JPS635676B2 - - Google Patents

Info

Publication number
JPS635676B2
JPS635676B2 JP58030121A JP3012183A JPS635676B2 JP S635676 B2 JPS635676 B2 JP S635676B2 JP 58030121 A JP58030121 A JP 58030121A JP 3012183 A JP3012183 A JP 3012183A JP S635676 B2 JPS635676 B2 JP S635676B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
storage tank
section
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58030121A
Other languages
Japanese (ja)
Other versions
JPS59157484A (en
Inventor
Kenji Yasuda
Kiichi Nagaya
Tsutomu Nakamura
Shinichi Tomita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP58030121A priority Critical patent/JPS59157484A/en
Publication of JPS59157484A publication Critical patent/JPS59157484A/en
Publication of JPS635676B2 publication Critical patent/JPS635676B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0004Particular heat storage apparatus
    • F28D2020/0026Particular heat storage apparatus the heat storage material being enclosed in mobile containers for transporting thermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【発明の詳細な説明】 本発明は化学反応を用いて蓄熱を行なうことの
できる蓄熱装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat storage device that can store heat using chemical reactions.

省エネルギー技術の一環として、各種の蓄エネ
ルギー、蓄熱技術が研究開発され、各種の方法が
提案されている。蓄熱技術には (a) 顕熱蓄熱 (b) 潜熱蓄熱 (c) 化学反応蓄熱 などに分類され、常温においても蓄熱状態を維持
し得る特徴をもつ(c)についての蓄熱物質による熱
輸送が可能な蓄熱装置が考えられている。
As part of energy saving technology, various energy storage and heat storage technologies have been researched and developed, and various methods have been proposed. Heat storage technology is classified into (a) sensible heat storage, (b) latent heat storage, (c) chemical reaction heat storage, etc., and (c) can transport heat using heat storage materials that have the characteristic of maintaining heat storage even at room temperature. A heat storage device is being considered.

すなわち、次のような可逆反応 A・B+QA+B (1) なる反応系があつたとする。 That is, the following reversible reaction A・B+QA+B (1) Suppose we have a reaction system like this.

蓄熱工程では、物質A・BにエネルギーQを加
え、AとBの物質に分解して分離・貯蔵する。Q
は通常熱エネルギーが考えられるが、光、電気な
ど他のエネルギーも利用される。
In the heat storage process, energy Q is added to substances A and B to decompose them into substances A and B, which are then separated and stored. Q
Usually, thermal energy is considered, but other energies such as light and electricity can also be used.

放熱工程では、熱が必要な時にAとBの物質を
反応させることによつて反応熱Qを発生させ、熱
を取り出す。
In the heat dissipation step, when heat is required, reaction heat Q is generated by reacting substances A and B, and the heat is extracted.

この時、物質AとBをそれぞれ化学変化を生じ
ない状態で貯蔵すれば、蓄熱工程と放熱工程の間
に時間的あるいは場所的な隔りがあつても、蓄・
放熱サイクルは成立するので、熱輸送が可能であ
る。
At this time, if substances A and B are stored in a state where no chemical changes occur, even if there is a time or place gap between the heat storage process and the heat release process, the storage and
Since the heat radiation cycle is established, heat transport is possible.

なお、AとBの物質は例えばAが固体、Bが液
体または気体のようにA〜B間が分離し易い状
態、すなわち相の異なつた状態が利用される。例
えばAとして硫化ナトリウム、Bとして水(水蒸
気)が考えられる。
Note that the substances A and B are used in a state in which A and B are easily separated, ie, in a state in which they have different phases, such that A is a solid and B is a liquid or gas. For example, A may be sodium sulfide, and B may be water (steam).

本発明は、このような一般的な化学反応熱を利
用した蓄熱技術のうち、次のような限定された条
件下で実施される蓄熱装置に関する。
The present invention relates to a heat storage device that is implemented under the following limited conditions among such general heat storage techniques that utilize the heat of chemical reaction.

(1) 蓄熱工程は、廃熱など余剰熱源が存在する場
所Xで実施され、放熱工程はAとBを反応させ
て発生する熱を利用熱源とする場所Yで実施さ
れる。場所Xで蓄熱された物質をYまで輸送、
放熱し、放熱後再蓄熱のために蓄熱物質をXに
再輸送する。
(1) The heat storage process is carried out at location X, where a surplus heat source such as waste heat exists, and the heat dissipation process is carried out at location Y, where the heat generated by reacting A and B is used as the heat source. Transport the material stored in heat at location X to Y,
Heat is released, and after heat release, the heat storage material is transported back to X for restorage.

(2) 輸送される蓄熱物質はAとB、もしくはAと
考える。すなわち、反応物Bが水蒸気のような
通常容易に入手あるいは廃棄できる物質で、X
において分離したBをYまで輸送しなくても入
手できれば放熱反応は可能となるので、この場
合Aのみを輸送すれば良いことになる。本発明
では、Bの輸送の有無にかかわらず、蓄熱物質
Aのみの輸送に関する。
(2) The heat storage materials to be transported are considered to be A and B, or A. That is, reactant B is a substance such as water vapor that is normally easily available or discarded, and X
If B separated at is available without having to be transported to Y, the heat dissipation reaction will be possible, so in this case it is only necessary to transport A. The present invention relates to the transportation of only the heat storage material A, regardless of whether or not B is transported.

(3) 反応条件下においては、物質A・BおよびA
は固体粒子、Bは気体である。すなわち、蓄熱
物質Aは、空気と長期接触すると空気中の酸
素、炭酸ガス、水分などと反応し、変質もしく
は放熱するものである。本発明では、特に人体
と接触すると有害な物質に対して有効である。
(3) Under the reaction conditions, substances A, B and A
is a solid particle and B is a gas. That is, when the heat storage substance A comes into contact with air for a long period of time, it reacts with oxygen, carbon dioxide, moisture, etc. in the air, and changes in quality or radiates heat. The present invention is particularly effective against substances that are harmful when they come into contact with the human body.

上記のような条件下で蓄熱システムを構成する
場合、通常、蓄熱槽を輸送することになるが、こ
れを第1図を例にとつて説明する。第1図は蓄熱
槽の断面図であり、1は蓄熱槽本体、2は多管式
熱交換器の場合は伝熱管、プレート式熱交換器の
場合は伝熱プレートを表わす。3は蓄熱槽への熱
交換流体流入部、4は熱交換流体流出部、5は伝
熱管または伝熱プレート2により熱交換流体と隔
絶された蓄熱物質充填部、6は蓄熱物質充填部5
への蒸気出入部である。
When constructing a heat storage system under the above conditions, the heat storage tank is normally transported, and this will be explained using FIG. 1 as an example. FIG. 1 is a sectional view of a heat storage tank, where 1 represents the heat storage tank body, 2 represents heat transfer tubes in the case of a multi-tubular heat exchanger, and heat transfer plates in the case of a plate heat exchanger. 3 is a heat exchange fluid inflow part to the heat storage tank, 4 is a heat exchange fluid outlet part, 5 is a heat storage material filling part separated from the heat exchange fluid by a heat transfer tube or heat transfer plate 2, and 6 is a heat storage material filling part 5
This is the section where steam enters and exits.

蓄熱工程は次の通りである。すなわち、上記条
件(1)から場所Xには余剰熱源が存在するので、こ
の熱を流体熱媒体を介して流入部3から蓄熱槽へ
導入する。熱媒体は伝熱管または伝熱プレート2
内を通過する間に伝熱壁面を通して充填部5の粒
子層に熱を与えた後、流出部4から排出される。
この与えられた熱によつて反応式(1)の左から右へ
の反応が生じ、Aなる固体とBなる気体が生成す
る。発生した気体Bは蒸気出入部6に取付けられ
たバルブ7を通つて蓄熱槽外に排出され、冷却に
よる凝縮、圧縮による液化、吸収剤による吸収な
どの操作によつて貯蔵部(図示せず)に貯蔵され
る。反応が終了したならば、バルブ7を閉鎖して
充填部5を外気と遮断するとともに、熱交換流体
流入部3、流出部4、バルブ7をこれに接続する
配管部(図示せず)から切り離す。
The heat storage process is as follows. That is, since a surplus heat source exists at the location X based on the above condition (1), this heat is introduced from the inflow portion 3 to the heat storage tank via the fluid heat medium. The heat medium is a heat transfer tube or heat transfer plate 2
After imparting heat to the particle layer in the filling part 5 through the heat transfer wall surface while passing through the inside, the particles are discharged from the outflow part 4.
This applied heat causes a reaction from left to right in reaction formula (1), producing a solid A and a gas B. The generated gas B is discharged to the outside of the heat storage tank through the valve 7 attached to the steam inlet/outlet part 6, and is transferred to a storage part (not shown) through operations such as condensation by cooling, liquefaction by compression, and absorption by an absorbent. stored in When the reaction is completed, the valve 7 is closed to isolate the filling section 5 from the outside air, and the heat exchange fluid inflow section 3, outflow section 4, and valve 7 are separated from the piping section (not shown) that connects them. .

輸送工程では、第1図に示した蓄熱槽部分と、
必要ならばBの貯蔵部とを何らかの輸送手段例え
ばトラツク、鉄道などによつてXからYまで輸送
する。
In the transportation process, the heat storage tank part shown in Figure 1,
If necessary, the storage portion of B is transported from X to Y by some means of transportation, such as a truck or a railway.

放熱工程は次の通りである。すなわち、場所Y
において、熱を回収するための熱媒体の流入配管
部に流入部3を、排出配管部に流出部4を接続す
るとともに、バルブ7を気体Bの導入部(もしく
は同時に輸送してきたBの貯蔵部)に接続する。
そして熱回収媒体を流入部3から流出部4へ流し
ながらバルブ7を開放すると、気体Bが蓄熱物質
充填部5に流入し、反応式(1)の右から左に進む反
応によつて反応熱を発生する。この熱は伝熱管ま
たは伝熱プレート2を通して熱回収媒体に移動し
て回収される。反応終了後は、蓄熱工程終了と同
様、バルブ7を閉鎖し、流入部3、流出部4、バ
ルブ7をこれに接続する配管部から切り離す。
The heat dissipation process is as follows. That is, location Y
, the inflow part 3 is connected to the inflow pipe part of the heat medium for recovering heat, and the outflow part 4 is connected to the discharge pipe part, and the valve 7 is connected to the introduction part of gas B (or to the storage part of B transported at the same time). ).
Then, when the valve 7 is opened while the heat recovery medium is flowing from the inflow part 3 to the outflow part 4, the gas B flows into the heat storage material filling part 5, and the reaction heat is generated by the reaction proceeding from right to left in reaction equation (1). occurs. This heat is transferred to a heat recovery medium through heat transfer tubes or heat transfer plates 2 and is recovered. After the reaction is completed, the valve 7 is closed, and the inflow section 3, the outflow section 4, and the valve 7 are separated from the piping section connected thereto, similarly to the end of the heat storage step.

次の輸送工程では、第1図に示した蓄熱槽部分
と、必要ならばB貯蔵部の空容器とをYからXに
輸送する。そして、流入部3、流出部4、バルブ
7をそれぞれ必要部分に接続し、再び蓄熱工程を
実施する。
In the next transportation step, the heat storage tank portion shown in FIG. 1 and, if necessary, the empty container of the B storage section are transported from Y to X. Then, the inflow part 3, the outflow part 4, and the valve 7 are connected to necessary parts, respectively, and the heat storage process is performed again.

以上が上記条件下における通常の熱輸送可能な
蓄熱装置であるが、この場合の長所および短所を
述べると次のようになる。
The above is a typical heat storage device capable of transporting heat under the above conditions, and the advantages and disadvantages of this case are as follows.

長 所 (イ) 熱交換部から蓄熱物質粒子を分離しなくて良
い。もし、蓄熱物質粒子のみを輸送するとする
と、蓄・放熱工程1サイクル当り、熱交換部へ
の粒子の充填、分離作業をそれぞれ2回ずつ行
なわなければならないが、この方法によれば、
その手間が省け、そのための設備も不要であ
る。
Advantages (a) There is no need to separate heat storage material particles from the heat exchange section. If only the heat storage material particles were to be transported, each cycle of the heat storage/radiation process would require the filling and separation of the particles into the heat exchange section twice, but with this method,
This saves time and requires no equipment.

(ロ) また、蓄・放熱工程から輸送工程に移る際に
も、バルブ7を閉鎖するだけでよく、蓄熱物質
が人体に接触することもなく、外気と遮断され
た状態下で作業が行なえる。
(b) Also, when moving from the heat storage/dissipation process to the transportation process, it is only necessary to close the valve 7, so the heat storage material does not come into contact with the human body, and the work can be carried out in a state where it is isolated from the outside air. .

短 所 (イ) 一般に、固体粒子の熱伝導度は小さく、単位
時間当りの熱移動量を大きくしようとすると、
伝熱面積が増加し、熱交換部重量が増加する。
また、蓄・放熱反応を加圧もしくは減圧で行な
わせる場合が多いがこの時は蓄熱槽を耐圧構造
にする必要から蓄熱槽の外殻部重量も増加す
る。それ故、蓄熱物質粒子のみの輸送に比べる
とはるかに輸送重量が増加する。
Disadvantages (a) Generally, the thermal conductivity of solid particles is low, and if you try to increase the amount of heat transfer per unit time,
The heat transfer area increases and the weight of the heat exchange section increases.
Furthermore, heat storage and heat dissipation reactions are often carried out under increased pressure or reduced pressure, but in this case, the heat storage tank must have a pressure-resistant structure, which increases the weight of the outer shell of the heat storage tank. Therefore, compared to transporting only heat storage material particles, the weight to be transported increases significantly.

(ロ) 輸送工程から蓄・放熱工程に移る際には、少
なくとも熱源あるいは熱回収のための熱媒体の
流出入部の配管部への接続と、反応気体の流出
入部の配管部への接続が必要であり、この接続
に手間がかかる。現在ワンタツチ式接手と呼ば
れるものが入手可能であるが、大口径の配管用
のものは現実には入手困難である。
(b) When moving from the transportation process to the heat storage/radiation process, it is necessary to connect at least the inflow/outflow part of the heat source or heat medium for heat recovery to the piping part, and the connection of the inflow/outflow part of the reaction gas to the piping part. This connection takes time and effort. Currently, what is called a one-touch type joint is available, but it is actually difficult to obtain one for large diameter piping.

本発明は、以上のような事柄を考え、効率的な
熱輸送を行なうことのできる蓄熱装置を提供する
ことを目的とするものである。
The present invention has been made in consideration of the above-mentioned problems, and an object of the present invention is to provide a heat storage device that can efficiently transport heat.

本発明は上記目的を達成するために、底部に熱
媒体流入口と流出口に連通連結された伝熱部を有
し、上部に気体出入口を有し、底部に前記伝熱部
と熱交換される蓄熱物質が充填される蓄熱槽本体
と、該蓄熱槽本体の頂部に取り外し自在に連通連
結される輸送部とを具備し、前記蓄熱槽本体を水
平軸の周りに回転可能に構成したものであり、輸
送工程では蓄熱物質を収めた輸送部のみを輸送す
ればよいので、輸送重量が大巾に軽減できるとと
もに、着脱すべき箇所は本体と輸送部の接続部だ
けでよいので、簡単であり、また蓄熱物質粒子の
充填・取り出しは人体と直接接触することがな
く、また長期間空気と接触することもない状態で
行なえるので、都合がよい。
In order to achieve the above object, the present invention has a heat transfer section connected to a heat medium inlet and an outlet at the bottom, a gas inlet/outlet at the top, and a heat transfer section connected to the heat transfer section at the bottom. A heat storage tank body is provided with a heat storage tank body filled with a heat storage substance, and a transport part detachably connected to the top of the heat storage tank body, and the heat storage tank body is configured to be rotatable around a horizontal axis. In the transportation process, only the transport part containing the heat storage material needs to be transported, which greatly reduces the transport weight, and the only part that needs to be attached and detached is the connection between the main body and the transport part, making it easy. Furthermore, it is convenient because the heat storage material particles can be filled and removed without coming into direct contact with the human body or in a state where they are not in contact with the air for a long period of time.

以下本発明の一実施例を図面に基づいて説明す
る。第2図はその断面図、第3図は側面図であ
る。11は蓄熱槽本体で、その頂部にフランジ部
12を介して取り外し自在に輸送部13が連通連
結され、かつ水平軸14を介して回転可能に支持
されている。15は蓄熱槽本体11の下部に該本
体11内空間と隔絶されて設けられた伝熱部で、
2重管構造に構成され、内筒部に接続された熱媒
体流入口16から流入した熱媒体は先端部で外筒
部に連通し、外周路を通つて該外筒部に接続され
た熱媒体流出口17から流出するように構成され
ている。18は蓄熱槽本体11の上部に設けられ
た気体出入口である。また、蓄熱槽本体11の内
部には伝熱部15を埋める程度に蓄熱物質19が
充填されている。20は流入口16、流出口1
7、気体出入口18に接続されたフレキシブルホ
ースで、該ホース20が配管部に接続されたまま
での蓄熱槽本体11の回転が可能である。
An embodiment of the present invention will be described below based on the drawings. FIG. 2 is a sectional view thereof, and FIG. 3 is a side view thereof. Reference numeral 11 denotes a heat storage tank main body, to the top of which a transport section 13 is removably connected via a flange section 12 and rotatably supported via a horizontal shaft 14. 15 is a heat transfer part provided at the lower part of the heat storage tank main body 11 and isolated from the internal space of the main body 11;
The heat medium flowing from the heat medium inlet 16 which is configured in a double tube structure and connected to the inner cylinder part communicates with the outer cylinder part at the tip, and the heat medium connected to the outer cylinder part through the outer circumferential path. The medium is configured to flow out from the medium outlet 17. 18 is a gas inlet/outlet provided at the upper part of the heat storage tank main body 11. Further, the inside of the heat storage tank main body 11 is filled with a heat storage material 19 to the extent that the heat transfer portion 15 is filled. 20 is the inlet 16 and the outlet 1
7. A flexible hose connected to the gas inlet/outlet 18 allows rotation of the heat storage tank body 11 while the hose 20 remains connected to the piping section.

蓄熱工程では、熱媒体がフレキシブルホース2
0を通つて熱媒体流入口16から流入し、流出口
17から流出される間に伝熱部15を介して蓄熱
物質19を加熱する。反応式(1)によつて熱を与え
られた蓄熱物質19は気体Bを発生するが、この
気体Bは気体出入口18わ通つてこれにフレキシ
ブルホース20を介して接続された気体処理部
(図示せず)に送られ、凝縮、加圧などによる液
化などの手段で貯蔵もしくは廃棄される。加熱工
程では逆に気体出入口18から気体Bが供給さ
れ、蓄熱物質19に吸収されて反応式(1)の右から
左への反応が生じ、熱を発生する。この熱は流入
口16から流入する熱回収用熱媒体に伝熱され、
流出口17から回収される。
In the heat storage process, the heat medium is a flexible hose 2
The heat storage material 19 is heated through the heat transfer section 15 while the heat medium flows in from the heat medium inlet 16 through the heat transfer portion 15 and flows out from the outlet 17 . The heat storage material 19 that has been given heat according to reaction formula (1) generates gas B, which passes through the gas inlet/outlet 18 and is connected to the gas processing section (Fig. (not shown) and stored or disposed of by means such as condensation, liquefaction under pressure, etc. Conversely, in the heating step, gas B is supplied from the gas inlet/outlet 18 and is absorbed by the heat storage material 19, causing a reaction from right to left in reaction formula (1) to generate heat. This heat is transferred to the heat recovery heat medium flowing in from the inlet 16,
It is collected from the outlet 17.

蓄熱物質19の取り出しでは、蓄熱もしくは放
熱工程終了後、蓄熱槽本体11を水平軸14を中
心に180゜回転し、第4図の状態に静止させると、
蓄熱物質19は蓄熱槽本体11から輸送部13に
移動する。完全に移動し終つた段階で輸送用トラ
ツクなどを輸送部13の下に導き入れて後フラン
ジ部12を切り離し、別に用意された上蓋21で
輸送部13の開口部を密閉して、輸送部13自体
を輸送容器となし、第5図のように、次の工程を
行なう場所に輸送する。蓄熱物質19の伝熱部1
5への充填は取り出しと逆の工程で実施する。
To take out the heat storage material 19, after the heat storage or heat dissipation process is completed, the heat storage tank body 11 is rotated 180 degrees around the horizontal axis 14 and kept stationary in the state shown in FIG. 4.
The heat storage material 19 moves from the heat storage tank body 11 to the transport section 13 . When the transport part 13 has completely moved, a transport truck or the like is guided under the transport part 13, the rear flange part 12 is cut off, and the opening of the transport part 13 is sealed with a top cover 21 prepared separately. It is used as a transportation container and is transported to a place where the next process will be performed, as shown in FIG. Heat transfer part 1 of heat storage material 19
Filling into the container 5 is carried out by the reverse process of taking out.

以上本発明によれば、次のような効果を得るこ
とができる。
According to the present invention, the following effects can be obtained.

(イ) 蓄熱物質粒子の充填・取り出しの工程は増加
するが、人体と直接接触することはなく、また
長期間空気と接触することもない状態で、容易
に蓄熱槽熱交換部から粒子を充填または取り出
すことができる。
(b) The process of filling and removing heat storage material particles increases, but the particles can be easily filled from the heat exchange part of the heat storage tank without direct contact with the human body or with air for a long period of time. Or you can take it out.

(ロ) 蓄熱物質と輸送に必要な容積の容器のみを輸
送できるので、大巾に輸送重量が軽減される。
(b) Since only the heat storage material and the container with the volume required for transportation can be transported, the weight of transportation can be greatly reduced.

(ハ) 着脱すべき箇所は本体と輸送部の接続部のみ
でよいので、手間が省ける。
(c) The only part that needs to be attached and detached is the connection between the main body and the transport section, which saves time and effort.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は通常の蓄熱槽の一例を示す断面図、第
2図は本発明の一実施例を示す断面図、第3図は
側面図、第4図は蓄熱物質の取り出し工程を説明
するための断面図、第5図は輸送工程を説明する
ための側面図である。 11……蓄熱槽本体、12……フランジ部、1
3……輸送部、14……水平軸、15……伝熱
部、16……熱媒体流入口、17……熱媒体流出
口、18……気体出入口、19……蓄熱物質、2
1……上蓋。
Fig. 1 is a sectional view showing an example of a normal heat storage tank, Fig. 2 is a sectional view showing an embodiment of the present invention, Fig. 3 is a side view, and Fig. 4 is for explaining the process of taking out the heat storage material. FIG. 5 is a side view for explaining the transportation process. 11... Heat storage tank body, 12... Flange part, 1
3... Transport section, 14... Horizontal axis, 15... Heat transfer section, 16... Heat medium inlet, 17... Heat medium outlet, 18... Gas inlet/outlet, 19... Heat storage material, 2
1...Top lid.

Claims (1)

【特許請求の範囲】[Claims] 1 底部に熱媒体流入口と流出口に連通連結され
た伝熱部を有し、上部に気体出入口を有し、底部
に前記伝熱部と熱交換される蓄熱物質が充填され
る蓄熱槽本体と、該蓄熱槽本体の頂部に取り外し
自在に連通連結される輸送部とを具備し、前記蓄
熱槽本体を水平軸の周りに回転可能に構成したこ
とを特徴とする蓄熱装置。
1. A heat storage tank main body that has a heat transfer part connected to a heat medium inlet and an outlet at the bottom, has a gas inlet/outlet at the top, and has a bottom filled with a heat storage substance that exchanges heat with the heat transfer part. and a transport section detachably connected to the top of the heat storage tank body, the heat storage tank body being configured to be rotatable around a horizontal axis.
JP58030121A 1983-02-23 1983-02-23 Heat storage material transporting device Granted JPS59157484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58030121A JPS59157484A (en) 1983-02-23 1983-02-23 Heat storage material transporting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58030121A JPS59157484A (en) 1983-02-23 1983-02-23 Heat storage material transporting device

Publications (2)

Publication Number Publication Date
JPS59157484A JPS59157484A (en) 1984-09-06
JPS635676B2 true JPS635676B2 (en) 1988-02-04

Family

ID=12294944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58030121A Granted JPS59157484A (en) 1983-02-23 1983-02-23 Heat storage material transporting device

Country Status (1)

Country Link
JP (1) JPS59157484A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4931046B2 (en) * 2006-06-14 2012-05-16 Jnc株式会社 Towel with excellent pile retention
JP2016008744A (en) * 2014-06-23 2016-01-18 トヨタ自動車株式会社 Heat transport system using chemical heat storage element repeating heat storage and heat radiation by reversible reaction

Also Published As

Publication number Publication date
JPS59157484A (en) 1984-09-06

Similar Documents

Publication Publication Date Title
US4205531A (en) Method in the cooling of a space and apparatus for carrying out said method
CN108106476B (en) A kind of continuous chemical reaction method accumulation of heat thermal desorption system
JPS635676B2 (en)
JPS5833097A (en) Heat accumulating device
JPS635677B2 (en)
JPS6311596B2 (en)
JPH02247598A (en) Cooler for heat generating member
JPS635675B2 (en)
JPS57142488A (en) Recovering apparatus for waste heat
JPS58127047A (en) Heat regenerative type hot water supply system
JPS58224683A (en) Fermentation tank
JPH0128304B2 (en)
CN109694094A (en) A kind of brine extracts the device of magnesium chloride
JPH03282190A (en) Heat accumulating device
CN212559907U (en) Sludge innocent treatment and comprehensive utilization device based on anaerobic microorganisms
CN214093989U (en) Solid metal alloy hydrogen storage bottle
JPH08119601A (en) Hydrogen storage device using hydrogen storage alloy
JPH04126961A (en) Chemical heat accumulative heat pump
JPH056119B2 (en)
JPS6020088A (en) Chemical heat storage device
JPH044510B2 (en)
JPS6249100A (en) Metal hydride container
JPH0257864A (en) Method and apparatus for filling of heat storage material in latent heat storage apparatus
JPS54152250A (en) Heater for room cooling and heating device
JPS5889A (en) Heat exchanger