to the air-fuel ratio sensor 2 of the present embodiment, not only the first air-fuel ratio signal Vo corresponding to the air-fuel ratio but also the second air-fuel ratio whose signal level is inverted at the stoichiometric air-fuel ratio. Since the signal Do is output, the theoretical air-fuel ratio (λ = 1) is detected by detecting the first air-fuel ratio signal Vo at the timing when the signal level of the second air-fuel ratio signal Do is inverted. It is possible to actually measure the signal level of the first air-fuel ratio signal Vo corresponding to the reference voltage Vc.
[0033]
Then, according to the ECU 26 that performs control using the output of the air-fuel ratio sensor 2, the reference value Vf is obtained from the first air-fuel ratio signal Vo detected at the timing when the signal level of the second air-fuel ratio signal Do changes. Has been reset. Therefore, the reference voltage Vc changes due to the fluctuation of the power supply voltage or the resistance values of the voltage dividing resistors R15 and R16 due to the influence of the ambient temperature, and the reference value Vf set in the ECU 26 corresponds to the theoretical air-fuel ratio. Even if it disappears, if the signal level of the second air-fuel ratio signal Do is inverted, the reference value Vf is quickly reset to a value that correctly corresponds to the stoichiometric air-fuel ratio. Thus, the air-fuel ratio can be obtained from the air-fuel ratio signal Vo with high accuracy, and the operation control of the internal combustion engine can be performed with high accuracy.
[0034]
As mentioned above, although one Example of this invention was described, this invention is not limited to the said Example, In the range which does not deviate from the summary of this invention, it can implement in various aspects.
For example, in the above embodiment, the detection element unit 2a is configured such that the porous electrode 10 formed on the surface of the battery element 11 opposite to the measurement gas chamber a is in contact with the atmosphere. A device that generates a reference oxygen source by passing a small pumping current through the battery element may be used.
[0035]
In the above embodiment, the ECU 26 detects the change in the signal level of the second air-fuel ratio signal Do according to the control program and then reads the first air-fuel ratio signal Vo. A circuit that latches the signal level of the first air-fuel ratio signal Vo with the signal Do may be provided.
[0036]
Further, in the above embodiment, the first and second air-fuel ratio signals Vo and Do are separately input to the ECU 26, but an addition circuit for adding the first and second air-fuel ratio signals Vo and Do is provided. The addition result may be input to the A / D converter of the ECU 26.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an air-fuel ratio sensor of an embodiment.
FIG. 2 is a cross-sectional view illustrating a configuration and a mounting state of a detection element unit.
FIG. 3 is a graph showing characteristics of first and second air-fuel ratio signals.
FIG. 4 is an explanatory diagram showing waveforms of first and second air-fuel ratio signals.
FIG. 5 is a flowchart showing a reference value setting process executed by the ECU.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Exhaust pipe 2 ... Air-fuel ratio sensor 2a ... Detection element part 2b ... Detection circuit part 4,8 ... Solid electrolyte substrate 5, 6, 9, 10 ... Porous electrode 7 ... Pump element 11 ... Battery element 12 ... Spacer 13 ... Wall surface 14 ... Screw portion 15 ... Support base 16 ... Adhesive member 17 ... Screw portion 20 ... Current control circuit 21 ... PID circuit 22 ... First output circuit 24 ... Second output circuit 26 ... ECU OP1-OP4 ... Operational amplifier TR ... Transistor R11 to R17, R21 to R25 ... resistance

Claims (1)

酸素イオン伝導性の固体電解質体の両面に多孔性電極が形成された2つの検出素子を、排ガスの流入が制限された測定ガス室に面して配設してなる検出素子部と、
上記検出素子の一方を上記測定ガス室内の酸素濃度に応じた信号を出力する酸素濃淡電池素子、他方を該検出素子の両面に形成された多孔性電極間で酸素イオンを移動させる酸素ポンプ素子として動作させ、上記酸素濃淡電池素子の出力信号が、上記測定ガス室内の酸素濃度が理論空燃比に対応した酸素濃度であることを示すものとなるように、上記酸素ポンプ素子に流れるポンプ電流を双方向に制御する電流制御手段と、
上記ポンプ電流の電流経路に配設された検出抵抗と、
該検出抵抗の両端電圧に応じて変化し、且つ排ガスが理論空燃比であるときに所定の電圧となるように設定された第1の空燃比信号を生成する空燃比信号出力手段と、
を備えた空燃比センサであって、
上記検出抵抗の両端電圧の大小を比較し、該比較結果を第2の空燃比信号として出力する比較手段と、
上記第2の空燃比信号が反転するタイミングで、上記第1の空燃比信号を検出し、該検出値を理論空燃比に対応した基準値として設定する基準値設定手段と
を設けたことを特徴とする空燃比センサ。
A detection element unit comprising two detection elements each having a porous electrode formed on both sides of an oxygen ion conductive solid electrolyte body facing a measurement gas chamber in which inflow of exhaust gas is restricted;
One of the detection elements is an oxygen concentration cell element that outputs a signal corresponding to the oxygen concentration in the measurement gas chamber, and the other is an oxygen pump element that moves oxygen ions between porous electrodes formed on both sides of the detection element. The pumping current flowing through the oxygen pump element is controlled so that the output signal of the oxygen concentration cell element indicates that the oxygen concentration in the measurement gas chamber is an oxygen concentration corresponding to the stoichiometric air-fuel ratio. Current control means for controlling in the direction,
A detection resistor disposed in the current path of the pump current;
Air-fuel ratio signal output means for generating a first air-fuel ratio signal that changes according to the voltage across the detection resistor and is set to a predetermined voltage when the exhaust gas has a stoichiometric air-fuel ratio;
An air-fuel ratio sensor comprising:
Comparing means for comparing the magnitude of the voltage across the detection resistor and outputting the comparison result as a second air-fuel ratio signal ;
Reference value setting means for detecting the first air-fuel ratio signal at a timing at which the second air-fuel ratio signal is inverted and setting the detected value as a reference value corresponding to the theoretical air-fuel ratio is provided. An air-fuel ratio sensor characterized by the above.
JP31061196A 1996-11-21 1996-11-21 Air-fuel ratio sensor Expired - Fee Related JP3736921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31061196A JP3736921B2 (en) 1996-11-21 1996-11-21 Air-fuel ratio sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31061196A JP3736921B2 (en) 1996-11-21 1996-11-21 Air-fuel ratio sensor

Publications (2)

Publication Number Publication Date
JPH10153576A JPH10153576A (en) 1998-06-09
JP3736921B2 true JP3736921B2 (en) 2006-01-18

Family

ID=18007353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31061196A Expired - Fee Related JP3736921B2 (en) 1996-11-21 1996-11-21 Air-fuel ratio sensor

Country Status (1)

Country Link
JP (1) JP3736921B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD839056S1 (en) 2017-08-17 2019-01-29 Yeti Coolers, Llc Container
USD839055S1 (en) 2017-08-17 2019-01-29 Yeti Coolers, Llc Container
USD856748S1 (en) 2017-08-17 2019-08-20 Yeti Coolers, Llc Lid
USD839054S1 (en) 2017-08-17 2019-01-29 Yeti Coolers, Llc Container
US11072469B1 (en) 2017-08-17 2021-07-27 Yeti Coolers, Llc Container and lid
USD878163S1 (en) 2018-04-11 2020-03-17 Yeti Coolers, Llc Container
USD888508S1 (en) 2018-04-11 2020-06-30 Yeti Coolers, Llc Container
USD878166S1 (en) 2018-04-11 2020-03-17 Yeti Coolers, Llc Container
USD885903S1 (en) 2018-04-11 2020-06-02 Yeti Coolers, Llc Lid
USD887793S1 (en) 2018-04-11 2020-06-23 Yeti Coolers, Llc Container
USD888509S1 (en) 2018-04-11 2020-06-30 Yeti Coolers, Llc Container

Also Published As

Publication number Publication date
JPH10153576A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
US6214207B1 (en) Method and apparatus for measuring oxygen concentration and nitrogen oxide concentration
US4543176A (en) Oxygen concentration detector under temperature control
US4905652A (en) Device for measuring a component of a gaseous mixture
JP2004069547A (en) Control device of air/fuel ratio sensor
JP3736921B2 (en) Air-fuel ratio sensor
JP4415771B2 (en) Gas concentration detector
US4302312A (en) Device for producing control signal for feedback control of air/fuel mixing ratio
US4882030A (en) Air-fuel ratio detection system for engine exhaust gas
US4233033A (en) Method and apparatus for measuring the O2 content of a gas
US4844788A (en) Wide-range air/fuel ratio sensor and detector using the same
JPH08506666A (en) Limiting current sensor for detecting lambda value in gas mixture
US6712054B2 (en) Device and method for measuring element temperature of air-fuel ratio sensor, and device and method for controlling heater of air-fuel ratio sensor
JP2553509B2 (en) Air-fuel ratio controller for internal combustion engine
JPH0760141B2 (en) Air-fuel ratio controller for engine
US6939037B2 (en) Determining the temperature of an exhaust gas sensor by means of calibrated internal resistance measurement
JP3704334B2 (en) Actuator for linear λ sensor
JP2000356618A (en) Measuring method for characteristic of gas concentration sensor
JPS61105455A (en) Detection of oxygen partial pressure
KR940010382B1 (en) Air-fuel ratio sensor for internal combustion engine
JPH07104324B2 (en) Air-fuel ratio detector
JP3869629B2 (en) Air-fuel ratio sensor activity determination device
JPH0750070B2 (en) Oxygen concentration detector
JP2002303601A (en) Controller for gas concentration sensor
JP4051742B2 (en) Gas component concentration measuring device
JPH0680425B2 (en) Air-fuel ratio detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees