JPS6358933B2 - - Google Patents

Info

Publication number
JPS6358933B2
JPS6358933B2 JP56174427A JP17442781A JPS6358933B2 JP S6358933 B2 JPS6358933 B2 JP S6358933B2 JP 56174427 A JP56174427 A JP 56174427A JP 17442781 A JP17442781 A JP 17442781A JP S6358933 B2 JPS6358933 B2 JP S6358933B2
Authority
JP
Japan
Prior art keywords
component
heat treatment
crimped
yarn
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56174427A
Other languages
Japanese (ja)
Other versions
JPS5876522A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17442781A priority Critical patent/JPS5876522A/en
Publication of JPS5876522A publication Critical patent/JPS5876522A/en
Publication of JPS6358933B2 publication Critical patent/JPS6358933B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はポリウレタンエラストマーとポリアミ
ドとの複合繊維であつて、細かい捲縮による弾性
とエラストマー自身の弾性とを共に利用しうるよ
うにした複合繊維の製造方法に関するもので、特
に、前記両成分を特定の状態に溶融紡糸して得た
未延伸糸を延伸・熱処理することにより弾性回復
にすぐれ、寸法安定性のよい、フイツト性の高い
捲縮弾性繊維を得ることにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a composite fiber of polyurethane elastomer and polyamide, and relates to a method for producing a composite fiber that can utilize both the elasticity of fine crimps and the elasticity of the elastomer itself. In particular, the purpose is to obtain crimped elastic fibers with excellent elastic recovery, good dimensional stability, and high fit properties by drawing and heat-treating undrawn yarn obtained by melt-spinning both of the above components in a specific state. .

一般に、ポリウレタン100%の弾性糸はゴム弾
性のみで、その伸長度は400〜500%にも達し、そ
のままでは使用しにくい為、その伸長度を200〜
300%迄抑制する方法として、ウレタン弾性糸に
捲縮加工糸又はフラツトヤーン等を一重又は二重
に巻きつけた、いわゆるカバリング糸が使用され
ている。しかし、このようなカバリング糸に使用
されているウレタン糸は湿式紡糸法、又は乾式紡
糸法による紡糸方法によつて得られるものであつ
て、溶融紡糸法によるものに比較し、生産性が劣
り、更にはカバリング工程が付加される為にコス
トが高くなる。しかも、カバリング糸には捲縮加
工糸の持つ嵩高性は到底望むことができなく、靴
下のゴム部、スポーツ衣料の一部等のストレツチ
性のみを要求される特殊分野にしか使用されてい
ないのが現状である。
In general, 100% polyurethane elastic thread has only rubber elasticity, and its elongation reaches 400-500%, making it difficult to use as it is, so the elongation should be increased to 200-500%.
As a method for suppressing this by up to 300%, a so-called covering yarn is used, which is a urethane elastic yarn wrapped with a crimped yarn or a flat yarn in a single or double layer. However, the urethane yarn used in such covering yarns is obtained by a wet spinning method or a dry spinning method, and the productivity is inferior to that using a melt spinning method. Furthermore, since a covering step is added, the cost increases. Moreover, covering yarn cannot have the bulkiness of crimped yarn, and is only used in special fields that require only stretch, such as the rubber parts of socks and some sports clothing. is the current situation.

一方、このようなカバリング糸の持つ欠点を解
消せんとして熱収縮性の異なる重合体をサイド・
バイ・サイド型や偏心シースコア型に貼り合せた
潜在捲縮能を有し、一方の成分にポリウレタンエ
ラストマーを用い、他方の成分にポリアミドを用
いた複合繊維(特公昭55−36725号、特公昭55−
27175号)が提案されている。
On the other hand, in order to overcome the drawbacks of such covering yarns, polymers with different heat shrinkability were added to the sides.
Composite fibers that have latent crimp ability and are laminated into a by-side type or an eccentric sheath core type, using polyurethane elastomer as one component and polyamide as the other component (Special Publication No. 55-36725, Japanese Patent Publication No. 36725, 55−
No. 27175) is proposed.

かかる複合繊維は、細かくて多くの捲縮を有
し、且つ捲縮性能も優れているため、パンテイス
トツキング等の捲縮弾性が要求される分野に用い
られている。しかしながら、これらのポリウレタ
ンエラストマーを用いた複合繊維ではポリウレタ
ンエラストマーの熱収縮性を利用し、細かい捲縮
を生み出すうえでは有効であるが、ポリウレタン
エラストマー自身の弾性(ゴム弾性)特性は、ほ
とんど利用されてない。換言すればこれら複合繊
維においては、それ自身弾性を呈するウレタンエ
ラストマーを用いながらも複合繊維という形の捲
縮利用にのみ終始し、前記“弾性”の利用ひいて
は捲縮と弾性の相乗的利用による高ストレツチ化
については何等注目されていなかつたのである。
Such composite fibers are fine, have many crimps, and have excellent crimp performance, so they are used in fields where crimp elasticity is required, such as pantyhose. However, although composite fibers using these polyurethane elastomers utilize the heat shrinkability of the polyurethane elastomer and are effective in producing fine crimps, the elasticity (rubber elasticity) properties of the polyurethane elastomer itself are hardly utilized. do not have. In other words, although these composite fibers use urethane elastomer, which itself exhibits elasticity, they only utilize crimped fibers in the form of composite fibers. Stretching did not receive any attention at all.

本発明者らは、かかる従来の欠点を解消すべく
鋭意検討した結果、ポリウレタンエラストマーと
ポリアミドとを特定の複合状態に貼り合わせ、そ
の後の延伸と捲縮熱処理とにより、捲縮による嵩
性と弾性的性質に加えて、エラストマー特有のゴ
ム弾性的性質をも合わせ持つ捲縮弾性繊維を安価
に得ることが出来ることを見い出し本発明に到達
した。
As a result of intensive studies to eliminate such conventional drawbacks, the present inventors bonded polyurethane elastomer and polyamide together in a specific composite state, and then carried out stretching and crimping heat treatment to improve bulk and elasticity due to crimping. The present inventors have discovered that it is possible to obtain crimped elastic fibers at low cost that have rubber elastic properties unique to elastomers in addition to the rubber elastic properties unique to elastomers.

即ち、本発明は、成分の一方がポリウレタンエ
ラストマー(U成分)であり、他方の成分がポリ
アミド(A成分)であるサイド・バイ・サイド型
捲縮複合繊維の製造において、前記両成分を複合
溶融紡糸して得た未延伸を熱処理した後、加熱流
体ノズルにより弛緩熱処理し、その際、紡糸・熱
処理を以下の〜の条件が満足される如く実施
して、得られる捲縮糸の沸水収縮率を2.2%以下
に調整することを特徴とする捲縮弾性繊維の製造
方法である。
That is, in the production of a side-by-side crimped composite fiber in which one of the components is a polyurethane elastomer (component U) and the other component is a polyamide (component A), the present invention involves composite melting of both components. After heat-treating the undrawn yarn obtained by spinning, it is subjected to a relaxation heat treatment using a heated fluid nozzle, and at that time, the spinning and heat treatment are carried out so that the following conditions are satisfied, and the boiling water shrinkage rate of the resulting crimped yarn is This is a method for producing crimped elastic fibers, which is characterized by adjusting the content of crimped elastic fibers to 2.2% or less.

条件〜 複合繊維の横断面の形状が偏平であつて、偏
平方向の中間部にくびれ部を有すると共に下記
〔I〕〔〕式を同時に満足し、且つ該横断面の
重心を通る長径上に各成分の重心が存在するこ
と 〔I〕式 a/b=1.2〜4 〔但し、a:重心を通る長径の長さ b:長径に対して直交する短径の長
さ〕 〔〕式 U成分の面積/A成分の面積=0.65〜1.5 延伸後の処理温度:室温〜120℃ 加熱流体温度:80〜150℃ 弛緩熱処理時の弛緩率:10%以上 本発明を更に詳細に説明する。本発明者らはポ
リウレタンエラストマーとポリアミドとの複合捲
縮繊維について、捲縮による弾性とエラストマー
によるゴム弾性とを共に利用できる最もストレツ
チ性に豊む弾性糸の糸構造について種種検討し
た。その結果、繊維横断面形状が繭形すなわち、
偏平方向の中間部にくびれ部を有する形状であり
かつその長径上に両成分の重心が位置するよう両
成分を貼り合わせた複合捲縮繊維の構造が最も好
ましいことを知つた。即ち、かかる横断面形状を
もつた複合捲縮繊維は、第4図イの如く伸長の初
期にはコイル状の捲縮状態にあるが、伸長される
に従い捲縮が伸ばされ、やがて第4図ロの如く伸
長されたウレタンを芯成分としてそのまわりにナ
イロンが、らせん状まいた状態、いわゆるスクリ
ユー構造の状態となる。更に、この状態の糸条を
伸長するとやがて第4図ハの如くらせん状のナイ
ロンもすつかり伸びた状態となる。この過程で、
スクリユー構造となる迄は捲縮弾性が支配し、ス
クリユー構造の状態かららせんがなくなる迄はエ
ラストマーのゴム弾性が支配している。
Conditions ~ The shape of the cross section of the composite fiber is flat, has a constriction in the middle part in the flat direction, and satisfies the following formula [I] [], and each cross section has a long axis passing through the center of gravity of the cross section. The center of gravity of the component exists [I] Formula a/b = 1.2 to 4 [However, a: Length of the major axis passing through the center of gravity b: Length of the minor axis perpendicular to the major axis] [Formula] of the U component Area/area of component A = 0.65 to 1.5 Processing temperature after stretching: room temperature to 120°C Heating fluid temperature: 80 to 150°C Relaxation rate during relaxation heat treatment: 10% or more The present invention will be explained in more detail. The present inventors have studied various types of yarn structures for elastic yarns that have the highest stretchability and can utilize both the elasticity due to crimping and the rubber elasticity due to the elastomer regarding composite crimped fibers of polyurethane elastomer and polyamide. As a result, the cross-sectional shape of the fiber is cocoon-shaped, that is,
It has been found that the most preferable structure is a composite crimped fiber in which both components are bonded together so that the center of gravity of both components is located on the major axis of the constricted part in the middle part in the flat direction. That is, the composite crimped fiber having such a cross-sectional shape is in a coiled crimped state at the initial stage of elongation, as shown in FIG. As shown in (b), the stretched urethane is used as a core component and nylon is spirally wound around it, creating a so-called screw structure. Furthermore, when the yarn in this state is stretched, the spiral nylon will eventually become completely stretched as shown in Figure 4C. In this process,
The crimp elasticity dominates until the screw structure is formed, and the rubber elasticity of the elastomer dominates from the screw structure until the spiral disappears.

かかる両弾性を併せ持つ衣料用途に適する弾性
糸は前述した〜条件を全て満足し、得られる
捲縮糸の沸水収縮率が22%以下に調整した時のみ
高い生産性のもとに製造できるのである。
Elastic yarn suitable for clothing applications that has both of these elasticities can be manufactured with high productivity only when it satisfies all of the above-mentioned conditions and the boiling water shrinkage rate of the resulting crimped yarn is adjusted to 22% or less. .

本発明において、成分の一方であるポリウレタ
ンエラストマーとしては溶融紡糸できることが必
要で、通常融点が200〜240℃、硬さ(JIS K−
6301にて測定)が90〜100のものが使用できる。
また、他方の成分であるポリアミドとしては、ナ
イロン6、ナイロン66、ナイロン610、ナイロン
11、ナイロン12、ナイロン13等を用いることが出
来る。これら両成分の組合わせは紡糸延伸、加
工、製布工程で両成分が剥離しない様に相溶性、
貼り合わせ接着性の良好なものを選ぶことが必要
である。このような観点よりポリウレタンエラス
トマーとしては特にカプロラクトン系もしくはポ
リ炭酸エステル系ポリウレタンを用いるのが好ま
しい。尚、これらエラストマー、ポリアミドには
耐光性を改良する為に、ベンゾフエノン系、ベン
ゾトリアゾール系化合物や無機マンガン化合物等
の耐光性改良剤を添加してもよい。
In the present invention, the polyurethane elastomer, which is one of the components, must be able to be melt-spun, and usually has a melting point of 200 to 240°C and a hardness (JIS K-
6301) with a value of 90 to 100 can be used.
In addition, the other component, polyamide, includes nylon 6, nylon 66, nylon 610, nylon
11, nylon 12, nylon 13, etc. can be used. The combination of these two components is compatible so that the two components do not separate during the spinning, drawing, processing, and fabric making processes.
It is necessary to select a material with good bonding adhesive properties. From this point of view, it is particularly preferable to use caprolactone-based or polycarbonate-based polyurethane as the polyurethane elastomer. In order to improve the light resistance of these elastomers and polyamides, a light resistance improver such as a benzophenone compound, a benzotriazole compound, or an inorganic manganese compound may be added.

前述した〜の条件を詳細に説明する。本発
明において最も重要なことは、得られた複合繊維
の横断面形状が第1図に示す如く偏平であつて、
偏平方向の中間部にくびれ部を有し、しかも下記
〔I〕〔〕式を同時に満足し、且つ横断面の長径
上に各成分の重心が存在することである。
The conditions of ~ mentioned above will be explained in detail. The most important thing in the present invention is that the cross-sectional shape of the obtained composite fiber is flat as shown in FIG.
It has a constriction in the middle part in the flat direction, satisfies the following formula [I][], and has the center of gravity of each component on the major axis of the cross section.

〔I〕式 a/b=1.2〜4 〔〕式 U成分の面積/A成分の面積=0.65〜1.5 〔但し、a:重心を通る長径の長さ b:長径に対して直交する短径の長さ U成分:ポリウレタンエラストマー成分 A成分:ポリアミド成分〕 この様な横断面形状をもつ捲縮繊維は前述した
スクリユー構造を充分に取ることができ、捲縮に
よる弾性とエラストマーによるゴム弾性とを最も
よく利用できるのである。
[I] Formula a/b = 1.2~4 [] Formula Area of U component/Area of A component = 0.65~1.5 [However, a: Length of the major axis passing through the center of gravity b: Length of the minor axis perpendicular to the major axis Length U component: polyurethane elastomer component A component: polyamide component] A crimped fiber with such a cross-sectional shape can fully take the screw structure described above, and has the highest elasticity due to crimping and rubber elasticity due to the elastomer. It can be used often.

しかも、かかる捲縮繊維は染色堅牢度、強度、
伸長が共に良好で、最終的に得られる織編物の風
合も良好である。
Moreover, such crimped fibers have good color fastness, strength,
Both elongation is good, and the texture of the final woven or knitted fabric is also good.

これに対し、a/bが1.2未満の第2図イ,ロ
に示す横断面形状とした場合は、第4図ニの如く
捲縮発現が充分に起つても、第4図ホの如くスク
リユー構造が弱くなりエラストマーによるゴム弾
性を充分に利用できなく本発明の目的とする弾性
糸は得られない。
On the other hand, if the cross-sectional shape shown in Fig. 2 A and B is used, where a/b is less than 1.2, even if sufficient crimp development occurs as shown in Fig. 4 D, the screw The structure becomes weak and the rubber elasticity of the elastomer cannot be fully utilized, making it impossible to obtain the elastic yarn targeted by the present invention.

他方、a/bが4より大きくなると、繊維の横
断面形状が偏平になりすぎて、最終的に得られる
織編物にがさつき感が出て風合が悪くなるうえ、
捲縮を発現させた場合、捲縮コイル径が大きくな
つて、細かい捲縮が得られず、捲縮繊維の弾性特
性が悪くなる。
On the other hand, if a/b is greater than 4, the cross-sectional shape of the fibers becomes too flat, resulting in the final woven or knitted fabric having a rough feel and poor texture.
When crimping occurs, the diameter of the crimped coil increases, making it impossible to obtain fine crimping, and the elastic properties of the crimped fibers deteriorate.

また、U成分の面積/A成分の面積(U/A)
の値が0.65未満の場合には、U成分が少なすぎる
ために得られる捲縮繊維のゴム弾性がほとんどな
くなり、逆に、U/Aの値が1.5より大になると、
U成分が多すぎるために得られる捲縮繊維の染色
堅牢度、強度、伸長弾性等の物理的特性が低下
し、織編物とした場合に、使用に耐えなくなる。
Also, area of U component/area of A component (U/A)
When the value of is less than 0.65, the rubber elasticity of the crimped fiber obtained is almost gone because the U component is too small, and conversely, when the value of U/A is greater than 1.5,
Because the U component is too large, physical properties such as color fastness, strength, and elongation elasticity of the resulting crimped fibers deteriorate, making it unusable when made into a woven or knitted fabric.

かかる繊維横断面形状をもつ複合繊維を溶融紡
糸により得るための紡糸口金としてはポリウレタ
ンエラストマー成分(U成分とする)とアミド成
分(A成分とする)とを」「U成分とA成分とを
各々独立して吐出し、口金面直後の1点において
接合する口金、例えば第3図に示す口金が適して
いる。第3図は紡糸口金の一例を示す部分縦断側
面図である。U成分とA成分とを各々導入孔1,
3に導き、吐出孔2,4を経て吐出されるが、そ
の際、吐出孔2,4の距離lならびに両吐出孔の
成す角度Θによつて前述したa/bを調整するこ
とができる。本発明の目的とする複合繊維ではl
を0.3〜0.1mm、Θを8〜30゜の範囲で調整すること
により十分得ることができる。
A spinneret for obtaining a composite fiber having such a fiber cross-sectional shape by melt spinning uses a polyurethane elastomer component (referred to as U component) and an amide component (referred to as A component). A spinneret that discharges the spinneret independently and joins at one point immediately behind the spinneret surface, for example, the spinneret shown in Fig. 3, is suitable. Fig. 3 is a partial longitudinal sectional side view showing an example of the spinneret. U component and A component and each introduction hole 1,
3 and is discharged through the discharge holes 2 and 4. At this time, the above-mentioned a/b can be adjusted by the distance l between the discharge holes 2 and 4 and the angle Θ formed by both discharge holes. In the composite fiber targeted by the present invention, l
can be sufficiently obtained by adjusting Θ in the range of 0.3 to 0.1 mm and Θ in the range of 8 to 30 degrees.

尚、繊維横断面のU成分の面積とA成分の面積
との比(U/A)は、両成分の吐出量を変えるこ
とにより容易に調整できる。かくして得られた複
合紡出糸を本発明の目的とする細かい捲縮による
捲縮弾性とエラストマー自身のゴム弾性とを共に
利用しうるようにした、捲縮弾性繊維と成すに
は、得られた紡出糸を延伸後熱処理し、加熱流体
ノズルにて弛緩熱処理するに際し、下記の条件を
満足することが肝要である。
Incidentally, the ratio (U/A) between the area of the U component and the area of the A component in the cross section of the fiber can be easily adjusted by changing the discharge amounts of both components. In order to make the thus obtained composite spun yarn into a crimped elastic fiber that can utilize both the crimped elasticity due to fine crimping and the rubber elasticity of the elastomer itself, which is the object of the present invention, it is necessary to It is important that the following conditions be satisfied when the spun yarn is heat treated after drawing and subjected to relaxation heat treatment using a heated fluid nozzle.

まず必要なことは、弛緩熱処理後に得られた捲
縮糸の沸水収縮率が22%以下であることである。
この捲縮糸の収縮率が22%を越えて高いと製織、
製編性が悪く、又、製品の寸法安定性の面でも好
ましくない、沸水収縮率は延伸後の熱処理温度が
低く、又は加熱流体温度が低い程高くなる傾向を
ますが、後述する延伸後の熱処理温度、加熱流体
温度の条件の範囲内にあれば沸水収縮率を22%以
下とすることは充分可能である。
First of all, it is necessary that the boiling water shrinkage rate of the crimped yarn obtained after the relaxation heat treatment is 22% or less.
If the shrinkage rate of this crimped yarn is higher than 22%, weaving
The boiling water shrinkage rate, which has poor knitting properties and is also unfavorable in terms of product dimensional stability, tends to increase as the heat treatment temperature after stretching is lower or the heated fluid temperature is lower. As long as the heat treatment temperature and heating fluid temperature are within the range of conditions, it is fully possible to reduce the boiling water shrinkage to 22% or less.

かかる延伸後の熱処理温度を室温〜120℃とす
ることが必要である。熱処理温度が120℃を越え
て高いと得られる捲縮糸の沸水収縮率は22%以下
となり、寸法安定性の面ではよくなる反面、捲縮
率が低下し、好ましい捲縮弾性が得られない。
尚、延伸温度は通常の温度で室温〜60℃である。
It is necessary to set the heat treatment temperature after such stretching to between room temperature and 120°C. If the heat treatment temperature is higher than 120° C., the boiling water shrinkage rate of the resulting crimped yarn will be 22% or less, which improves dimensional stability, but reduces the crimp rate and makes it impossible to obtain desirable crimp elasticity.
Note that the stretching temperature is a normal temperature ranging from room temperature to 60°C.

また、加熱流体ノズルの流体温度は80〜150℃
が必要である。流体温度が80℃未満の場合、沸水
収縮率が高くなり、寸法安定性の面で好ましくな
い。一方、150℃を越えて高くなると、熱収縮率
は低下するが、伸度が大きくなつて伸びやすく、
又、捲縮率が低下して好ましい捲縮弾性が得られ
ない。ここで使用する流体としては、空気又は蒸
気が好ましいが、特に空気が騒音も少なく好まし
い。
Also, the fluid temperature of the heated fluid nozzle is 80~150℃
is necessary. If the fluid temperature is less than 80°C, the boiling water shrinkage rate will be high, which is unfavorable in terms of dimensional stability. On the other hand, when the temperature exceeds 150℃, the heat shrinkage rate decreases, but the elongation increases and it becomes easier to stretch.
In addition, the crimp rate decreases, making it impossible to obtain desirable crimp elasticity. As the fluid used here, air or steam is preferable, and air is particularly preferable since it is less noisy.

尚、かかる加熱流体ノズルとしては従来より弛
緩熱処理用に使用されているノズル、例えば特公
昭45−37576号、実公昭46−9535号、特公昭56−
37339号記載のノズルが使用できる。
Incidentally, such heated fluid nozzles include nozzles conventionally used for relaxation heat treatment, such as Japanese Patent Publication No. 37576/1983, Japanese Publication Utility Model No. 9535/1983, and Japanese Patent Publication No. 1983/1986-9535.
The nozzle described in No. 37339 can be used.

次に、加熱流体ノズルでの弛緩熱処理時の弛緩
率を10%以上、特に10%以上かつ40%以下にする
のが好ましい。というのも捲縮率は弛緩熱処理時
の弛緩率により大きく変化するので、目的とする
捲縮率(捲縮弾性)の捲縮糸を得るためには弛緩
率を前述範囲に調整することが大切である。この
時の弛緩率が10%未満であれば捲縮率も低くな
り、本発明の目的とする捲縮弾性を有する捲縮糸
が得られない。尚、かかる弛緩率は下記の式で決
定される。
Next, it is preferable that the relaxation rate during relaxation heat treatment with a heated fluid nozzle is 10% or more, particularly 10% or more and 40% or less. This is because the crimp rate varies greatly depending on the relaxation rate during relaxation heat treatment, so it is important to adjust the relaxation rate within the above range in order to obtain a crimped yarn with the desired crimp rate (crimping elasticity). It is. If the relaxation rate at this time is less than 10%, the crimp rate will also be low, making it impossible to obtain a crimped yarn having the crimp elasticity targeted by the present invention. In addition, this relaxation rate is determined by the following formula.

弛緩率(%)=加熱流体ノズル前糸速度−加熱
流体ノズル後糸速度/加熱流体ノズル前糸速度×100 かかる捲縮糸を製造する延伸・熱処理工程とし
ては、紡糸と切離した、いわゆる別延方式でも、
又、紡糸と直結した、いわゆる直延方式でもよ
い。更に延伸と弛緩熱処理工程を直結した、いわ
ゆるDTY方式でも、又、紡糸・延伸・弛緩熱処
理工程を全て直結した、いわゆるSDTY方式で
もよく、これらの方式を任意に採用することがで
きる。
Relaxation rate (%) = Yarn speed before heated fluid nozzle - Yarn speed after heated fluid nozzle / Yarn speed before heated fluid nozzle x 100 The drawing and heat treatment process for producing such a crimped yarn involves so-called separate drawing, which is separated from spinning. Even in the method,
Alternatively, a so-called direct stretching method, which is directly connected to spinning, may be used. Furthermore, the so-called DTY method, in which the stretching and relaxation heat treatment steps are directly connected, or the so-called SDTY method, in which the spinning, stretching, and relaxation heat treatment steps are all directly connected, may be used, and any of these methods can be adopted.

以上説明した如く、本発明によれば、ポリウレ
タンエラストマーとポリアミドとを特定の貼り合
わせ状態に成したサイドバイサイド型、又は偏心
シースコア型の複合紡出糸を、前述した〜の
延伸及び弛緩熱処理条件のもとに処理することに
より、細かい捲縮による捲縮弾性とエラストマー
自身のゴム弾性とを共に利用できる捲縮弾性繊維
を得ることができる。その結果、従来にない高伸
長時の弾性回復性及び弾性力の高い、すぐれた捲
縮複合繊維が得られる為、パンテイストツキング
やストレツチ織編物等に極めて有用である。
As explained above, according to the present invention, a side-by-side type or eccentric sheath core type composite spun yarn in which a polyurethane elastomer and a polyamide are bonded in a specific state is subjected to the above-mentioned drawing and relaxation heat treatment conditions. By processing the fibers, it is possible to obtain crimped elastic fibers that can utilize both the crimped elasticity due to fine crimping and the rubber elasticity of the elastomer itself. As a result, an excellent crimped conjugate fiber with unprecedented high elastic recovery and elastic strength at high elongation can be obtained, making it extremely useful for pantyhose stuffing, stretch woven and knitted fabrics, and the like.

以下実施例により本発明を説明する。ここで使
用する捲縮率(TC)、沸水収縮率(Fs)、伸縮
率、伸縮回復率、及び捲縮弾性率、ゴム弾性率は
次の方法により測定した。
The present invention will be explained below with reference to Examples. The crimp rate (TC), boiling water shrinkage rate (Fs), stretch rate, stretch recovery rate, crimp elasticity modulus, and rubber elasticity modulus used here were measured by the following methods.

1) 捲縮率(TC)、沸水収縮率(Fs) 弛緩熱処理後の糸をカセに取り、初期荷重2
mg/deの荷重をかけ、1分後のカセの長さをlo
とする。次に初期荷重をかけたまま、沸水中で
20分間捲縮発現処理をし、その後一昼夜その荷
重下での自然乾燥させる。次に合計200mg/de
の荷重をかけ、1分後の長さを読みl1、ついで
その荷重を外し、初期荷重を再度かけて1分後
の長さを読みl2、捲縮率(TC)、沸水収縮率
(FS)を次式にて算出する。
1) Crimp rate (TC), boiling water shrinkage rate (Fs) Take the yarn after relaxation heat treatment into a skein, and initial load 2
Apply a load of mg/de and measure the length of the skein after 1 minute by lo
shall be. Next, with the initial load applied, place it in boiling water.
Crimp treatment is carried out for 20 minutes, and then air-dried under the load for a day and a night. Next, total 200mg/de
Apply a load, read the length after 1 minute l 1 , then remove the load, apply the initial load again and read the length after 1 minute l 2 , crimp ratio (TC), boiling water shrinkage ratio ( FS) is calculated using the following formula.

捲縮率(TC)(%)=l1−l2/lo×100 沸水収縮率(FS)=(%)=lo−l1/lo×100 2) 伸縮率、伸縮回復率 測定は、弛緩熱処理後の糸をカセに取り、初
期荷重2mg/deをかけ、沸水中で20分間捲縮
発現処理をし、次いで初期荷重をかけた状態で
一昼夜自然乾燥した試料について20±2℃、65
±2%RHの温湿度下で行ない下記方法により
糸を懸垂し行つた。
Crimp rate (TC) (%) = l 1 - l 2 / lo x 100 Boiling water shrinkage rate (FS) = (%) = lo - l 1 / lo x 100 2) Stretch rate, stretch recovery rate Measurement is based on relaxation The yarn after heat treatment was taken in a skein, an initial load of 2 mg/de was applied, crimp treatment was performed in boiling water for 20 minutes, and then the sample was air-dried overnight with the initial load applied at 20 ± 2°C at 65°C.
The test was carried out at a temperature and humidity of ±2% RH, and the thread was suspended in the following manner.

イ 試験糸長:200mm(初期張力下での糸長) ロ 初期張力:2mg/de ハ 試験荷重:5、10、20、50、100、200、
500、1000、1500mg/de(各荷重を糸の端に
回転しないように懸垂する) ニ 荷重時間:3分 ホ 荷重後歪長を測定し、除重後初期張力をか
ける。
A Test yarn length: 200mm (yarn length under initial tension) B Initial tension: 2 mg/de C Test load: 5, 10, 20, 50, 100, 200,
500, 1000, 1500mg/de (suspend each load on the end of the thread so as not to rotate) D. Loading time: 3 minutes E. Measure the strain length after loading, and apply the initial tension after unloading.

ヘ 初期張力をかけ3分経過時の残留歪を測定
する。
F. Apply initial tension and measure the residual strain after 3 minutes.

ト 伸縮率、伸縮回復率の算出は次式による。 G. The expansion/contraction rate and expansion/contraction recovery rate are calculated using the following formula.

伸縮率(%)=荷重時糸長−元糸長/元糸長×100 伸縮回復率(%) =伸縮回復長(歪)/1000mg/de荷重時伸縮長(全
歪)×100 3) 捲縮弾性率、ゴム弾性率 2)と同様にして得られた捲縮発現処理糸を
テンシロン型引張試験機にかけ、20倍のカセ
トメーターで試料中央部を観ながら評価した。
この時の条件は試料表20cm、初期荷重2mg/
de、伸長速度100%/分、チヤートスピード20
cm/分であり、カセトメーターは試料中央部10
cmの処で焦点をあてスタートさせる。この捲縮
糸が伸長され前述したスクリユー構造の状態に
なる迄の伸度が捲縮弾性率である。更に、伸長
することによりらせんがなくなるが、スクリユ
ー構造の状態かららせんがなくなる迄の伸度が
ゴム弾性率である。測定は5回の平均値をとつ
た。
Stretching rate (%) = Yarn length under load - Original yarn length / Original yarn length x 100 Stretching recovery rate (%) = Stretching recovery length (strain) / 1000 mg/de Stretching length under load (total strain) x 100 3) Winding Compression modulus, rubber elastic modulus The crimp-treated yarn obtained in the same manner as in 2) was applied to a Tensilon type tensile tester, and evaluated while observing the center of the sample with a 20x casetometer.
The conditions at this time were: sample surface 20cm, initial load 2mg/
de, elongation speed 100%/min, chart speed 20
cm/min, and the cassettemeter is
Start by focusing on cm. The degree of elongation of this crimped yarn until it reaches the screw structure described above is the crimp elastic modulus. Furthermore, the helix disappears by stretching, and the degree of elongation from the screw structure state until the helix disappears is the elastic modulus of the rubber. The average value of 5 measurements was taken.

実施例 固有粘度〔η〕が1.1(30℃のm−クレゾール液
で測定)のナイロン6と、ポリウレタンエラスト
マー成分としては、市販の熱可塑性ポリウレタン
である、エラストランE595(カプロタイプ)及び
エラストランE995(カーボネートタイプ)(共に
日本エラストランKK製)を用いた。ナイロン6
は247℃、ポリウレタンはE595で228℃、又、
E995では230℃で別々に溶融し、245℃に加熱し
て第3図に示すサイドバイサイド型口金を使用
し、複合紡なした。複合繊維の横断面におけるポ
リウレタンとポリアミドの面積比U/Aは、各成
分の吐出比を調整して1とし、かつ、横断面形状
は第1図の形状としてa/bを第3図の口金のl
及びΘを調整することにより1.5とした。また、
得られた紡出糸にはシリコン系油剤を0.6重量%
付着させ、700デニール/12フイラメントの未延
伸糸とした。
Examples Nylon 6 with an intrinsic viscosity [η] of 1.1 (measured with m-cresol liquid at 30°C) and polyurethane elastomer components were commercially available thermoplastic polyurethanes such as Elastran E595 (Capro type) and Elastran E995 ( Carbonate type) (both manufactured by Nippon Elastolan KK) was used. nylon 6
is 247℃, polyurethane is 228℃ with E595, and
E995 was melted separately at 230°C, heated to 245°C, and composite spun using a side-by-side die as shown in Figure 3. The area ratio U/A of polyurethane and polyamide in the cross-section of the composite fiber is set to 1 by adjusting the discharge ratio of each component, and the cross-sectional shape is the shape shown in FIG. 1, and a/b is the shape shown in FIG. 3. l of
and Θ were adjusted to 1.5. Also,
The resulting spun yarn contains 0.6% by weight of silicone oil.
It was attached to form an undrawn yarn of 700 denier/12 filaments.

次いで得られた未延伸糸を一旦巻取り、別工程
で延伸・弛緩熱処理工程を直結したDTY方式又
は得られた未延伸糸を巻取ることなく延伸・熱処
理工程の全てを直結したSDTY方式によりテス
トを行なつた。この際、延伸後の伸度が25〜35%
となる様に延伸し、引き続いて種々の温度で処理
した後、直結して加熱圧空ノズルに通し、圧空圧
1.0Kg/cm2Gで種々圧空温度と弛緩率を変えた。
表−1に紡糸、延伸、加工条件及び得られた捲縮
糸の物性を併せて示した。
Next, the obtained undrawn yarn was wound once and tested using the DTY method, which directly connected the drawing and relaxation heat treatment steps in a separate process, or the SDTY method, which directly connected all the drawing and heat treatment steps without winding the obtained undrawn yarn. I did this. At this time, the elongation after stretching is 25 to 35%.
After being stretched and subsequently treated at various temperatures, it is directly connected and passed through a heated and compressed air nozzle.
The compressed air temperature and relaxation rate were varied at 1.0 Kg/cm 2 G.
Table 1 also shows spinning, drawing, processing conditions, and physical properties of the obtained crimped yarn.

更に、通常のサイド・バイ・サイド型口金を用
い、第2図イの如く紡糸したものの結果も併せて
表−1に示した。
Table 1 also shows the results of spinning as shown in Figure 2A using a conventional side-by-side spinneret.

表−1に示す如く本発明の条件を満たすNo.1〜
4、No.7〜9、No.12〜13では捲縮弾性率が85〜
125%、ゴム弾性率が35〜80%でそれらの合計弾
性率も120〜200%と大きく、1.0g/de荷重下での
伸縮回復率も80%以上と良好なストレツチ性及び
回復性を示し、寸法安定性の面でも特に問題のな
い弾性繊維を提供することができた。これらに対
し、延伸後の熱処理温度又は加熱圧空温度が本発
明の範囲よりも高いNo.5、No.10及び本発明の弛緩
率よりも低いNo.11は、沸水収縮率は良好である
が、捲縮弾性率及びゴム弾性率も低く、伸縮回復
率の面でも80%以下と良くなかつた。
As shown in Table-1, No. 1~ that meet the conditions of the present invention
4. Crimp modulus is 85~ for No.7~9 and No.12~13
125%, the rubber elastic modulus is 35-80%, and the total elastic modulus is high at 120-200%, and the elasticity recovery rate under a load of 1.0g/de is over 80%, showing good stretchability and recovery. , it was possible to provide elastic fibers with no particular problems in terms of dimensional stability. On the other hand, No. 5 and No. 10, in which the post-stretching heat treatment temperature or heating and compressed air temperature is higher than the range of the present invention, and No. 11, whose relaxation rate is lower than the relaxation rate of the present invention, have good boiling water shrinkage rates, but The crimp elastic modulus and rubber elastic modulus were also low, and the stretch recovery rate was also poor at less than 80%.

また、No.6の如く加熱圧空温度が低いと捲縮弾
性率及びゴム弾性率共に良好であつても得られた
捲縮糸の沸水収縮率が25%と高いため寸法安定性
が悪く、実用に適さない。
In addition, when the heating and compressed air temperature is low as in No. 6, even if both the crimped elastic modulus and the rubber elastic modulus are good, the boiling water shrinkage of the obtained crimped yarn is as high as 25%, resulting in poor dimensional stability and poor practical use. Not suitable for

更に、No.14の如く第2図イの断面形状であるサ
イド・バイ・サイド型のものは伸長された時に十
分なスクリユー構造をとることができないため、
ゴム弾性率が小さく、パワーのあるストレツチ性
能を有していなかつた。
Furthermore, side-by-side type items such as No. 14, which have the cross-sectional shape shown in Figure 2 A, cannot take on a sufficient screw structure when extended.
The elastic modulus of the rubber was low and it did not have powerful stretching performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の複合繊維の例を示す横断面
図、第2図は従来の複合繊維の例を示す横断面
図、第3図は本発明の複合繊維を紡糸する際に使
用する紡糸口金の1例を示す側断面図、第4図は
本発明の捲縮性弾性繊維の側面図である。 Uはポリウレタンエラストマー、Aはポリアミ
ド成分を示す。又、iは繊維横断面の重心、aは
重心iを通る長径の長さ、bは重心iを通る短径
の長さを示す。
Figure 1 is a cross-sectional view showing an example of the composite fiber of the present invention, Figure 2 is a cross-sectional view showing an example of a conventional composite fiber, and Figure 3 is a spinning yarn used when spinning the composite fiber of the present invention. FIG. 4 is a side sectional view showing one example of the cap, and FIG. 4 is a side view of the crimpable elastic fiber of the present invention. U represents a polyurethane elastomer, and A represents a polyamide component. Further, i indicates the center of gravity of the fiber cross section, a indicates the length of the major axis passing through the center of gravity i, and b indicates the length of the minor axis passing through the center of gravity i.

【表】【table】

【表】 ※ 比較例
[Table] * Comparative example

Claims (1)

【特許請求の範囲】 1 成分の一方がポリウレタンエラストマー(U
成分)であり、他方の成分がポリアミド(A成
分)であるサイド・バイ・サイド型捲縮複合繊維
の製造において、前記両成分を複合溶融紡糸して
得た未延伸糸を延伸・熱処理した後、加熱流体ノ
ズルにより弛緩熱処理し、その際、紡糸・熱処理
を以下の〜の条件が満足される如く実施し
て、得られる捲縮糸の沸水収縮率を22%以下に調
整することを特徴とする捲縮弾性繊維の製造方
法。 条件〜 複合繊維の横断面の形状が偏平であつて、偏
平方向の中間部にくびれ部を有すると共に下記
〔I〕〔〕式を同時に満足し、且つ該横断面の
重心を通る長径上に各成分の重心が存在するこ
と 〔I〕式 a/b=1.2〜4 〔但し、a:重心を通る長径の長さ b:長径に対して直交する短径の長
さ〕 〔〕式 U成分の面積/A成分の面積=0.65〜1.5 延伸後の熱処理温度:室温〜120℃ 加熱流体温度:80〜150℃ 弛緩熱処理時の弛緩率:10%以上
[Claims] One of the components is a polyurethane elastomer (U
component), and the other component is polyamide (component A), in the production of side-by-side crimped composite fibers, after drawing and heat-treating the undrawn yarn obtained by composite melt spinning of both components. , a relaxing heat treatment is carried out using a heated fluid nozzle, and at that time, the spinning and heat treatment are carried out so that the following conditions are satisfied, and the boiling water shrinkage rate of the obtained crimped yarn is adjusted to 22% or less. A method for producing crimped elastic fibers. Conditions ~ The shape of the cross section of the composite fiber is flat, has a constriction in the middle part in the flat direction, and satisfies the following formula [I] [], and each cross section has a long axis passing through the center of gravity of the cross section. The center of gravity of the component exists [I] Formula a/b = 1.2 to 4 [However, a: Length of the major axis passing through the center of gravity b: Length of the minor axis perpendicular to the major axis] [Formula] of the U component Area/area of component A = 0.65 to 1.5 Heat treatment temperature after stretching: room temperature to 120°C Heating fluid temperature: 80 to 150°C Relaxation rate during relaxation heat treatment: 10% or more
JP17442781A 1981-11-02 1981-11-02 Preparation of crimped elastic fiber Granted JPS5876522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17442781A JPS5876522A (en) 1981-11-02 1981-11-02 Preparation of crimped elastic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17442781A JPS5876522A (en) 1981-11-02 1981-11-02 Preparation of crimped elastic fiber

Publications (2)

Publication Number Publication Date
JPS5876522A JPS5876522A (en) 1983-05-09
JPS6358933B2 true JPS6358933B2 (en) 1988-11-17

Family

ID=15978349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17442781A Granted JPS5876522A (en) 1981-11-02 1981-11-02 Preparation of crimped elastic fiber

Country Status (1)

Country Link
JP (1) JPS5876522A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112721U (en) * 1988-01-22 1989-07-28
JP2002363828A (en) * 2001-06-06 2002-12-18 Toray Ind Inc Side by side conjugated fiber and method of producing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63175118A (en) * 1987-01-13 1988-07-19 Kanebo Ltd Yarn material for stocking
EP0349313B1 (en) * 1988-06-30 1996-04-10 Toray Industries, Inc. Polyurethane polyamide self-crimping conjugate fiber
CN110079877B (en) * 2019-05-30 2020-06-23 上海理工大学 Four-component electrospinning multi-stage composite coaxial spinning head device
CN115896965A (en) * 2022-11-16 2023-04-04 中纺院(浙江)技术研究院有限公司 Eccentric sheath-core polyamide-ammonia composite fully drawn yarn and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442441A (en) * 1977-09-05 1979-04-04 Toray Industries Production of crimped finish yarn
JPS54138619A (en) * 1978-04-17 1979-10-27 Toray Ind Inc Polyurethane eccentric sheath-core composite fibers
JPS54138618A (en) * 1978-04-17 1979-10-27 Toray Ind Inc Polyurethane composite fibers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442441A (en) * 1977-09-05 1979-04-04 Toray Industries Production of crimped finish yarn
JPS54138619A (en) * 1978-04-17 1979-10-27 Toray Ind Inc Polyurethane eccentric sheath-core composite fibers
JPS54138618A (en) * 1978-04-17 1979-10-27 Toray Ind Inc Polyurethane composite fibers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112721U (en) * 1988-01-22 1989-07-28
JP2002363828A (en) * 2001-06-06 2002-12-18 Toray Ind Inc Side by side conjugated fiber and method of producing the same

Also Published As

Publication number Publication date
JPS5876522A (en) 1983-05-09

Similar Documents

Publication Publication Date Title
JP4354994B2 (en) Composite fiber
EP0068659A1 (en) Conjugate filamentary yarns
TWI413715B (en) Conjugate fiber-containing yarn
JP4832709B2 (en) Poly (trimethylene terephthalate) 4-channel cross-section staple fiber
JP2006524295A (en) Polyester-based composite fiber excellent in latent crimpability and production method thereof
TW201816210A (en) Highly heat-shrinkable polyamide fibers, and filament-mixed yarn and woven or knit fabric each including same
JPS6358933B2 (en)
JP4769279B2 (en) Polyamide latent crimped yarn
JP4329553B2 (en) Polyamide composite false twisted yarn and method for producing the same
JPH0260765B2 (en)
JP4505960B2 (en) High stretch durability polyester composite fiber and manufacturing method
JPH039207B2 (en)
JPS6055613B2 (en) Manufacturing method of strong cotton yarn
JP2001159030A (en) Conjugate polyamide fiber
JP2000290837A (en) Latently crimpable polyamide yarn and its production
KR100291599B1 (en) Spontaneous crimped fiber
JP3329412B2 (en) Polyester composite yarn
JP4380519B2 (en) Method for producing soft stretch yarn
JP3833622B2 (en) Method for producing polyester conjugate fiber and polyester conjugate fiber obtained by the production method
JP3992604B2 (en) Polyester blended yarn
JP2002363827A (en) Latent crimping polyamide yarn and method for producing the same
KR100245664B1 (en) Fiber
JP3719258B2 (en) Soft stretch yarn, production method and fabric
JP2001164427A (en) Latent crimped yarn of polyamide and method for producing the same
JP2003041425A (en) Method of production for composite fiber having latent crimp