JPH10153576A - Air-fuel ratio sensor - Google Patents

Air-fuel ratio sensor

Info

Publication number
JPH10153576A
JPH10153576A JP8310611A JP31061196A JPH10153576A JP H10153576 A JPH10153576 A JP H10153576A JP 8310611 A JP8310611 A JP 8310611A JP 31061196 A JP31061196 A JP 31061196A JP H10153576 A JPH10153576 A JP H10153576A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
signal
voltage
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8310611A
Other languages
Japanese (ja)
Other versions
JP3736921B2 (en
Inventor
Shigeru Miyata
繁 宮田
Toshiaki Kondo
稔明 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP31061196A priority Critical patent/JP3736921B2/en
Publication of JPH10153576A publication Critical patent/JPH10153576A/en
Application granted granted Critical
Publication of JP3736921B2 publication Critical patent/JP3736921B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air-fuel ratio sensor by which air-fuel ratio can be detected with good accuracy irrespective of the change in power-supply voltage or in the ambient temperature. SOLUTION: The air-fuel ratio sensor is provided with a current control circuit 20, by which a pumping current Ip flowing to a pumping element 7 is controlled bidirectionally in such a way that the output voltage Vs of a battery element 11 becomes a prescribed value corresponding to a theoretical air-fuel ratio, a first output circuit 22 which is constituted as a well-known differential amplifier circuit by making use of an operational amplifier OP3 as the center and which corresponds to a voltage across both ends of a detecting resistance Rd installed in the route of the pumping current Ip , and a second output circuit 24 which outputs a second air-fuel ratio signal Do , whose signal level is changed according to the magnitude relationship of the voltage across both ends of the detecting resistance Rd . The signal level of a first air-fuel ratio signal Vo corresponding to the theoretical air-fuel ratio can be measured on the basis of a timing at which the second air-fuel ratio signal Do is inverted. As a result, an air-fuel ratio can be reset correctly even when the relationship is changed due to the influence of a power-supply voltage and an ambient temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関等各種燃
焼機器に供給される混合気の空燃比を排ガス中の酸素濃
度より検出する空燃比センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio sensor for detecting an air-fuel ratio of an air-fuel mixture supplied to various combustion devices such as an internal combustion engine from an oxygen concentration in exhaust gas.

【0002】[0002]

【従来の技術】従来より、この種の空燃比センサの一つ
として、板状の酸素イオン伝導性固体電解質の両面に多
孔質電極を備えた二個の検出素子を、各検出素子の一方
の多孔質電極が排ガスの拡散が制限された測定ガス室に
接するように配設すると共に、一方の検出素子の測定ガ
ス室に接しない側の多孔質電極が大気等の基準ガスに接
するように配設してなる空燃比センサ(例えば、特開昭
61−138156号公報、特開昭61−186849
号公報)が知られている。
2. Description of the Related Art Conventionally, as one type of air-fuel ratio sensor of this type, two detection elements each having a plate-shaped oxygen ion conductive solid electrolyte and porous electrodes on both surfaces thereof are provided. The porous electrode is disposed so as to be in contact with the measurement gas chamber in which the diffusion of exhaust gas is restricted, and the porous electrode of one of the detection elements which is not in contact with the measurement gas chamber is disposed so as to be in contact with a reference gas such as the atmosphere. Air-fuel ratio sensors (for example, Japanese Patent Application Laid-Open Nos. 61-138156 and 61-186649)
Is known.

【0003】この種の空燃比センサでは、基準ガスに接
する側の検出素子を酸素濃淡電池素子、他方の検出素子
を酸素ポンプ素子として用い、酸素濃淡電池素子両端に
生じる電圧が一定となるよう酸素ポンプ素子に流れるポ
ンプ電流を双方向に制御し、このポンプ電流に応じた信
号を取り出すことによって、空燃比のリーン域からリッ
チ域にかけて連続的に変化する空燃比信号が得られる。
In this type of air-fuel ratio sensor, a detection element in contact with a reference gas is used as an oxygen concentration cell element, and the other detection element is used as an oxygen pump element, so that the voltage generated across the oxygen concentration cell element becomes constant. By bidirectionally controlling the pump current flowing through the pump element and extracting a signal corresponding to the pump current, an air-fuel ratio signal that continuously changes from a lean region to a rich region of the air-fuel ratio can be obtained.

【0004】つまり、酸素濃淡電池素子では、基準ガス
の酸素分圧と、測定ガス室内の酸素分圧との比に応じた
電圧が生じることから、この電圧が一定となるよう、即
ち測定ガス室内の酸素分圧が一定となるよう酸素ポンプ
素子に流れるポンプ電流を双方向に制御し、その電流値
を検出すれば空燃比に対応した検出信号が得られること
になるのである。
That is, in the oxygen concentration cell element, a voltage is generated in accordance with the ratio between the oxygen partial pressure of the reference gas and the oxygen partial pressure in the measurement gas chamber. By bidirectionally controlling the pump current flowing through the oxygen pump element so that the oxygen partial pressure of the air becomes constant, and detecting the current value, a detection signal corresponding to the air-fuel ratio can be obtained.

【0005】ところで、このような空燃比センサの出力
は、A/Dコンバータを介してCPU等に取り込まれ
て、内燃機関の制御等に利用されるのであるが、A/D
コンバータやCPUは、通常、+5V等の単一電源で動
作させる場合が多い。このため、空燃比センサでは、正
負の両極性を有するポンプ電流に応じた検出信号を、単
極性の信号として取り出す必要があり、通常、ポンプ電
流の電流経路に検出抵抗を配設して、その両端電圧を検
出して増幅すると共に、増幅された電圧信号が所定の基
準電圧(例えば電源電圧の1/2)を中心にして変動す
るようにレベルシフトしたものを検出信号として出力す
る出力回路が設けられている。
The output of such an air-fuel ratio sensor is taken into a CPU or the like via an A / D converter and is used for controlling an internal combustion engine.
Usually, the converter and the CPU are often operated by a single power supply such as + 5V. For this reason, in the air-fuel ratio sensor, it is necessary to take out a detection signal according to the pump current having both positive and negative polarities as a single-polarity signal. An output circuit that detects and amplifies the voltage between both ends and outputs a signal obtained by level-shifting the amplified voltage signal so as to fluctuate around a predetermined reference voltage (for example, の of the power supply voltage) as a detection signal is provided. Is provided.

【0006】つまり、このような空燃比センサを用いる
場合、予め設定された所定の電圧を排ガスが理論空燃比
である場合に対応する出力電圧とし、その所定の電圧を
基準値として、検出信号の出力電圧から空燃比を求める
ことになる。
That is, when such an air-fuel ratio sensor is used, a predetermined voltage set in advance is set as an output voltage corresponding to a case where the exhaust gas has a stoichiometric air-fuel ratio, and the predetermined voltage is used as a reference value to detect a detection signal. The air-fuel ratio is determined from the output voltage.

【0007】[0007]

【発明が解決しようとする課題】しかし、排ガスが理論
空燃比であるときに、空燃比センサから所定の電圧が出
力されるようにするには、通常、ツェナーダイオードや
分圧抵抗を用いて電源電圧を降下させたり分圧したりす
ることにより、検出回路内部に基準となる電圧(基準電
圧)を作成しなければならない。しかし、電源電圧が変
動したり、周囲温度の変動によってそれら回路素子の特
性が変化すると基準電圧も変化する。即ち、電源電圧や
周囲温度が変化すると、予め設定されていた所定の電圧
と、理論空燃比の時に実際に空燃比センサから出力され
る電圧とが対応しなくなり、検出値に誤差が生じてしま
うという問題があった。
However, in order to output a predetermined voltage from the air-fuel ratio sensor when the exhaust gas has a stoichiometric air-fuel ratio, a power supply is usually provided by using a Zener diode or a voltage dividing resistor. By lowering or dividing the voltage, a reference voltage (reference voltage) must be created inside the detection circuit. However, when the power supply voltage fluctuates or the characteristics of these circuit elements change due to fluctuations in the ambient temperature, the reference voltage also changes. That is, if the power supply voltage or the ambient temperature changes, the predetermined voltage set in advance does not correspond to the voltage actually output from the air-fuel ratio sensor at the stoichiometric air-fuel ratio, and an error occurs in the detection value. There was a problem.

【0008】特に、近年、内燃機関からの排ガスを浄化
するために、空燃比が精密に理論空燃比(即ち、空気過
剰率λ=1)近傍となるように、内燃機関を制御する所
謂精密λ制御が知られているが、この制御では、λを
0.001単位で検出する必要がある。一方、リーンバ
ーン状態でエンジンを制御する場合には、この種の空燃
比センサでは、λ=3.0の範囲まで空燃比を検出しな
ければならないため、結局、検出信号を0.001/
3.0=1/3000以上の分解能で検出する必要があ
る。これは、A/Dコンバータにおいて12ビットで符
号化することに相当するが、このように高い分解能で出
力電圧を検出する必要がある場合、外乱によって上記の
基準電圧が少しでも変化すると、精度のよい制御を行う
ことができなくなってしまうのである。
In particular, in recent years, in order to purify exhaust gas from an internal combustion engine, a so-called precision λ that controls the internal combustion engine so that the air-fuel ratio precisely approaches the stoichiometric air-fuel ratio (ie, excess air ratio λ = 1). Control is known, but in this control, λ needs to be detected in 0.001 units. On the other hand, when the engine is controlled in the lean burn state, this type of air-fuel ratio sensor must detect the air-fuel ratio up to the range of λ = 3.0.
It is necessary to detect with a resolution of 3.0 = 1/3000 or more. This is equivalent to encoding with 12 bits in the A / D converter. If it is necessary to detect the output voltage with such a high resolution, if the above-mentioned reference voltage changes even a little due to a disturbance, the accuracy of the output will be reduced. This makes it impossible to perform good control.

【0009】本発明は、上記問題点を解決するために、
電源電圧や周囲温度の変動によらず、空燃比を精度よく
検出可能な空燃比センサを提供することを目的とする。
The present invention has been made to solve the above problems.
It is an object of the present invention to provide an air-fuel ratio sensor capable of accurately detecting an air-fuel ratio regardless of fluctuations in a power supply voltage and an ambient temperature.

【0010】[0010]

【課題を解決するための手段及び発明の効果】上記目的
を達成するためになされた本発明は、酸素イオン伝導性
の固体電解質体の両面に多孔性電極が形成された2つの
検出素子を、排ガスの流入が制限された測定ガス室に面
して配設してなる検出素子部と、上記検出素子の一方を
上記測定ガス室内の酸素濃度に応じた信号を出力する酸
素濃淡電池素子、他方を該検出素子の両面に形成された
多孔性電極間で酸素イオンを移動させる酸素ポンプ素子
として動作させ、上記酸素濃淡電池素子の出力信号が、
上記測定ガス室内の酸素濃度が理論空燃比に対応した酸
素濃度であることを示すものとなるように、上記酸素ポ
ンプ素子に流れるポンプ電流を双方向に制御する電流制
御手段と、上記ポンプ電流の電流経路に配設された検出
抵抗と、該検出抵抗の両端電圧に応じて変化し、且つ排
ガスが理論空燃比であるときに所定の電圧となるように
設定された第1の空燃比信号を出力する空燃比信号出力
手段と、を備えた空燃比センサであって、上記検出抵抗
の両端電圧の大小を比較し、該比較結果を第2の空燃比
信号として出力する比較手段を設けたことを特徴とす
る。
Means for Solving the Problems and Effects of the Invention The present invention has been made to achieve the above object, and comprises two detecting elements each having a porous electrode formed on both surfaces of an oxygen ion conductive solid electrolyte. A detection element portion disposed facing the measurement gas chamber in which inflow of exhaust gas is restricted, and an oxygen concentration cell element that outputs one of the detection elements according to an oxygen concentration in the measurement gas chamber; Operated as an oxygen pump element that moves oxygen ions between porous electrodes formed on both sides of the detection element, and the output signal of the oxygen concentration cell element is
Current control means for bidirectionally controlling a pump current flowing through the oxygen pump element so as to indicate that the oxygen concentration in the measurement gas chamber is an oxygen concentration corresponding to the stoichiometric air-fuel ratio, A detection resistor disposed in the current path and a first air-fuel ratio signal that changes according to the voltage across the detection resistor and that is set to a predetermined voltage when the exhaust gas is at the stoichiometric air-fuel ratio. Air-fuel ratio output means for outputting an air-fuel ratio signal, and comparing means for comparing the magnitude of the voltage across the detection resistor and outputting the comparison result as a second air-fuel ratio signal. It is characterized by.

【0011】このように構成された本発明の空燃比セン
サにおいては、電流制御手段が、酸素濃淡電池素子の出
力信号が測定ガス室内の酸素濃度が理論空燃比に対応し
た酸素濃度にあることを示すものとなるように、酸素ポ
ンプ素子に流れるポンプ電流を制御することにより、検
出抵抗には、排ガス中の酸素濃度、延いては内燃機関に
供給される混合気の空燃比に応じたポンプ電流が流れ
る。
In the air-fuel ratio sensor according to the present invention, the current control means determines that the output signal of the oxygen concentration cell element has an oxygen concentration in the measurement gas chamber corresponding to the stoichiometric air-fuel ratio. By controlling the pump current flowing through the oxygen pump element as shown, the detection resistance indicates the pump current according to the oxygen concentration in the exhaust gas and, consequently, the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine. Flows.

【0012】つまり、空燃比がリッチ(理論空燃比より
低い:λ<1)であれば、測定ガス室に酸素を供給する
方向のポンプ電流が流れ、一方、空燃比がリーン(理論
空燃比より高い:λ>1)であれば、これとは逆に、測
定ガス室から酸素をくみ出す方向のポンプ電流が流れ
る。
That is, if the air-fuel ratio is rich (lower than the stoichiometric air-fuel ratio: λ <1), a pump current flows in the direction of supplying oxygen to the measurement gas chamber, while the air-fuel ratio becomes lean (than the stoichiometric air-fuel ratio). High: If λ> 1), on the contrary, a pump current flows in the direction of drawing oxygen from the measurement gas chamber.

【0013】そして、空燃比信号出力手段は、検出抵抗
の両端電圧に応じて変化し、且つ排ガスが理論空燃比で
あるときに所定の電圧となるように設定された第1の空
燃比信号を生成する。即ち、第1の空燃比信号は、ポン
プ電流に対応し、延いては空燃比に対応したものとな
る。
The air-fuel ratio signal output means outputs a first air-fuel ratio signal that changes in accordance with the voltage across the detection resistor and is set to a predetermined voltage when the exhaust gas has a stoichiometric air-fuel ratio. Generate. That is, the first air-fuel ratio signal corresponds to the pump current, and thus corresponds to the air-fuel ratio.

【0014】一方、比較手段は、検出抵抗の両端電圧の
大小を比較して、その比較結果を第2の空燃比信号とし
て出力する。即ち、第2の空燃比信号は、ポンプ電流の
流れる方向が反転すると、信号レベルが反転し、即ち空
燃比の状態がリーンかリッチかにより、信号レベルが異
なったものとなる。
On the other hand, the comparing means compares the magnitude of the voltage across the detection resistor and outputs the result of the comparison as a second air-fuel ratio signal. That is, when the direction in which the pump current flows is inverted, the signal level of the second air-fuel ratio signal is inverted, that is, the signal level is different depending on whether the state of the air-fuel ratio is lean or rich.

【0015】従って、本発明の空燃比センサによれば、
第2の空燃比信号が反転するタイミングで第1の空燃比
信号を検出する基準値設定手段等を設ければ、理論空燃
比に対応する第1の空燃比信号の値を実測して、該実測
値を第1の空燃比信号から空燃比を求める際の基準値と
して設定することができるため、電源電圧や周囲温度の
変動によって空燃比センサ内部で作成された基準電圧が
変化しても、精度よく空燃比を求めることができる。
Therefore, according to the air-fuel ratio sensor of the present invention,
If reference value setting means or the like for detecting the first air-fuel ratio signal is provided at the timing when the second air-fuel ratio signal is inverted, the value of the first air-fuel ratio signal corresponding to the stoichiometric air-fuel ratio is measured, and Since the measured value can be set as a reference value when calculating the air-fuel ratio from the first air-fuel ratio signal, even if the reference voltage created inside the air-fuel ratio sensor changes due to fluctuations in the power supply voltage or ambient temperature, The air-fuel ratio can be obtained with high accuracy.

【0016】[0016]

【発明の実施の形態】以下に本発明の一実施例を図面と
共に説明する。図1は、本発明が適用された実施例の空
燃比センサ及びその周辺装置を表す概略構成図、図2は
空燃比センサの検出素子部の断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an air-fuel ratio sensor of an embodiment to which the present invention is applied and peripheral devices thereof, and FIG. 2 is a cross-sectional view of a detection element portion of the air-fuel ratio sensor.

【0017】図1に示すように、本実施例の空燃比セン
サ2は、内燃機関の排気管に設けられる検出素子部2a
と、検出素子部2aを制御して排ガス中の酸素濃度に対
応した後述する第1及び第2の空燃比信号を出力する検
出回路部2bとにより構成されている。
As shown in FIG. 1, an air-fuel ratio sensor 2 according to the present embodiment includes a detection element 2a provided in an exhaust pipe of an internal combustion engine.
And a detection circuit section 2b that controls the detection element section 2a and outputs later-described first and second air-fuel ratio signals corresponding to the oxygen concentration in the exhaust gas.

【0018】ここでまず検出素子部2aは、図2に示す
ように、固体電解質基板4の両側に多孔質電極5,6を
形成した第1のセンサ素子(ポンプ素子)7と、同じく
固体電解質基板8の両側に多孔質電極9,10を形成し
た第2のセンサ素子(電池素子)11と、これら両素子
7,11の間に積層されて測定ガス室aを形成するスペ
ーサ12とを備えている。そして、電池素子11の測定
ガス室aとは反対側には、多孔質電極10を大気に接触
させるため、セラミックス等の耐熱性で気密な部材から
なる壁面13により形成された空気室bが設けられてい
る。
Here, first, as shown in FIG. 2, a detecting element portion 2a comprises a first sensor element (pump element) 7 having porous electrodes 5 and 6 formed on both sides of a solid electrolyte substrate 4, and a solid electrolyte A second sensor element (battery element) 11 having porous electrodes 9 and 10 formed on both sides of a substrate 8, and a spacer 12 laminated between the two elements 7 and 11 to form a measurement gas chamber a. ing. On the opposite side of the battery element 11 from the measurement gas chamber a, an air chamber b formed by a wall surface 13 made of a heat-resistant and air-tight member such as ceramics is provided for bringing the porous electrode 10 into contact with the atmosphere. Have been.

【0019】また、ポンプ素子7の一方の多孔質電極5
にはポンプ素子制御端子A、電池素子11の一方の多孔
質電極10には電池素子制御端子B、ポンプ素子7及び
電池素子11の残りの多孔質電極6,9には共通端子C
が接続されている。更に、ポンプ素子7,電池素子11
及び壁面13の下部周縁部には、排気管への取付用ネジ
部14が刻設された支持台15が、耐熱かつ絶縁性の接
着部材16を介して取り付けられている。つまり、検出
素子部2aは、支持台15のネジ部14を、排気管1に
形成された検出素子部取付用のネジ部17に螺合し、締
め付けることによって、排気管1に取り付けられるよう
にされている。
Also, one porous electrode 5 of the pump element 7
, The pump element control terminal A, the one porous electrode 10 of the battery element 11 has the battery element control terminal B, and the pump element 7 and the remaining porous electrodes 6 and 9 of the battery element 11 have the common terminal C.
Is connected. Further, the pump element 7 and the battery element 11
A support 15 on which a screw portion 14 for attaching to an exhaust pipe is engraved is attached to a lower peripheral portion of the wall surface 13 via a heat-resistant and insulating adhesive member 16. In other words, the detection element section 2a is attached to the exhaust pipe 1 by screwing the screw section 14 of the support base 15 to the detection element section mounting screw section 17 formed on the exhaust pipe 1 and tightening the screw section. Have been.

【0020】なお、ポンプ素子7及び電池素子11を構
成する固体電解質基板4,8の材料としては、イットリ
ア−ジルコニア固溶体,カルシア−ジルコニア固溶体が
知られており、その他に二酸化セリウム,二酸化トリウ
ム,二酸化ハフニウムの各固溶体、ペロブスカイト型固
溶体、3価金属酸化物固溶体等が使用できる。また、固
体電解質基板4,8の両面に設けられる多孔質電極とし
ては、酸化反応の触媒作用を有する白金やロジウム等が
用いられ、更に、スペーサ12の材料としては、アルミ
ナ,スピネル,フォルステライト,ステアタイト,ジル
コニア等が用いられる。
As a material for the solid electrolyte substrates 4 and 8 constituting the pump element 7 and the battery element 11, a yttria-zirconia solid solution and a calcia-zirconia solid solution are known. In addition, cerium dioxide, thorium dioxide, Each solid solution of hafnium, perovskite type solid solution, trivalent metal oxide solid solution and the like can be used. As the porous electrodes provided on both surfaces of the solid electrolyte substrates 4 and 8, platinum, rhodium, or the like having a catalytic action of an oxidation reaction is used. Further, as a material of the spacer 12, alumina, spinel, forsterite, Steatite, zirconia and the like are used.

【0021】次に、検出回路部2bは、図1に示すよう
に、端子B,C間、即ち電池素子11の出力電圧Vs
が、測定ガス室aが理論空燃比である場合に対応した所
定値(本実施例では450mV)となるように、端子
A,C間、即ちポンプ素子7に流れるポンプ電流Ipを
双方向に制御する電流制御回路20と、演算増幅器OP
3及び抵抗R11〜R17により構成され、後述する検
出抵抗Rdの両端電圧に対応した第1の空燃比信号Vo
を出力する第1出力回路22と、演算増幅器OP4,抵
抗R21〜R25,及びトランジスタTRにより構成さ
れ、検出抵抗Rdの両端電圧の大小関係、即ち検出抵抗
Rdを通ってポンプ電流Ipが流れるその電流方向に従
ってレベルが変化する第2の空燃比信号Doを出力する
第2出力回路24とを備えている。
Next, as shown in FIG. 1, the detection circuit section 2b provides an output voltage Vs between the terminals B and C, that is, the output voltage Vs of the battery element 11.
Is bidirectionally controlled between the terminals A and C, that is, the pump current Ip flowing through the pump element 7 so that the predetermined value (450 mV in this embodiment) corresponding to the case where the measured gas chamber a has the stoichiometric air-fuel ratio. Current control circuit 20 and operational amplifier OP
3 and resistors R11 to R17, and a first air-fuel ratio signal Vo corresponding to a voltage between both ends of a detection resistor Rd described later.
, A first output circuit 22 that outputs a current, the operational amplifier OP4, the resistors R21 to R25, and the transistor TR, and the magnitude of the voltage across the detection resistor Rd, that is, the current through which the pump current Ip flows through the detection resistor Rd. A second output circuit 24 that outputs a second air-fuel ratio signal Do whose level changes according to the direction.

【0022】このうち電流制御回路20は、出力がポン
プ素子制御端子Aに接続されると共に、非反転入力に所
定電圧Vb(本実施例では4V)が印加され、抵抗Rx
を介して共通端子Cに接続された反転入力の電位を所定
電圧Vbに保持するように動作する演算増幅器OP1
と、電池素子制御端子Bから得られる電圧信号に基づい
て、電池素子11の出力電圧Vsが理論空燃比に対応し
た所定値となるようにPID制御を行うPID回路21
と、一端が演算増幅器OP1の反転入力に接続され、他
端がPID回路21の出力に接続された検出抵抗Rd
と、検出抵抗Rdの演算増幅器OP1側端の電位を、ポ
ンプ電流Ipに影響を与えることなく取り出すためのバ
ッファ回路として設けられた演算増幅器OP2とにより
構成されている。
The output of the current control circuit 20 is connected to the pump element control terminal A, a predetermined voltage Vb (4 V in this embodiment) is applied to the non-inverting input, and the resistance Rx
The operational amplifier OP1 that operates to maintain the potential of the inverting input connected to the common terminal C at the predetermined voltage Vb via the
And a PID circuit 21 for performing PID control based on a voltage signal obtained from the battery element control terminal B so that the output voltage Vs of the battery element 11 becomes a predetermined value corresponding to the stoichiometric air-fuel ratio.
And a detection resistor Rd having one end connected to the inverting input of the operational amplifier OP1 and the other end connected to the output of the PID circuit 21.
And an operational amplifier OP2 provided as a buffer circuit for extracting the potential of the detection resistor Rd on the operational amplifier OP1 side without affecting the pump current Ip.

【0023】なお、演算増幅器OP1及び検出抵抗Rd
と共通端子Cとの間に接続された抵抗Rxの抵抗値は、
ポンプ電流Ipによる電圧降下が十分に小さいように選
ばれる。また、PID回路21が行うPID制御とは、
非制御信号(制御端子Bからの電圧信号)の偏差信号に
比例した信号,偏差信号を積分した信号,及び偏差信号
を微分した信号の夫々に、適当な重みをつけて加え合わ
せた値を出力として制御を行う周知の制御である。
The operational amplifier OP1 and the detection resistor Rd
The resistance value of the resistor Rx connected between the common terminal C and
It is selected so that the voltage drop due to the pump current Ip is sufficiently small. The PID control performed by the PID circuit 21 is as follows.
Output a value obtained by adding an appropriate weight to each of a signal proportional to the deviation signal of the non-control signal (voltage signal from the control terminal B), a signal obtained by integrating the deviation signal, and a signal obtained by differentiating the deviation signal. This is a well-known control that performs control as follows.

【0024】このように構成された電流制御回路20で
は、電池素子11の出力電圧Vsが、測定ガス室a内の
酸素濃度が理論空燃比に対応した酸素濃度であることを
示すものとなるように動作するだけでなく、電源電圧V
DD(本実施例では8V)の変動等により所定電圧Vbが
変動したとしても、常に、出力電圧Vsが、測定ガス室
a内の酸素濃度が理論空燃比に対応した酸素濃度である
ことを示すものとなった時にポンプ電流Ip=0となる
ように動作する。
In the current control circuit 20 configured as described above, the output voltage Vs of the battery element 11 indicates that the oxygen concentration in the measurement gas chamber a is the oxygen concentration corresponding to the stoichiometric air-fuel ratio. In addition to the power supply voltage V
Even if the predetermined voltage Vb fluctuates due to fluctuation of DD (8 V in this embodiment) or the like, the output voltage Vs always indicates that the oxygen concentration in the measurement gas chamber a corresponds to the stoichiometric air-fuel ratio. Then, the operation is performed so that the pump current Ip = 0.

【0025】なお、ポンプ電流Ipは、検出すべき空燃
比がリーン(λ>1)である場合、測定ガス室aから酸
素をくみ出すために、ポンプ素子制御端子Aから共通端
子Cに向け、即ち検出抵抗Rdを演算増幅器OP1側か
らPID回路21側に向けて流れ、リッチ(λ<1)で
ある場合、測定ガス室aに酸素を供給するために、共通
端子Cからポンプ素子制御端子Aに向け、即ち検出抵抗
RdをPID回路21側から演算増幅器OP1側に向け
て流れる。
When the air-fuel ratio to be detected is lean (λ> 1), the pump current Ip is directed from the pump element control terminal A to the common terminal C in order to extract oxygen from the measurement gas chamber a. That is, the detection resistor Rd flows from the operational amplifier OP1 side to the PID circuit 21 side, and when rich (λ <1), to supply oxygen to the measurement gas chamber a from the common terminal C to the pump element control terminal A , That is, the detection resistor Rd flows from the PID circuit 21 side to the operational amplifier OP1 side.

【0026】つまり、リーンであれば、検出抵抗Rdの
演算増幅器OP1側端の電位が高くなり、リッチであれ
ば、逆に検出抵抗RdのPID回路21側端の電位が高
くなる。そして、第1出力回路22は、演算増幅器OP
3を中心にした周知の差動増幅回路として構成されてお
り、抵抗R15,R16による電源電圧VDDの分圧値を
基準電圧Vc(本実施例では4V)として、図3(a)
に示すように、空燃比がリーンであるほど基準電圧Vc
より大きく、リッチであるほど基準電圧Vcより小さく
なり、理論空燃比(λ=1)の時に基準電圧Vcに等し
くなる第1の空燃比信号Voを出力する。
That is, when the detection resistor Rd is lean, the potential of the detection resistor Rd on the operational amplifier OP1 side increases, and when the detection resistor Rd is rich, the potential of the detection resistor Rd on the PID circuit 21 side increases. The first output circuit 22 is connected to the operational amplifier OP
3 is a known differential amplifier circuit centered on the reference numeral 3 and the divided voltage value of the power supply voltage VDD by the resistors R15 and R16 is set as a reference voltage Vc (4 V in this embodiment).
As shown in the graph, the leaner the air-fuel ratio, the higher the reference voltage Vc.
A first air-fuel ratio signal Vo that is larger and richer than the reference voltage Vc and becomes equal to the reference voltage Vc at the stoichiometric air-fuel ratio (λ = 1) is output.

【0027】一方、第2出力回路24は、コンパレータ
として用いられる演算増幅器OP4と、この演算増幅器
OP4の出力を反転し所定の信号レベルに変換する反転
出力回路として構成された抵抗R21〜R25及びトラ
ンジスタTRとにより、図3(b)に示すように、空燃
比がリーンの時にHighレベル、リッチの時にLow レベル
となり、理論空燃比の時に信号レベルが反転する第2の
空燃比信号Doを出力する。
On the other hand, the second output circuit 24 is composed of an operational amplifier OP4 used as a comparator, resistors R21 to R25 and a transistor configured as inverted output circuits for inverting the output of the operational amplifier OP4 and converting the output to a predetermined signal level. As shown in FIG. 3B, the second air-fuel ratio signal Do is output when the air-fuel ratio is lean, becomes high level when the air-fuel ratio is rich, becomes low level when the air-fuel ratio is rich, and is inverted when the air-fuel ratio is the stoichiometric air-fuel ratio. .

【0028】このように構成された空燃比センサ2は、
例えば、車両用の内燃機関を制御するECU26ととも
に用いられる。なお、ECU26は、CPU,ROM,
RAMからなるマイクロコンピュータを中心に構成され
ており、内燃機関の始動と共に、空燃比センサ2を動作
させ、A/D変換器を介して入力される第1の空燃比信
号Voと、理論空燃比に対応させた基準値Vfとから内
燃機関に供給される混合気の空燃比を求め、この求めた
空燃比に基づいて内燃機関の運転制御を行うものであ
る。
The air-fuel ratio sensor 2 thus configured is
For example, it is used together with the ECU 26 that controls an internal combustion engine for a vehicle. The ECU 26 includes a CPU, a ROM,
The microcomputer mainly includes a microcomputer including a RAM, and operates the air-fuel ratio sensor 2 when the internal combustion engine is started, and outputs a first air-fuel ratio signal Vo input via an A / D converter and a stoichiometric air-fuel ratio. The air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine is obtained from the reference value Vf corresponding to the above, and the operation control of the internal combustion engine is performed based on the obtained air-fuel ratio.

【0029】ここで、図5は、ECU26において、上
記運転制御の空き時間を利用して、繰り返し実行される
基準値設定処理を表すフローチャートである。本処理が
開始される前に、ECU26への電源投入直後に実行さ
れる初期化処理により、基準値Vfは、電源電圧VDD、
及び抵抗R15,R16の抵抗値に基づいて予め求めら
れる基準電圧Vcに初期設定されると共に、第2の空燃
比信号Doが読み込まれ、その信号レベルが後述する比
較値Dpとして設定されている。
FIG. 5 is a flowchart showing a reference value setting process which is repeatedly executed by the ECU 26 using the idle time of the operation control. Before this processing is started, the reference value Vf is changed to the power supply voltage VDD by the initialization processing executed immediately after the power supply to the ECU 26 is turned on.
And a reference voltage Vc previously determined based on the resistance values of the resistors R15 and R16, the second air-fuel ratio signal Do is read, and the signal level is set as a comparison value Dp described later.

【0030】本処理が起動されると、まずS110に
て、第2の空燃比信号Doを読み込み、続くS120で
は、その信号レベルが、前回の本処理が実行された時の
第2の空燃比信号Doの信号レベルを表す比較値Dpに
等しいか否かを判断し、比較値Dpに等しければ、即
ち、空燃比がリーンのまま、或はリッチのまま継続して
いるのであれば、そのまま本処理を終了する。
When the present process is started, first, in S110, the second air-fuel ratio signal Do is read, and in S120, the signal level is changed to the second air-fuel ratio at the time of the previous execution of the present process. It is determined whether or not it is equal to the comparison value Dp representing the signal level of the signal Do. If the comparison value Dp is equal to the comparison value Dp, that is, if the air-fuel ratio is kept lean or rich, the actual The process ends.

【0031】一方、S120にて、先に読み込んだ第2
の空燃比信号Doが比較値Dpに等しくないのであれ
ば、即ち、空燃比がリーンからリッチ、あるいはリッチ
からリーンに状態が変化しているのであれば、S130
に移行する。そして、S130では、第1の空燃比信号
Voを読み込み、続くS140にて、その読み込んだ値
Voを、新たな基準値Vfとして設定し、続くS150
では、先のS110にて読み込んだ第2の空燃比信号D
oの信号レベルを、新たな比較値Dpとして設定した
後、本処理を終了する。
On the other hand, in S120, the second
If the air-fuel ratio signal Do is not equal to the comparison value Dp, that is, if the air-fuel ratio is changing from lean to rich, or from rich to lean, S130
Move to Then, in S130, the first air-fuel ratio signal Vo is read, and in S140, the read value Vo is set as a new reference value Vf.
Then, the second air-fuel ratio signal D read in S110
After setting the signal level of “o” as a new comparison value Dp, the process ends.

【0032】以上説明したように、本実施例の空燃比セ
ンサ2によれば、空燃比に対応した第1の空燃比信号V
oだけでなく、理論空燃比の時に、信号レベルが反転す
る第2の空燃比信号Doを出力するように構成されてい
るので、第2の空燃比信号Doの信号レベルが反転する
タイミングで、第1の空燃比信号Voを検出することに
より、理論空燃比(λ=1)に対応する第1の空燃比信
号Voの信号レベル、即ち基準電圧Vcを実測すること
ができる。
As described above, according to the air-fuel ratio sensor 2 of the present embodiment, the first air-fuel ratio signal V corresponding to the air-fuel ratio is obtained.
Not only o, but also at the stoichiometric air-fuel ratio, the signal level is inverted to output the second air-fuel ratio signal Do. Therefore, at the timing when the signal level of the second air-fuel ratio signal Do is inverted, By detecting the first air-fuel ratio signal Vo, the signal level of the first air-fuel ratio signal Vo corresponding to the stoichiometric air-fuel ratio (λ = 1), that is, the reference voltage Vc can be measured.

【0033】そして、この空燃比センサ2の出力を用い
て制御を行うECU26によれば、第2の空燃比信号D
oの信号レベルが変化するタイミングで検出される第1
の空燃比信号Voにより、基準値Vfを再設定するよう
にされている。従って、電源電圧が変動したり、周囲温
度の影響により分圧抵抗R15,R16の抵抗値が変化
することにより基準電圧Vcが変化し、ECU26に設
定された基準値Vfが理論空燃比に対応しなくなったと
しても、第2の空燃比信号Doの信号レベルが反転すれ
ば、基準値Vfは理論空燃比に正しく対応したものに速
やかに再設定されるため、この基準値Vfに基づいて第
1の空燃比信号Voから精度よく空燃比を求めることが
でき、延いては内燃機関の運転制御を精度よく行うこと
ができる。
According to the ECU 26 which performs control using the output of the air-fuel ratio sensor 2, the second air-fuel ratio signal D
o detected at the timing when the signal level of
The reference value Vf is reset by the air-fuel ratio signal Vo. Therefore, the reference voltage Vc changes when the power supply voltage fluctuates or the resistance values of the voltage dividing resistors R15 and R16 change due to the influence of the ambient temperature, and the reference value Vf set in the ECU 26 corresponds to the stoichiometric air-fuel ratio. Even if it disappears, if the signal level of the second air-fuel ratio signal Do is inverted, the reference value Vf is promptly reset to a value that correctly corresponds to the stoichiometric air-fuel ratio. The air-fuel ratio can be determined with high accuracy from the air-fuel ratio signal Vo, and the operation control of the internal combustion engine can be accurately performed.

【0034】以上、本発明の一実施例について説明した
が、本発明は上記実施例に限定されるものではなく、本
発明の要旨を逸脱しない範囲において、様々な態様で実
施することができる。例えば、上記実施例では、検出素
子部2aとして、電池素子11の測定ガス室aとは反対
側の面に形成された多孔質電極10が、大気と接するよ
うに構成したものを用いたが、電池素子に微小なポンピ
ング電流を流して基準酸素源を作るもの等を用いてもよ
い。
Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and can be implemented in various modes without departing from the gist of the present invention. For example, in the above-described embodiment, the detection element unit 2a is configured such that the porous electrode 10 formed on the surface of the battery element 11 opposite to the measurement gas chamber a is in contact with the atmosphere. A device that generates a reference oxygen source by passing a minute pumping current through the battery element may be used.

【0035】また、上記実施例では、ECU26が制御
プログラムに従って第2の空燃比信号Doの信号レベル
の変化を検出してから、第1の空燃比信号Voを読み取
るように構成したが、第2の空燃比信号Doで第1の空
燃比信号Voの信号レベルをラッチする回路を設けるよ
うにしてもよい。
In the above-described embodiment, the ECU 26 detects the change in the signal level of the second air-fuel ratio signal Do in accordance with the control program, and then reads the first air-fuel ratio signal Vo. A circuit for latching the signal level of the first air-fuel ratio signal Vo with the air-fuel ratio signal Do may be provided.

【0036】更に、上記実施例では、第1及び第2の空
燃比信号Vo,Doを別々にECU26に入力している
が、第1及び第2の空燃比信号Vo,Doを加算する加
算回路を設けて、加算結果がECU26のA/Dコンバ
ータに入力されるように構成してもよい。
Further, in the above embodiment, the first and second air-fuel ratio signals Vo and Do are separately input to the ECU 26. However, the addition circuit adds the first and second air-fuel ratio signals Vo and Do. May be provided so that the addition result is input to the A / D converter of the ECU 26.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例の空燃比センサの概略構成図である。FIG. 1 is a schematic configuration diagram of an air-fuel ratio sensor of an embodiment.

【図2】 検出素子部の構成及び取付状態を表す断面図
である。
FIG. 2 is a cross-sectional view illustrating a configuration and a mounting state of a detection element unit.

【図3】 第1及び第2の空燃比信号の特性を表すグラ
フである。
FIG. 3 is a graph showing characteristics of first and second air-fuel ratio signals.

【図4】 第1及び第2の空燃比信号の波形を表す説明
図である。
FIG. 4 is an explanatory diagram showing waveforms of first and second air-fuel ratio signals.

【図5】 ECUが実行する基準値設定処理を表すフロ
ーチャートである。
FIG. 5 is a flowchart illustrating a reference value setting process executed by an ECU.

【符号の説明】[Explanation of symbols]

1…排気管 2…空燃比センサ 2a…検出素
子部 2b…検出回路部 4,8…固体電解質基板 5,6,9,10…多孔質電極 7…ポンプ素子
11…電池素子 12…スペーサ 13…壁面 14…ネジ部 1
5…支持台 16…接着部材 17…ネジ部 20…電流制御回
路 21…PID回路 22…第1出力回路 24…第
2出力回路 26…ECU OP1〜OP4…演算増幅器 TR
…トランジスタ R11〜R17,R21〜R25…抵抗
DESCRIPTION OF SYMBOLS 1 ... Exhaust pipe 2 ... Air-fuel ratio sensor 2a ... Detection element part 2b ... Detection circuit part 4, 8 ... Solid electrolyte substrate 5, 6, 9, 10 ... Porous electrode 7 ... Pump element
DESCRIPTION OF SYMBOLS 11 ... Battery element 12 ... Spacer 13 ... Wall surface 14 ... Screw part 1
DESCRIPTION OF SYMBOLS 5 ... Support base 16 ... Adhesive member 17 ... Screw part 20 ... Current control circuit 21 ... PID circuit 22 ... First output circuit 24 ... Second output circuit 26 ... ECU OP1-OP4 ... Operational amplifier TR
... Transistors R11-R17, R21-R25 ... Resistance

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸素イオン伝導性の固体電解質体の両面
に多孔性電極が形成された2つの検出素子を、排ガスの
流入が制限された測定ガス室に面して配設してなる検出
素子部と、 上記検出素子の一方を上記測定ガス室内の酸素濃度に応
じた信号を出力する酸素濃淡電池素子、他方を該検出素
子の両面に形成された多孔性電極間で酸素イオンを移動
させる酸素ポンプ素子として動作させ、上記酸素濃淡電
池素子の出力信号が、上記測定ガス室内の酸素濃度が理
論空燃比に対応した酸素濃度であることを示すものとな
るように、上記酸素ポンプ素子に流れるポンプ電流を双
方向に制御する電流制御手段と、 上記ポンプ電流の電流経路に配設された検出抵抗と、 該検出抵抗の両端電圧に応じて変化し、且つ排ガスが理
論空燃比であるときに所定の電圧となるように設定され
た第1の空燃比信号を生成する空燃比信号出力手段と、 を備えた空燃比センサであって、 上記検出抵抗の両端電圧の大小を比較し、該比較結果を
第2の空燃比信号として出力する比較手段を設けたこと
を特徴とする空燃比センサ。
1. A detection element comprising two detection elements each having a porous electrode formed on both sides of an oxygen ion-conductive solid electrolyte body facing a measurement gas chamber in which inflow of exhaust gas is restricted. And an oxygen concentration cell element that outputs a signal corresponding to the oxygen concentration in the measurement gas chamber, and oxygen that moves oxygen ions between porous electrodes formed on both sides of the detection element. A pump that operates as a pump element and flows through the oxygen pump element so that the output signal of the oxygen concentration cell element indicates that the oxygen concentration in the measurement gas chamber is the oxygen concentration corresponding to the stoichiometric air-fuel ratio. Current control means for bidirectionally controlling the current; a detection resistor provided in the current path of the pump current; and a predetermined resistor which varies according to the voltage between both ends of the detection resistor and when the exhaust gas has a stoichiometric air-fuel ratio. No electricity And an air-fuel ratio signal output means for generating a first air-fuel ratio signal set so as to be a pressure. The air-fuel ratio sensor comprising: An air-fuel ratio sensor comprising a comparison means for outputting a signal as a second air-fuel ratio signal.
【請求項2】 上記第2の空燃比信号が反転するタイミ
ングで、上記第1の空燃比信号を検出し、該検出値を理
論空燃比に対応した基準値として設定する基準値設定手
段を設けたことを特徴とする請求項1に記載の空燃比セ
ンサ。
2. A reference value setting means for detecting the first air-fuel ratio signal at a timing when the second air-fuel ratio signal is inverted, and setting the detected value as a reference value corresponding to a stoichiometric air-fuel ratio. The air-fuel ratio sensor according to claim 1, wherein:
JP31061196A 1996-11-21 1996-11-21 Air-fuel ratio sensor Expired - Fee Related JP3736921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31061196A JP3736921B2 (en) 1996-11-21 1996-11-21 Air-fuel ratio sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31061196A JP3736921B2 (en) 1996-11-21 1996-11-21 Air-fuel ratio sensor

Publications (2)

Publication Number Publication Date
JPH10153576A true JPH10153576A (en) 1998-06-09
JP3736921B2 JP3736921B2 (en) 2006-01-18

Family

ID=18007353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31061196A Expired - Fee Related JP3736921B2 (en) 1996-11-21 1996-11-21 Air-fuel ratio sensor

Country Status (1)

Country Link
JP (1) JP3736921B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD839056S1 (en) 2017-08-17 2019-01-29 Yeti Coolers, Llc Container
USD839055S1 (en) 2017-08-17 2019-01-29 Yeti Coolers, Llc Container
USD839054S1 (en) 2017-08-17 2019-01-29 Yeti Coolers, Llc Container
USD856748S1 (en) 2017-08-17 2019-08-20 Yeti Coolers, Llc Lid
USD878166S1 (en) 2018-04-11 2020-03-17 Yeti Coolers, Llc Container
USD878163S1 (en) 2018-04-11 2020-03-17 Yeti Coolers, Llc Container
USD885903S1 (en) 2018-04-11 2020-06-02 Yeti Coolers, Llc Lid
USD887793S1 (en) 2018-04-11 2020-06-23 Yeti Coolers, Llc Container
USD888509S1 (en) 2018-04-11 2020-06-30 Yeti Coolers, Llc Container
USD888508S1 (en) 2018-04-11 2020-06-30 Yeti Coolers, Llc Container
US10968029B1 (en) 2017-08-17 2021-04-06 Yeti Coolers, Llc Container and lid

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD839056S1 (en) 2017-08-17 2019-01-29 Yeti Coolers, Llc Container
USD839055S1 (en) 2017-08-17 2019-01-29 Yeti Coolers, Llc Container
USD839054S1 (en) 2017-08-17 2019-01-29 Yeti Coolers, Llc Container
USD856748S1 (en) 2017-08-17 2019-08-20 Yeti Coolers, Llc Lid
US10968029B1 (en) 2017-08-17 2021-04-06 Yeti Coolers, Llc Container and lid
USD878166S1 (en) 2018-04-11 2020-03-17 Yeti Coolers, Llc Container
USD878163S1 (en) 2018-04-11 2020-03-17 Yeti Coolers, Llc Container
USD885903S1 (en) 2018-04-11 2020-06-02 Yeti Coolers, Llc Lid
USD887793S1 (en) 2018-04-11 2020-06-23 Yeti Coolers, Llc Container
USD888509S1 (en) 2018-04-11 2020-06-30 Yeti Coolers, Llc Container
USD888508S1 (en) 2018-04-11 2020-06-30 Yeti Coolers, Llc Container

Also Published As

Publication number Publication date
JP3736921B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
US6214207B1 (en) Method and apparatus for measuring oxygen concentration and nitrogen oxide concentration
US6551497B1 (en) Measuring NOx concentration
US7964073B2 (en) Air fuel ratio detection apparatus
JPH1038845A (en) Nitrogen oxides measuring method
JP2004069547A (en) Control device of air/fuel ratio sensor
JPH0548420B2 (en)
JP4415771B2 (en) Gas concentration detector
JP3736921B2 (en) Air-fuel ratio sensor
US4233033A (en) Method and apparatus for measuring the O2 content of a gas
JPH0412422B2 (en)
JP5041488B2 (en) Sensor control device
KR20030014708A (en) Device for operating a linear lambda probe
JPH07104324B2 (en) Air-fuel ratio detector
JPS61105455A (en) Detection of oxygen partial pressure
JP2000356618A (en) Measuring method for characteristic of gas concentration sensor
JPS59208451A (en) Air-fuel ratio sensor for engine
JPH0750070B2 (en) Oxygen concentration detector
JPS61161445A (en) Air/furl ratio detector
JP2002303601A (en) Controller for gas concentration sensor
JPS61234352A (en) Air/fuel ratio detector
JP3048256B2 (en) Air-fuel ratio detection method
JPH0745004Y2 (en) Oxygen sensor
JP2001059833A (en) Concentration detecting apparatus for exhaust gas
JPS62198750A (en) Air-fuel ratio detecting device for engine
JPS6017349A (en) Device for controlling air-fuel ratio

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051025

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees