JPS6357855B2 - - Google Patents

Info

Publication number
JPS6357855B2
JPS6357855B2 JP9570680A JP9570680A JPS6357855B2 JP S6357855 B2 JPS6357855 B2 JP S6357855B2 JP 9570680 A JP9570680 A JP 9570680A JP 9570680 A JP9570680 A JP 9570680A JP S6357855 B2 JPS6357855 B2 JP S6357855B2
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
base
alloy
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9570680A
Other languages
Japanese (ja)
Other versions
JPS5720919A (en
Inventor
Toshiaki Izumi
Kyonori Saito
Takanori Kobuke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP9570680A priority Critical patent/JPS5720919A/en
Publication of JPS5720919A publication Critical patent/JPS5720919A/en
Publication of JPS6357855B2 publication Critical patent/JPS6357855B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は磁気記録媒体、特に金属または合金磁
性薄膜を磁気記録層とする磁気記録媒体に関す
る。 磁気記録媒体用として強磁性薄膜が有効であ
り、旧来より注目されている。この薄膜の磁気特
性をよくするために、ベース面に対して斜めに蒸
着するいわゆる斜め蒸着により長さ方向の保磁力
を向上させることが知られている(特公昭41−
19389)。この方法は、高保磁力化には有効である
が、ポリエチレンテレフタレートのベースのよう
に、基板を十分加熱できないような場合には製造
工程上、付着面積(強磁性金属粒子がベース上に
接着した面積)を大きくできないこともあつて、
薄膜の密度が大きくできず、接着強度の弱さに代
表される膜構造の欠陥があることが大きな欠点と
なり、実用に支障のあることがわかつた。 一方、入射角(ベース面に立てた法線から測つ
た入射粒子の角度)を小さくして作成した薄膜
は、厚み方向に柱状の長さ方向が向くため、形状
異方性から期待される保磁力は、テープ長さ方向
に有効にならないことがわかつた。しかしこの膜
は前に蒸着された粒子により下地や蒸着層の一部
が蒸発源から見て影になるいわゆるシヤドウイン
グによる影の部分が少なくなるので、構造的には
安定した強度のある膜が得られる特長がある。斜
め蒸着した磁性薄膜は、上述のように構造的に弱
いものであるから、その表面に何らかの保護膜を
付着させることによりその欠点を補なう試みもな
されている。しかしこの方法では製造工程が増え
るばかりでなく磁気的な影響も考慮しなければな
らないので、実用性には問題が残る。 これに対し本発明者らは斜め蒸着とそれにつづ
く垂直に近い蒸着とを行なうことにより、磁気特
性、付着強度共に優れた強磁性薄膜を得るにいた
つた。本発明によつて得られる薄膜の概要は第1
図に示される。図示のように基板1に1層目の強
磁性層2を第2図に示すように入射角7が45゜以
上の斜め蒸着によつて形成し、次いで2層目の強
磁性層3を1層目より低い入射角(30゜以下)で
形成したもので構成される。2及び3の強磁性層
の厚さは特に限定する必要はなく、磁性特性等を
考慮して決定することができる。 本発明のメカニズムを検討すると、斜め蒸着し
た第1の層ではシヤドウイングにより密度が小さ
くなり、いわゆる“すき間だらけ”の構造にな
る。そこへ低入射角で粒子が飛来してそのすき間
へ入りこむことになる。そのようにして全体の膜
として強い構造を持つようになると理解される。 以下に実施例を示し、本発明の効果について具
体的に説明する。 実施例 1 第3図は本実施例の実験に用いた真空蒸着装置
蒸着部の概略図である。図示の全系は図示しない
真空槽内に収容されており、磁気記録媒体のベー
スまたはテープ状の基板となるポリエチレンテレ
フタレートのベースBは、送り出しロール8に巻
かれており、そこからガイドローラ11の周り、
次いで時計方向に回転している大径回転ドラム1
0の周面、ガイドローラ11を経て、巻取りロー
ル9へ巻取られるようになつている。冷水を通し
た回転ドラム10の下面側即ちベースBが通過す
る側の下方には、蒸着すべきコバルトとニツケル
の重量比4:1の合金Mを収めた外部が熱される
試料るつぼ15が配置され、また回転ドラム10
とるつぼ15との間にはマスク14が介在され
る。マスクには細長いスリツト(ベースBの幅方
向に延びる)a,bが形成されており、スリツト
aは図の12の位置へ入射角70度で合金蒸気を差
向け、一方スリツトbは図の13の位置へ20度の
角度で合金蒸気を差向けるように定められてい
る。この図で回転ドラム10の直径は25cm、そし
て点12はるつぼ15から30cmの高さのところに
あつた。上記の系を運転してベースBを矢印の方
向へ40cm/分の速度で走行させ、一方12の部分
で蒸着速さ2000Å/分となるように蒸発源15を
電子線で加熱した。また系の圧力は5×105Torr
であつた。このような条件のもとで、2つのスリ
ツトa,bのうち、bを閉じて作つたサンプルを
サンプル1、2つのスリツトを開いて作成したサ
ンプルをサンプル2とする。この両者の違いを表
1に示したが、磁気特性のうち保磁力Hcと角形
比φr/φmに大きな差はないが、接着強度がサ
ンプル2では大幅に改善されているのがわかる。 実施例 2 第4図は本実施例の実験に用いた真空蒸着装置
の概略図である。真空槽は図示されていない。磁
気記録体のベース即ちテープ状基板となるポリエ
チレンテレフタレートのベースBは、送り出しロ
ール17、ガイドローラ19,19を経て巻取り
ロール18へと巻取られるようになつており、ま
た実施例1で述べたと同様なスリツトa,bを有
するマスク22及び実施例1と同様な磁性合金M
を収容したるつぼ23を配置している。ロール1
7,18、ガイドローラ19,19の位置関係を
調整すると共に、マスク22の位置を調整するこ
とにより、合金蒸気が20のところでベースBの
面に80度の入射角で被着し、21のところで20度
の入射角で被着するように定めた。上記の系を実
施例1と同じベース駆動速さ、蒸着速度、圧力で
作動させて磁気記録媒体を作成した。このとき、
スリツトbを閉じて作成したサンプル3と、a,
b共に開いて作成したサンプル4の違いが同じく
表1に示されている。この場合にも、磁気特性を
損うことなく接着強度に著しい改善が見られ、本
発明の効果が確認された。
The present invention relates to a magnetic recording medium, and particularly to a magnetic recording medium having a magnetic recording layer made of a metal or alloy magnetic thin film. Ferromagnetic thin films are effective for magnetic recording media and have long been attracting attention. In order to improve the magnetic properties of this thin film, it is known that the coercive force in the longitudinal direction can be improved by so-called oblique deposition, in which the film is deposited obliquely with respect to the base surface (Japanese Patent Publication No. 41-197).
19389). This method is effective in increasing coercive force, but in cases where the substrate cannot be heated sufficiently, such as with polyethylene terephthalate bases, the adhesion area (the area where the ferromagnetic metal particles adhere to the base) is ) cannot be made large,
It was found that the main drawbacks were that the density of the thin film could not be increased and there were defects in the film structure, typified by weak adhesive strength, which hindered its practical use. On the other hand, thin films created by reducing the incident angle (the angle of incident particles measured from the normal to the base surface) have the expected protection from shape anisotropy because the length direction of the columnar shape is oriented in the thickness direction. It was found that the magnetic force is not effective along the length of the tape. However, this film reduces the shadow area caused by so-called shadowing, where part of the base or vapor deposited layer is shadowed when viewed from the evaporation source due to previously deposited particles, resulting in a structurally stable and strong film. There are features that can be used. Since the obliquely deposited magnetic thin film is structurally weak as described above, attempts have been made to compensate for this drawback by attaching some kind of protective film to its surface. However, this method not only increases the number of manufacturing steps, but also requires consideration of magnetic influences, so there are still problems with its practicality. In contrast, the present inventors have succeeded in obtaining a ferromagnetic thin film with excellent magnetic properties and adhesion strength by performing oblique vapor deposition followed by nearly perpendicular vapor deposition. The outline of the thin film obtained by the present invention is as follows.
As shown in the figure. As shown in the figure, a first ferromagnetic layer 2 is formed on a substrate 1 by oblique vapor deposition with an incident angle 7 of 45° or more as shown in FIG. It is formed at a lower angle of incidence (less than 30°) than the layer. The thicknesses of the ferromagnetic layers 2 and 3 do not need to be particularly limited, and can be determined in consideration of magnetic properties and the like. Examining the mechanism of the present invention, the density of the obliquely deposited first layer decreases due to shadowing, resulting in a structure that is so-called "full of gaps." Particles fly into the gap at a low angle of incidence and enter the gap. It is understood that in this way, the entire film has a strong structure. Examples are shown below to specifically explain the effects of the present invention. Example 1 FIG. 3 is a schematic diagram of the evaporation section of the vacuum evaporation apparatus used in the experiment of this example. The entire system shown is housed in a vacuum chamber (not shown), and a polyethylene terephthalate base B, which is the base of a magnetic recording medium or a tape-shaped substrate, is wound around a feed roll 8, and from there a guide roller 11 is wound. around,
Next, a large-diameter rotating drum 1 rotating clockwise
0, the sheet passes through a guide roller 11 and is wound onto a winding roll 9. A sample crucible 15 whose exterior is heated and contains an alloy M of cobalt and nickel in a weight ratio of 4:1 to be vapor-deposited is arranged below the lower surface side of the rotating drum 10 through which cold water is passed, that is, the side through which the base B passes. , and the rotating drum 10
A mask 14 is interposed between the melt and the crucible 15 . The mask is formed with elongated slits a and b (extending in the width direction of the base B), with slit a directing the alloy vapor to position 12 in the figure at an incident angle of 70 degrees, while slit b directing the alloy vapor to position 13 in the figure. The alloy vapor is directed at an angle of 20 degrees to the location. In this figure, the diameter of the rotating drum 10 was 25 cm, and the point 12 was located at a height of 30 cm from the crucible 15. The above system was operated to move the base B in the direction of the arrow at a speed of 40 cm/min, while the evaporation source 15 was heated with an electron beam so that the deposition rate was 2000 Å/min at the portion 12. Also, the pressure of the system is 5×10 5 Torr
It was hot. Under these conditions, of the two slits a and b, the sample made by closing b is called sample 1, and the sample made by opening the two slits is called sample 2. The differences between the two are shown in Table 1. Among the magnetic properties, there is no significant difference in the coercive force Hc and the squareness ratio φr/φm, but it can be seen that the adhesive strength of Sample 2 is significantly improved. Example 2 FIG. 4 is a schematic diagram of a vacuum evaporation apparatus used in the experiment of this example. A vacuum chamber is not shown. The base B of polyethylene terephthalate, which serves as the base of the magnetic recording medium, that is, the tape-shaped substrate, is wound onto a take-up roll 18 via a delivery roll 17, guide rollers 19, 19, and as described in Example 1. A mask 22 having slits a and b similar to that and a magnetic alloy M similar to that in Example 1.
A crucible 23 containing . roll 1
By adjusting the positional relationship between 7, 18 and guide rollers 19, 19 and the position of the mask 22, the alloy vapor is deposited on the surface of the base B at 20 at an incident angle of 80 degrees, and at 21. Incidentally, it was determined that the film should be deposited at an incident angle of 20 degrees. A magnetic recording medium was produced by operating the above system at the same base drive speed, deposition rate, and pressure as in Example 1. At this time,
Sample 3 made by closing slit b, and sample a,
Table 1 also shows the differences in Sample 4, which was created by opening both B and B. In this case as well, a remarkable improvement in adhesive strength was observed without impairing the magnetic properties, confirming the effectiveness of the present invention.

【表】 なお、Hc、φr、φr/φmはVSMを用い最大
印加磁界5000Gで測定した。φrは長さ20cm、幅
3.8mmのサンプルの残留磁束である。接着強度は
テンシロンにより同じ幅のサンプルを用いて測定
した値である。
[Table] Note that Hc, φr, and φr/φm were measured using VSM at a maximum applied magnetic field of 5000G. φr is length 20cm, width
This is the residual magnetic flux of a 3.8mm sample. The adhesive strength is a value measured using samples of the same width using Tensilon.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の磁気記録媒体の磁性薄膜の断
面図、第2図はベースの方向と磁性金属粒子の入
射方向の関係を示す図、第3図は本発明の第1実
施例による磁気記録媒体の製造装置を示す正面
図、及び第4図は本発明の第2実施例による磁気
記録媒体の製造装置を示す正面図である。
FIG. 1 is a cross-sectional view of the magnetic thin film of the magnetic recording medium of the present invention, FIG. 2 is a diagram showing the relationship between the direction of the base and the incident direction of the magnetic metal particles, and FIG. 3 is the magnetic thin film according to the first embodiment of the present invention. FIG. 4 is a front view showing a recording medium manufacturing apparatus, and FIG. 4 is a front view showing a magnetic recording medium manufacturing apparatus according to a second embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 テープ状基板上に設けたコバルト、ニツケ
ル、鉄又はこれらの合金の蒸着膜より成る水平記
録型薄膜磁気記録媒体において、前記蒸着膜は強
磁性金属又は合金粒子の成長方向が基板面の垂線
に対して45度以上である第1磁性層と、その上に
形成された強磁性金属又は合金粒子の成長方向が
基板面の垂線に対して30度以下である第2磁性層
とより成つていることを特徴とする水平記録型磁
気記録媒体。
1. In a horizontal recording type thin film magnetic recording medium consisting of a vapor deposited film of cobalt, nickel, iron, or an alloy thereof provided on a tape-shaped substrate, the vapor deposited film is such that the growth direction of the ferromagnetic metal or alloy particles is perpendicular to the substrate surface. The first magnetic layer has an angle of 45 degrees or more to the perpendicular to the substrate surface, and the second magnetic layer has a growth direction of ferromagnetic metal or alloy particles formed thereon that is 30 degrees or less to the perpendicular to the substrate surface. A horizontal recording type magnetic recording medium characterized by:
JP9570680A 1980-07-15 1980-07-15 Magnetic recording medium and its manufacture Granted JPS5720919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9570680A JPS5720919A (en) 1980-07-15 1980-07-15 Magnetic recording medium and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9570680A JPS5720919A (en) 1980-07-15 1980-07-15 Magnetic recording medium and its manufacture

Publications (2)

Publication Number Publication Date
JPS5720919A JPS5720919A (en) 1982-02-03
JPS6357855B2 true JPS6357855B2 (en) 1988-11-14

Family

ID=14144944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9570680A Granted JPS5720919A (en) 1980-07-15 1980-07-15 Magnetic recording medium and its manufacture

Country Status (1)

Country Link
JP (1) JPS5720919A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58211328A (en) * 1982-06-03 1983-12-08 Dainippon Printing Co Ltd Production of magnetic recording medium
JPS59119532A (en) * 1982-12-25 1984-07-10 Tdk Corp Magnetic recording medium
JPS59119531A (en) * 1982-12-25 1984-07-10 Tdk Corp Magnetic recording medium
JPS59119534A (en) * 1982-12-26 1984-07-10 Tdk Corp Magnetic recording medium
JPS59198526A (en) * 1983-04-26 1984-11-10 Tdk Corp Magnetic recording medium
JPS59198524A (en) * 1983-04-25 1984-11-10 Tdk Corp Magnetic recording medium
JPS59207031A (en) * 1983-05-10 1984-11-24 Hitachi Condenser Co Ltd Manufacturing device of magnetic recording medium
JPS59207030A (en) * 1983-05-10 1984-11-24 Hitachi Condenser Co Ltd Manufacturing device of magnetic recording medium

Also Published As

Publication number Publication date
JPS5720919A (en) 1982-02-03

Similar Documents

Publication Publication Date Title
US4454836A (en) Vacuum evaporating apparatus utilizing multiple rotatable cans
JPS6357855B2 (en)
US4521481A (en) Magnetic recording medium
JPH05342553A (en) Magnetic recording medium and its production
US4474832A (en) Magnetic recording media
JPS6014408B2 (en) Method for manufacturing magnetic recording media
US4546725A (en) Apparatus for manufacturing magnetic recording media
JP2843136B2 (en) CoCr perpendicular magnetic recording tape and method of manufacturing the same
JPS6174143A (en) Production of magnetic recording medium
JP3248700B2 (en) Magnetic recording media
JPH0451889B2 (en)
JP3106456B2 (en) Opposing target type sputtering method and opposing target type sputtering apparatus
JP3048287B2 (en) Manufacturing equipment for magnetic recording media
JP2650300B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JPS63288420A (en) Production of magnetic recording medium
JPS5966106A (en) Magnetic recording medium
JPH0457213A (en) Magnetic recording medium
JPH06162502A (en) Production of magnetic recording medium
JPH0473215B2 (en)
JPS62236138A (en) Production of magnetic recording medium
JPH044659B2 (en)
JPS61186475A (en) Production of thin metallic film
JPH06103569A (en) Production of magnetic recording medium
JPS60187011A (en) Manufacture of multilayer ni-fe thin-film