JPS6138822B2 - - Google Patents

Info

Publication number
JPS6138822B2
JPS6138822B2 JP54156314A JP15631479A JPS6138822B2 JP S6138822 B2 JPS6138822 B2 JP S6138822B2 JP 54156314 A JP54156314 A JP 54156314A JP 15631479 A JP15631479 A JP 15631479A JP S6138822 B2 JPS6138822 B2 JP S6138822B2
Authority
JP
Japan
Prior art keywords
oxygen concentration
voltage
solid electrolyte
electrode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54156314A
Other languages
Japanese (ja)
Other versions
JPS5679246A (en
Inventor
Shunzo Mase
Shigeo Soejima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP15631479A priority Critical patent/JPS5679246A/en
Priority to US06/210,239 priority patent/US4407704A/en
Priority to CA000366068A priority patent/CA1155494A/en
Priority to EP80304379A priority patent/EP0030164B1/en
Priority to DE8080304379T priority patent/DE3070481D1/en
Publication of JPS5679246A publication Critical patent/JPS5679246A/en
Priority to US06/380,835 priority patent/US4541899A/en
Publication of JPS6138822B2 publication Critical patent/JPS6138822B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は比較的低温度のガス中の酸素濃度を早
い応答速度と低インピーダンスの出力で正確迅速
に検出できる酸素濃度検出法に関するものであ
る。 従来、酸素イオン導電性固体電解質を用い酸素
濃淡電池の原理により内燃機関等より排出される
排気ガス中の酸素濃度を測定する酸素濃度検出器
が知られている。この酸素濃度検出器は、例えば
固体電解質としてイツトリア添加ジルコニア磁器
等を用い、電極として白金等を用いたものが一般
的であるが、しかしながらこのものは、低温度で
は白金の触媒能が低下するとともにジルコニア磁
器の電気抵抗が大きくなるため、酸素濃度検出器
としてのインピーダンスが高くなり、ノイズ等の
影響を受け信号が不安定となり、また応答速度も
遅くなる傾向にある等の問題点があるため、その
実用的な使用温度の下限は約350℃程度であつ
た。しかし、内燃機関等の排気ガス温度は始動時
あるいは、アイドリング時にはこの温度を下回る
250℃〜300℃前後の場合があり、従つて従来の酸
素濃度検出器では低温度ガスに対しては十分作動
しない欠点があつた。 本発明は従来のこのような欠点を解決するため
になされたものであり、特に低温度の雰囲気ガス
中においても酸素濃度を応答性よく、且つ、低イ
ンピーダンスで正確迅速に測定できる酸素濃度検
出法を提供するものであり、酸素イオン導電性固
体電解質の両面に、電極を付与し酸素濃淡電池の
原理を用いて被測定ガス中の酸素濃度を検出する
酸素濃度検出器において、酸素イオン導電性固体
電解質に交流電圧印加用の電極を設けた酸素濃度
検出器および酸素イオン導電性固体電解質の両面
に電極を付与した酸素濃度検出器を被測定ガス中
に挿入して、酸素濃淡電池の原理を用いて被測定
ガス中の酸素濃度を検出する酸素濃度検出法にお
いて、酸素イオン導電性固体電解質に設けられた
電極に交流電圧を印加通電し、固体電解質の自己
発熱にともないより高温に加熱された状態におい
て酸素濃度を検出する酸素濃度検出法である。 すなわち、本発明は排ガス温度が低過ぎて酸素
濃度検出器が十分作動しないときに、酸素濃度検
出器を形成する固体電解質に交流電圧、好ましく
は高周波の交流電圧を印加し交流電圧を通電する
ことによつて固体電解質を自己発熱させ、それに
より固体電解質を正常な酸素濃淡電池を形成する
温度に加熱することによつて温度の低いガスに接
した場合でも酸素濃度検出器が十分作動すること
を幾多の研究の結果究明したことに基づくもので
ある。 本発明の更に詳しい構成を一具体例を示す第1
図に基づいて説明すれば、イツトリア添加ジルコ
ニア磁器等よりなる有底円筒型固体電解質1の内
面に白金等の内部電極2が設けられているととも
に、外表面上に内部電極2と対をなして酸素濃淡
電池を形成する外部電極3と交流電圧印加用の電
極4とが交互にそれぞれ複数個設けられている。
この場合外表面上に設けられた複数の外部電極3
は全て同電位に接続されている。 そして、既知の酸素濃度検出器と同様に排ガス
と接する部分が好ましくは多孔質の保護層(図示
せず)で覆われ、先端部の外周がガス流入孔を有
する金属カバー5で覆われているとともに金属ケ
ース6中に気密に封止されている酸素濃度検出器
である。この酸素濃度検出器の各種電極の付着状
態を更に詳しく説明すると、第2図に要部拡大断
面を示すように固体電解質1の内部には好ましく
は全面に亘つて内部電極2が施されているととも
に外表面に外部電極3と交流電圧印加用の電極4
とが交互に複数設けられ、この複数の同じ外部電
極3は互いに同電位に連結されている。なお、7
は交流電源、8は直流電圧検出装置である。 そして、各種電極の付着状態は第1図、第2図
に示す一具体例に限られることなく、第3図およ
び第4図に示す付着方法あるいはそれ以外でも勿
論よいものである。また、交流電圧印加用の電極
4は必ずしも固体電解質1の内外面でなくても一
方の側のみでもよいものである。 なお、9はコンデンサーである。また、固体電
解質1の外表面に設ける外部電極3および交流電
圧印加用の電極4は、第1図〜第4図に示すよう
にそれぞれ独立して別個に設けなくても、第5図
および第6図に示すように外部電極3が交流電圧
印加用の電極4を兼ねてもよいものである。そし
て、これらの構造の酸素濃度検出器への交流電圧
の印加および酸素濃淡電池の原理にもとづく起電
力である直流電圧の取り出しについては、例えば
第7図〜第9図に示すような回路を用いれば簡単
にできる。すなわち第7図においてコンデンサ9
により酸素濃度検出器11の直流電流が交流電源
7に流れることを防止しつつ交流電源7から電流
安定用抵抗10およびコンデンサ9を経て酸素濃
度検出器11に交流電圧を印加し加熱する。一方
酸素濃度検出器11よりの酸素濃度に対応する直
流電圧はチヨークコイル12と、コンデンサ13
で構成される濾波回路で交流電圧が除かれ直流電
圧検出装置8で検出され酸素濃度が検知される。 なお、電流安定用抵抗10は酸素濃度検出器1
1に過大な電流が流れることを防止し、且つ、加
熱の必要の無い高温度では酸素濃度検出器11に
加えられる電力を小さくする作用がある。また、
交流電圧の印加は第7図のように常時行なつても
よいしまた第8図のようにスイツチ14により交
流電圧の印加と直流電圧の検出とを交互に切換え
てもよく、あるいは低温時のみ印加してもよい。
なお、第9図における15は交流電圧計、16は
交流電流計である。 なお、本発明において、酸素濃淡電池を構成す
る一対の内部電極および外部電極間に得られる酸
素濃度に対応する起電力(直流電圧)にほとんど
悪影響をおよぼすことなく、交流電圧を印加して
固体電解質を自己発熱によつて加熱できる理由は
明確ではないが、おおよそ次のような理由による
ものと思われる。電極と固体電解質との界面にお
ける電解生成物の量が一定の限度以内では、その
生成量と電極電位とは直線性が保たれ、電極反応
にあづかる交流電流の半サイクル分の電気量によ
り生成した電解生成物がその一定限度以内にあれ
ば次の逆向の半サイクルの電流により先に生成し
た電解生成物は過不足なく消滅するためたとえ数
十ボルトの高い交流電圧を印加してもその周波数
が十分高ければ半サイクルの間に流れる電気量を
その一定限度以内とすることができ、直流電圧に
は影響を及ぼすことなく、また、固体電解質の劣
化も起すことなく高電圧を印加して加熱すること
ができるものと思われる。 なお、本発明の酸素濃度検出器に用いられる固
体電解質としては、第1図に示すように先端部分
の肉厚が最も薄い形状が局部発熱を安定に発生さ
せることができるので最もよいものである。これ
は先端部分の単位表面積当りの電気抵抗が最少と
なるところから交流電圧を印加した場合、この先
端部に電流が集中し先端部が選択的に加熱され
る。従つて、加熱に要する電力は、この先端部の
放熱とつり合う量でよく、極めてわずかの電力を
供給することにより固体電解質の先端が作動し、
雰囲気温度が比較的低温でも応答速度が早く、且
つ酸素濃度検出器のインピーダンスが十分低い状
態で測定できるものである。 さらに印加する交流電圧は第10図および第1
1図に示すとおり力率および実効電力の点より約
1KHz〜1MHzの範囲内の高周波が望ましい。す
なわち1KHzより低い低周波では分極が大きく第
11図に示すように十分な加熱電力を供給するた
めには過大な電圧を必要とし直流成分の変動が大
きくなる。また1MHz以上の高周波では酸素濃度
検出器のインピーダンス中の静電容量の割合が大
きくなり過ぎ第10図に示すように力率が低下す
るため電源の電流容量が過大となる外端子部の過
熱を生じ好ましくないものである。 なお、交流電圧の大きさは加熱する固体電解質
の種類、厚さなどにより変化するため適宜選定す
ればよい。 次に本発明の実施例を述べる。 実施例 1 ZrO291モル%、Y2O39モル%のジルコニア磁器
よりなる先端部の外径7mm、内径5mm、中央部の
外径9mm、内径5mmの有底円筒型固体電解質の内
外面にそれぞれ第5図に示すように白金電極を付
与し、外面電極上にスピネルの多孔質層をプラズ
マ熔射にて付着した酸素濃度検出素子を第1図に
示すように金属ケース中に気密に封入して、酸素
濃淡電池を形成する一対の電極が交流電圧印加用
の電極をも兼ねる構造の本発明の酸素濃度検出器
を作成した。この酸素濃度検出器を315℃のガソ
リンエンジン排気ガス中に挿入した。そして第7
図に示す交流電圧印加用回路を用い100KHz、
100Vの交流電圧を印加して固体電解質を自己発
熱させた場合を、交流電圧を印加しない従来品と
比較し、温度および応答速度等を測定した。結果
は第1表に示すとおりである。 なお、本発明品の結果は電圧印加後3分経過後
の値を示し、その時点での実効電力は0.5W、力
率12%であつた。第1表において応答速度とは排
気ガス雰囲気をλ=1.1から0.9に変化した場合、
電極の電位差が0.6Vから0.3V迄変化するに要す
る時間で示す。
The present invention relates to an oxygen concentration detection method that can accurately and quickly detect the oxygen concentration in gas at a relatively low temperature with a fast response speed and low impedance output. 2. Description of the Related Art Conventionally, oxygen concentration detectors have been known that use an oxygen ion conductive solid electrolyte and measure the oxygen concentration in exhaust gas discharged from an internal combustion engine or the like based on the principle of an oxygen concentration battery. This oxygen concentration detector generally uses, for example, itria-doped zirconia porcelain as a solid electrolyte and platinum as an electrode. Because the electrical resistance of zirconia porcelain increases, the impedance as an oxygen concentration detector increases, and there are problems such as the signal becomes unstable due to the influence of noise, and the response speed tends to be slow. The lower limit of its practical use temperature was about 350°C. However, the exhaust gas temperature of internal combustion engines, etc. falls below this temperature when starting or idling.
The temperature may be around 250°C to 300°C, so conventional oxygen concentration detectors have the disadvantage that they do not work well for low-temperature gases. The present invention has been made to solve these conventional drawbacks, and provides an oxygen concentration detection method that can accurately and quickly measure oxygen concentration with good responsiveness and low impedance even in low-temperature atmospheric gases. In an oxygen concentration detector that detects the oxygen concentration in a gas to be measured using the principle of an oxygen concentration battery by providing electrodes on both sides of an oxygen ion conductive solid electrolyte, the oxygen ion conductive solid electrolyte An oxygen concentration detector with an electrode for applying an alternating voltage on the electrolyte and an oxygen concentration detector with electrodes on both sides of an oxygen ion conductive solid electrolyte are inserted into the gas to be measured, using the principle of an oxygen concentration battery. In the oxygen concentration detection method, which detects the oxygen concentration in the gas being measured, an AC voltage is applied to the electrodes provided on the oxygen ion conductive solid electrolyte, and the solid electrolyte is heated to a higher temperature due to self-heating. This is an oxygen concentration detection method that detects oxygen concentration at That is, the present invention applies an alternating current voltage, preferably a high frequency alternating voltage, to the solid electrolyte forming the oxygen concentration detector to energize the oxygen concentration detector when the exhaust gas temperature is too low and the oxygen concentration detector does not operate sufficiently. By causing the solid electrolyte to self-heat and thereby heating the solid electrolyte to a temperature at which it forms a normal oxygen concentration battery, it is possible to ensure that the oxygen concentration detector operates sufficiently even when it comes into contact with low-temperature gas. This is based on what has been discovered as a result of numerous studies. A first example showing a more detailed configuration of the present invention
To explain based on the figure, an internal electrode 2 made of platinum or the like is provided on the inner surface of a bottomed cylindrical solid electrolyte 1 made of itria-doped zirconia porcelain or the like, and an internal electrode 2 paired with the internal electrode 2 is provided on the outer surface. A plurality of external electrodes 3 forming an oxygen concentration battery and a plurality of electrodes 4 for applying an alternating current voltage are provided alternately.
In this case, a plurality of external electrodes 3 provided on the external surface
are all connected to the same potential. Similarly to known oxygen concentration detectors, the part that comes into contact with exhaust gas is preferably covered with a porous protective layer (not shown), and the outer periphery of the tip is covered with a metal cover 5 having gas inlet holes. This is an oxygen concentration detector that is hermetically sealed in a metal case 6. To explain in more detail the state of adhesion of the various electrodes of this oxygen concentration detector, as shown in FIG. 2, which shows an enlarged cross-section of the main part, internal electrodes 2 are applied inside the solid electrolyte 1, preferably over the entire surface. At the same time, an external electrode 3 and an electrode 4 for applying AC voltage are provided on the outer surface.
A plurality of external electrodes 3 are provided alternately, and the same external electrodes 3 are connected to the same potential. In addition, 7
8 is an AC power supply, and 8 is a DC voltage detection device. The state of adhesion of the various electrodes is not limited to the specific example shown in FIGS. 1 and 2, and it goes without saying that the adhesion methods shown in FIGS. 3 and 4 or other methods may also be used. Further, the electrode 4 for applying an alternating voltage need not necessarily be provided on the inner and outer surfaces of the solid electrolyte 1, but may be provided only on one side. Note that 9 is a capacitor. Furthermore, the external electrode 3 provided on the outer surface of the solid electrolyte 1 and the electrode 4 for applying an alternating current voltage do not have to be provided independently and separately as shown in FIGS. 1 to 4; As shown in FIG. 6, the external electrode 3 may also serve as the electrode 4 for applying an alternating current voltage. For applying AC voltage to the oxygen concentration detector of these structures and extracting DC voltage, which is an electromotive force based on the principle of an oxygen concentration battery, circuits such as those shown in Figures 7 to 9 are used, for example. It's easy to do. That is, in Fig. 7, capacitor 9
While preventing the DC current of the oxygen concentration detector 11 from flowing to the AC power supply 7, an AC voltage is applied from the AC power supply 7 to the oxygen concentration detector 11 via the current stabilizing resistor 10 and the capacitor 9 to heat the oxygen concentration detector 11. On the other hand, the DC voltage corresponding to the oxygen concentration from the oxygen concentration detector 11 is applied to the chiyoke coil 12 and the capacitor 13.
The alternating current voltage is removed by a filtering circuit comprised of the following, and detected by a direct current voltage detection device 8, whereby the oxygen concentration is detected. Note that the current stabilizing resistor 10 is connected to the oxygen concentration detector 1.
This has the effect of preventing excessive current from flowing through the oxygen concentration detector 11 and reducing the power applied to the oxygen concentration detector 11 at high temperatures where heating is not necessary. Also,
Application of AC voltage may be performed all the time as shown in FIG. 7, or may be alternately applied between application of AC voltage and detection of DC voltage by switch 14 as shown in FIG. 8, or only at low temperatures. It may be applied.
In addition, 15 in FIG. 9 is an AC voltmeter, and 16 is an AC ammeter. In addition, in the present invention, an AC voltage is applied to the solid electrolyte without having almost any adverse effect on the electromotive force (DC voltage) corresponding to the oxygen concentration obtained between the pair of internal and external electrodes that constitute the oxygen concentration battery. Although the reason why can be heated by self-heating is not clear, it is probably due to the following reasons. As long as the amount of electrolytic products at the interface between the electrode and the solid electrolyte is within a certain limit, linearity is maintained between the amount generated and the electrode potential, and the amount of electricity generated by half a cycle of the alternating current that participates in the electrode reaction maintains linearity. If the generated electrolytic products are within a certain limit, the electrolytic products generated earlier will disappear in the next half cycle of current in the opposite direction, so even if a high AC voltage of several tens of volts is applied, the frequency If the voltage is high enough, the amount of electricity flowing during a half cycle can be kept within a certain limit, and high voltage can be applied to heat the solid electrolyte without affecting the DC voltage or deteriorating the solid electrolyte. It seems possible to do so. As for the solid electrolyte used in the oxygen concentration detector of the present invention, it is best to use a shape with the thinnest wall thickness at the tip, as shown in Figure 1, because it can stably generate local heat generation. . This is because when an alternating current voltage is applied from the point where the electrical resistance per unit surface area of the tip is the minimum, the current concentrates on this tip and the tip is selectively heated. Therefore, the amount of power required for heating is sufficient to balance the heat dissipation of this tip, and by supplying an extremely small amount of power, the tip of the solid electrolyte is activated.
Even when the ambient temperature is relatively low, the response speed is fast and the oxygen concentration detector can perform measurements with sufficiently low impedance. Furthermore, the AC voltage to be applied is as shown in Fig. 10 and 1.
As shown in Figure 1, from the point of power factor and effective power, approximately
High frequencies within the range of 1KHz to 1MHz are desirable. That is, at low frequencies lower than 1 KHz, polarization is large, and as shown in FIG. 11, an excessive voltage is required to supply sufficient heating power, and fluctuations in the DC component become large. In addition, at high frequencies of 1 MHz or higher, the proportion of capacitance in the impedance of the oxygen concentration detector becomes too large, and as shown in Figure 10, the power factor decreases, causing the current capacity of the power supply to become excessive and overheating of the external terminals. This is an undesirable occurrence. Note that the magnitude of the alternating current voltage varies depending on the type, thickness, etc. of the solid electrolyte to be heated, and may be appropriately selected. Next, examples of the present invention will be described. Example 1 Inner and outer surfaces of a bottomed cylindrical solid electrolyte made of zirconia porcelain containing 91 mol% ZrO 2 and 9 mol% Y 2 O 3 with an outer diameter of 7 mm at the tip and an inner diameter of 5 mm, and an outer diameter of 9 mm at the center and an inner diameter of 5 mm. As shown in Fig. 5, a platinum electrode is provided on each of the electrodes, and a porous layer of spinel is deposited on the outer surface electrode by plasma spraying.The oxygen concentration detection element is airtightly placed in a metal case as shown in Fig. 1. An oxygen concentration detector of the present invention was produced in which a pair of electrodes, which were sealed to form an oxygen concentration cell, also served as electrodes for applying an alternating current voltage. This oxygen concentration detector was inserted into gasoline engine exhaust gas at 315°C. and the seventh
100KHz using the AC voltage application circuit shown in the figure.
The case where the solid electrolyte self-heated by applying an AC voltage of 100V was compared with a conventional product in which no AC voltage was applied, and the temperature, response speed, etc. were measured. The results are shown in Table 1. Note that the results for the product of the present invention show the values 3 minutes after voltage application, and the effective power at that time was 0.5 W and the power factor was 12%. In Table 1, the response speed is when the exhaust gas atmosphere is changed from λ = 1.1 to 0.9.
It is expressed as the time required for the potential difference between the electrodes to change from 0.6V to 0.3V.

【表】 第1表の結果から明らかなとおり、本発明の酸
素濃度検出器は低温度ガスに対しても極めて応答
性が早いことが確認された。 実施例 2 ZrO295モル%、Y2O35モル%のジルコニア磁器
よりなる素子先端部の外径3mm、内径2mm、中央
部の外経5mm、内径2.5mmの有底円筒型固体電解
質の内外面に、第1図に示すように内部電極2、
外部電極3および交流電圧印加用電極4をそれぞ
れ付与し、さらに外表面上にスピネルの多孔質層
をプラズマ熔射により付着した酸素濃度検出素子
を、第1図に示すように組立てて本発明の酸素濃
度検出器を作成した。この検出器を300℃のガソ
リンエンジン排気ガス中に挿入し、第9図に示す
交流電圧印加用回路によつて10KHzの高周波交
流電圧を印加し、電圧を変化した結果第12図に
示すとおり印加電圧が高くなるにつれて固体電解
質の発熱量が増大し、その温度が高くなることが
確認された。 以上のべたとおり本発明は、酸素イオン導電性
固体電解質に交流電圧印加用の電極を設け、その
電極に好ましく高周波交流電圧を印加することに
よつて固体電解質を自己発熱させて高い温度に保
持することにより、温度の低いガスに接した場合
であつても安定して酸素濃淡電池の原理にもとづ
いて応答性よく低インピーダンスで酸素濃度を正
確迅速に検出できる検出器であり、各種の排ガス
中の酸素濃度を測定することができるものであつ
て、省エネルギー上および排ガス公害防止上極め
て有用な酸素濃度検出器である。
[Table] As is clear from the results in Table 1, it was confirmed that the oxygen concentration detector of the present invention has an extremely fast response even to low-temperature gas. Example 2 A bottomed cylindrical solid electrolyte element made of zirconia porcelain containing 95 mol% of ZrO 2 and 5 mol% of Y 2 O 3 with an outer diameter of 3 mm at the tip, an inner diameter of 2 mm, an outer diameter of 5 mm at the center, and an inner diameter of 2.5 mm. Internal electrodes 2 are provided on the inner and outer surfaces as shown in FIG.
An oxygen concentration detecting element provided with an external electrode 3 and an electrode 4 for applying an alternating current voltage, and further having a porous layer of spinel deposited on the outer surface by plasma spraying, was assembled as shown in FIG. An oxygen concentration detector was created. This detector was inserted into gasoline engine exhaust gas at 300°C, and a high frequency AC voltage of 10KHz was applied by the AC voltage application circuit shown in Figure 9, and as a result of changing the voltage, the voltage was applied as shown in Figure 12. It was confirmed that as the voltage increases, the amount of heat generated by the solid electrolyte increases and its temperature increases. As described above, the present invention provides an oxygen ion conductive solid electrolyte with an electrode for applying an alternating voltage, and preferably applies a high frequency alternating voltage to the electrode to cause the solid electrolyte to self-heat and maintain it at a high temperature. Based on the principle of an oxygen concentration battery, this detector can accurately and quickly detect oxygen concentration with good responsiveness and low impedance even when in contact with low-temperature gas. This oxygen concentration detector is capable of measuring oxygen concentration and is extremely useful for energy saving and exhaust gas pollution prevention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の酸素濃度検出器の一具体例を
示す説明図、第2図〜第6図は本発明の酸素濃度
検出器の電極取付構造の異なる具体例を示す要部
断面説明図、第7図〜第9図は本発明の酸素濃度
検出器への交流電圧印加用の回路を示す説明図、
第10図および第11図は交流電圧の周波数と力
率および実効電力との関係を示す説明図、第12
図は高周波電圧を変化させた場合の加熱時間と温
度上昇との関係を示す説明図である。 1……固体電解質、2……内部電極、3……外
部電極、4……交流電圧印加用電極、5……金属
カバー、6……金属ケース、7……交流電源、8
……直流電圧検出器、9……コンデンサ、10…
…抵抗、11……酸素濃度検出器、12……チヨ
ークコイル、13……コンデンサ、14……スイ
ツチ、15……交流電圧計、16……交流電流
計。
FIG. 1 is an explanatory diagram showing one specific example of the oxygen concentration detector of the present invention, and FIGS. 2 to 6 are cross-sectional explanatory diagrams of essential parts showing different specific examples of the electrode mounting structure of the oxygen concentration detector of the present invention. , FIGS. 7 to 9 are explanatory diagrams showing circuits for applying AC voltage to the oxygen concentration detector of the present invention,
Figures 10 and 11 are explanatory diagrams showing the relationship between the frequency of AC voltage, power factor, and effective power;
The figure is an explanatory diagram showing the relationship between heating time and temperature rise when changing the high frequency voltage. DESCRIPTION OF SYMBOLS 1... Solid electrolyte, 2... Internal electrode, 3... External electrode, 4... Electrode for applying AC voltage, 5... Metal cover, 6... Metal case, 7... AC power supply, 8
...DC voltage detector, 9...Capacitor, 10...
...resistor, 11...oxygen concentration detector, 12...choke coil, 13...capacitor, 14...switch, 15...AC voltmeter, 16...AC ammeter.

Claims (1)

【特許請求の範囲】 1 酸素イオン導電性固体電解質の両面に電極を
付与した酸素濃度検出器を被測定ガス中に挿入し
て、酸素濃淡電池の原理を用いて被測定ガス中の
酸素濃度を検出する酸素濃度検出法において、酸
素イオン導電性固体電解質に設けられた電極に交
流電圧を印加通電し、固体電解質の自己発熱にと
もないより高温に加熱された状態において酸素濃
度を検出することを特徴とする酸素濃度検出法。 2 交流電圧を印加通電する電極が、固体電解質
の両面に設けられた酸素濃淡電池を形成する電極
と同一であることを特徴とする特許請求の範囲第
1項記載の酸素濃度検出法。 3 交流電圧を印加通電する電極と固体電解質の
両面に設けられた酸素濃淡電池を形成する電極と
がそれぞれ独立した電極である特許請求の範囲第
1項記載の酸素濃度検出法。 4 交流電圧を印加通電する電極の一方が固体電
解質の両面に設けられた酸素濃淡電池を形成する
電極と同一で、他の電極が独立した電極である特
許請求の範囲第1項記載の酸素濃度検出法。
[Claims] 1. An oxygen concentration detector with electrodes provided on both sides of an oxygen ion conductive solid electrolyte is inserted into a gas to be measured, and the oxygen concentration in the gas to be measured is measured using the principle of an oxygen concentration battery. The oxygen concentration detection method is characterized by applying an AC voltage to electrodes provided on an oxygen ion conductive solid electrolyte, and detecting the oxygen concentration in a state where the solid electrolyte is heated to a higher temperature due to self-heating. Oxygen concentration detection method. 2. The method for detecting oxygen concentration according to claim 1, wherein the electrodes for applying the alternating current voltage are the same as the electrodes forming the oxygen concentration battery provided on both sides of the solid electrolyte. 3. The oxygen concentration detection method according to claim 1, wherein the electrode for applying an alternating current voltage and the electrode for forming an oxygen concentration battery provided on both sides of the solid electrolyte are independent electrodes. 4. Oxygen concentration according to claim 1, wherein one of the electrodes for applying AC voltage is the same as the electrode forming an oxygen concentration battery provided on both sides of the solid electrolyte, and the other electrode is an independent electrode. Detection method.
JP15631479A 1979-12-04 1979-12-04 Method and apparatus for detecting oxygen concentration Granted JPS5679246A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP15631479A JPS5679246A (en) 1979-12-04 1979-12-04 Method and apparatus for detecting oxygen concentration
US06/210,239 US4407704A (en) 1979-12-04 1980-11-25 Oxygen concentration detector and a method of detecting oxygen concentration
CA000366068A CA1155494A (en) 1979-12-04 1980-12-03 Oxygen concentration detector and a method of detecting oxygen concentration
EP80304379A EP0030164B1 (en) 1979-12-04 1980-12-04 An oxygen concentration detector and a method of detecting oxygen concentration
DE8080304379T DE3070481D1 (en) 1979-12-04 1980-12-04 An oxygen concentration detector and a method of detecting oxygen concentration
US06/380,835 US4541899A (en) 1979-12-04 1982-05-21 Method of heating a solid electrolyte body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15631479A JPS5679246A (en) 1979-12-04 1979-12-04 Method and apparatus for detecting oxygen concentration

Publications (2)

Publication Number Publication Date
JPS5679246A JPS5679246A (en) 1981-06-29
JPS6138822B2 true JPS6138822B2 (en) 1986-09-01

Family

ID=15625083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15631479A Granted JPS5679246A (en) 1979-12-04 1979-12-04 Method and apparatus for detecting oxygen concentration

Country Status (1)

Country Link
JP (1) JPS5679246A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383923U (en) * 1986-11-19 1988-06-01

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56137145A (en) * 1980-03-28 1981-10-26 Ngk Insulators Ltd Detecting method of concentration of oxygen
US4407704A (en) * 1979-12-04 1983-10-04 Ngk Insulators, Ltd. Oxygen concentration detector and a method of detecting oxygen concentration
JPS57192855A (en) * 1981-05-25 1982-11-27 Ngk Insulators Ltd Oxygen concentration detector
JPS57192856A (en) * 1981-05-25 1982-11-27 Ngk Insulators Ltd Oxygen concentration detector
JPS57192848A (en) * 1981-05-25 1982-11-27 Ngk Insulators Ltd Regulator for oxygen concentration
JPS57200849A (en) * 1981-06-04 1982-12-09 Ngk Insulators Ltd Detector for oxygen concentration
JPS57200844A (en) * 1981-06-04 1982-12-09 Ngk Insulators Ltd Oxygen concentration detector
JPS57200850A (en) * 1981-06-04 1982-12-09 Ngk Insulators Ltd Detector for oxygen concentration
JPS5968190A (en) * 1982-10-08 1984-04-18 日本碍子株式会社 Heater
JP5424286B2 (en) * 2010-04-19 2014-02-26 独立行政法人産業技術総合研究所 Oxygen partial pressure control device and oxygen partial pressure measuring instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383923U (en) * 1986-11-19 1988-06-01

Also Published As

Publication number Publication date
JPS5679246A (en) 1981-06-29

Similar Documents

Publication Publication Date Title
EP0030164B1 (en) An oxygen concentration detector and a method of detecting oxygen concentration
SE7906859L (en) SENSORS FOR MONITORING OF SOTHALS IN EXHAUST, IN PARTICULAR FROM DIESEL ENGINES
JPS6138822B2 (en)
JPS57200844A (en) Oxygen concentration detector
JPS57192855A (en) Oxygen concentration detector
DE2908916A1 (en) Resistance measuring probe for oxygen determn. in gas - esp. exhaust gas has multilayer electrode and semiconductor oxide structure on ceramic substrate
CA1160686A (en) Oxygen concentration detector
JPH0244392B2 (en)
JP4612274B2 (en) Device for measuring the internal resistance of a linear lambda sensor
JPS5965758A (en) Electrochemical device and cell
JPH0324619B2 (en)
JP2004205357A (en) Detection method of gas concentration
JPH05203604A (en) Measuring method and device for oxygen concentration
JPH0128905B2 (en)
JPS63138256A (en) Air-fuel ratio measuring method for exhaust gas of internal combustion engine
JPS57108264A (en) Operating method for electrostatic adsorbing device
JPS595944A (en) Oxygen concentration detector
JPS5614151A (en) Air fuel ratio detector
JPS6435359A (en) Air fuel ratio detecting element
JPS56137145A (en) Detecting method of concentration of oxygen
Olthuis et al. New operational modes for the Ta2O5-based electrolyte conductance cell
JPH01203958A (en) High frequency vibration circuit
JPS6359461B2 (en)
JPS598174Y2 (en) Liquid level detection device
JPS6352052A (en) Lamination type air fuel ratio sensor