JPH056119B2 - - Google Patents
Info
- Publication number
- JPH056119B2 JPH056119B2 JP58104554A JP10455483A JPH056119B2 JP H056119 B2 JPH056119 B2 JP H056119B2 JP 58104554 A JP58104554 A JP 58104554A JP 10455483 A JP10455483 A JP 10455483A JP H056119 B2 JPH056119 B2 JP H056119B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- heat
- inner container
- hydrogen storage
- heat medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 76
- 239000001257 hydrogen Substances 0.000 claims description 74
- 229910052739 hydrogen Inorganic materials 0.000 claims description 74
- 239000002184 metal Substances 0.000 claims description 43
- 229910052751 metal Inorganic materials 0.000 claims description 43
- 238000005192 partition Methods 0.000 claims description 11
- 230000001737 promoting effect Effects 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 description 15
- 238000001816 cooling Methods 0.000 description 10
- 238000010494 dissociation reaction Methods 0.000 description 7
- 230000005593 dissociations Effects 0.000 description 6
- 150000002431 hydrogen Chemical class 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229910052987 metal hydride Inorganic materials 0.000 description 3
- 150000004681 metal hydrides Chemical class 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 229910005438 FeTi Inorganic materials 0.000 description 1
- 241000287227 Fringillidae Species 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F23/00—Features relating to the use of intermediate heat-exchange materials, e.g. selection of compositions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D17/00—Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Description
【発明の詳細な説明】
本発明は水素吸蔵・放出型の熱交換器に関し、
詳細には、水素吸蔵用金属の収納用内容器全体ま
たは更に必要に応じて収納金属自体を容易に入れ
替えることができる様に改善された水素吸蔵・放
出型の熱交換器に関するものである。[Detailed description of the invention] The present invention relates to a hydrogen storage/release type heat exchanger,
Specifically, the present invention relates to a hydrogen storage/release type heat exchanger that has been improved so that the entire inner container for storing hydrogen storage metal or the storage metal itself can be easily replaced as necessary.
水素吸蔵用金属は水素を金属水素化物の形で吸
蔵する性質を有しており、且つ水素吸蔵時に発熱
し水素放出時に吸熱する性質があるので、種々の
用途(蓄熱槽、ヒートポンプ、水素ガスの分離精
製装置等)への適用が期待されており、例えばヒ
ートポンプにおいては水素吸蔵用金属を充填した
容器などを熱交換器として利用することが考えら
れている。 Hydrogen storage metals have the property of storing hydrogen in the form of metal hydride, and also have the property of generating heat when absorbing hydrogen and absorbing heat when releasing hydrogen, so they can be used in various applications (heat storage tanks, heat pumps, hydrogen gas storage, etc.). It is expected to be applied to separation and purification equipment (separation and purification equipment, etc.), and for example, it is being considered to use a container filled with hydrogen storage metal as a heat exchanger in a heat pump.
第1図は該ヒートポンプシステムに利用される
水素吸蔵・放出型熱交換器を例示する模式図、第
2図は第1図における−線断面矢視図で、図
中1は熱交換器、2はシエル、3は水素吸蔵用金
属充填チユーブ(以下、充填チユーブという)、
4は集合ヘツダ、6は集熱器または放熱器を夫々
示している。 FIG. 1 is a schematic diagram illustrating a hydrogen storage/release type heat exchanger used in the heat pump system, and FIG. 2 is a cross-sectional view taken along the line - in FIG. 3 is a metal filling tube for hydrogen storage (hereinafter referred to as filling tube),
4 indicates a collection header, and 6 indicates a heat collector or a heat radiator, respectively.
熱交換器1は、シエル2内に複数本の充填チユ
ーブ3を平行に配置すると共に、該充填チユーブ
3の同一方向端を集合ヘツダ4に接続し、更に集
合ヘツダ4に水素導管5を連結して構成される。
そしてシエル2の熱媒入口管7aおよび出口管7
bは管路8を介して集熱器または放熱器6と接続
されている。 The heat exchanger 1 has a plurality of filling tubes 3 arranged in parallel in a shell 2, ends of the filling tubes 3 in the same direction are connected to a collection header 4, and a hydrogen conduit 5 is connected to the collection header 4. It consists of
And the heat medium inlet pipe 7a and the outlet pipe 7 of the shell 2
b is connected to a heat collector or radiator 6 via a pipe line 8.
上記構成の熱交換器1において、低温乃至中温
の熱媒Lを入口管7aからシエル2内に導入し出
口管7bから導き出す一方、水素導管5からH2
を吹き込んで水素吸蔵用金属Mに吸蔵させると、
水素吸蔵反応に伴う発熱によつて水素吸蔵用金属
Mが昇温し、充填チユーブ3の壁面伝熱によつて
熱媒Lが加熱される。加熱された熱媒Lは出口管
7bから管8を通つて放熱器6へ供給され、環境
を暖めたのち熱交換器1へ還流する。 In the heat exchanger 1 having the above configuration, a low to medium temperature heat medium L is introduced into the shell 2 from the inlet pipe 7a and led out from the outlet pipe 7b, while H 2 is introduced from the hydrogen conduit 5.
When hydrogen is blown into hydrogen storage metal M,
The temperature of the hydrogen storage metal M increases due to the heat generated by the hydrogen storage reaction, and the heating medium L is heated by heat transfer from the wall of the filling tube 3. The heated heat medium L is supplied from the outlet pipe 7b through the pipe 8 to the radiator 6, warms the environment, and then flows back to the heat exchanger 1.
一方、水素吸蔵用金属Mに水素を吸蔵させた状
態(金属水素化物の状態)において、熱交換器1
に常温乃至高温の熱媒Lを流通させる一方、水素
導管5の先(図の左側)に取りつけられた吸引ポ
ンプ(図示しない)を作動させることによつて充
填チユーブ3内を減圧し、上記金属水素化物の解
離圧よりも低い圧力にすると、該金属水素化物か
らH2が放出される。この時の水素放出反応に伴
う吸熱によつて水素吸蔵用金属Mが冷却される。
冷却された熱媒Lは出口管7bから管路8を経由
して集熱器6へ導入され、ここで環境を冷却する
と共に熱を吸収して熱交換器へ還流する。ヒート
ポンプにおいては、以上の様な水素吸蔵用金属の
放熱および吸熱作用を利用して、第4図のサイク
ルで暖房、第5図のサイクルで冷房が行われる。 On the other hand, in a state where hydrogen storage metal M stores hydrogen (state of metal hydride), heat exchanger 1
While the heating medium L at room temperature to high temperature is passed through the tube, the pressure inside the filling tube 3 is reduced by operating a suction pump (not shown) attached to the end of the hydrogen conduit 5 (on the left side of the figure), and the metal When the pressure is lower than the dissociation pressure of the hydride, H 2 is released from the metal hydride. At this time, the hydrogen storage metal M is cooled by heat absorption accompanying the hydrogen release reaction.
The cooled heat medium L is introduced from the outlet pipe 7b via the conduit 8 into the heat collector 6, where it cools the environment, absorbs heat, and returns to the heat exchanger. In the heat pump, heating is performed in the cycle shown in FIG. 4, and cooling is performed in the cycle shown in FIG. 5, by utilizing the heat radiation and heat absorption effects of the hydrogen storage metal as described above.
ところで熱交換器に適用される水素吸蔵用金属
には、種々の平衡解離圧−解離温度曲線を有する
ものがあるが、例えばLaNi5は2atm−24℃、
Mg2Niは3atm−300℃、FeTiは3.5atm−25℃で
あり、一般に暖房用としては水素吸蔵時(水素充
填時)の到達温度が高いものが、また冷房用とし
ては水素解離時の到達温度が低いものが適してい
るとされている。しかし水素吸蔵時の到達温度が
十分に高く且つ水素解離時の到達温度が十分に低
い様な水素吸蔵用金属、即ち暖房運転用と冷房運
転用の両方に実用できるものは提案されていな
い。従つて冷・暖房用のヒートポプシステムにお
いては暖房用水素吸蔵用金属を充填した熱交換器
と冷房運転用水素吸蔵用金属を充填した熱交換器
を夫々用意しておき、目的に応じて必要な方の熱
交換器を選択使用する必要がある。その結果、設
備的に不経済な面が生ずると共に、熱交換器の交
換の度に配管系統の分離−結合作業や熱交換器の
搬送等の煩雑な作業を行わなければならなかつ
た。 By the way, some hydrogen storage metals used in heat exchangers have various equilibrium dissociation pressure-dissociation temperature curves. For example, LaNi 5 has a temperature of 2atm-24℃,
Mg 2 Ni has a temperature of 3 atm - 300℃, and FeTi has a temperature of 3.5 atm - 25℃. Generally, for heating purposes, the temperature reached during hydrogen storage (hydrogen filling) is high, and for cooling purposes, the temperature reached during hydrogen dissociation is high. It is said that low temperature is suitable. However, no hydrogen storage metal has been proposed that has a sufficiently high temperature during hydrogen storage and a sufficiently low temperature during hydrogen dissociation, ie, one that can be used in both heating and cooling operations. Therefore, in a heat pop system for cooling and heating, a heat exchanger filled with hydrogen storage metal for heating and a heat exchanger filled with hydrogen storage metal for cooling operation are prepared, and the heat exchanger filled with hydrogen storage metal for cooling operation is prepared. It is necessary to select which heat exchanger to use. As a result, not only is the equipment uneconomical, but each time a heat exchanger is replaced, complicated work such as separation and connection of piping systems and transportation of the heat exchanger must be performed.
また水素吸蔵能力の低下した使用済吸蔵金属
は、次の使用に備えて適当な時期に新しい吸蔵用
金属と入れ替える必要があるが、そのためには熱
交換器を分解しなければならず、入れ替えに多大
な労力を要していた。 In addition, used storage metal whose hydrogen storage capacity has decreased needs to be replaced with new storage metal at an appropriate time in preparation for the next use, but to do so, the heat exchanger must be disassembled, and it is difficult to replace it. It required a lot of effort.
尚、水素吸蔵用金属は使用時間の経過と共に微
粉化して水素吸蔵能力が低下するので、この場合
にも吸蔵金属の入れ替えを行う必要が生じ、前記
と同様の問題が発生する。 It should be noted that the hydrogen storage metal becomes pulverized over the course of use and its hydrogen storage capacity decreases, so in this case as well, it becomes necessary to replace the storage metal, causing the same problem as described above.
本発明は上記の欠点を解消すべく研究を行つた
結果、水素吸蔵用金属収納部、即ち図示例におけ
る充填チユーブ相当部を容易に取り出して交換で
きる様な構成の熱交換器であれば、前述の欠点を
全て解消できるという着想に到達した。本発明は
こうした着想を具体化すべく更に研究を重ねた結
果完成されたものであつて、その要旨は、水素ガ
ス圧入用圧力容器とその内部に空〓を介して配設
される内容器とからなり、上記水素ガス圧入容器
は、水素導管および熱媒配管が配設された蓋体と
圧力容器本体によつて構成し、一方前記内容器に
は、外周面に伝熱促進用フアンを設けた熱媒流路
用管体を、上下方向に少なくとも1回折返して配
設すると共に、折返された該管体の間を仕切棚に
よつて略水平方向に仕切ることにより該内容器内
を上下方向に区画し、区画された該空間には水素
吸臓用金属を充填し、且つ前記内容器における前
記仕切棚と直交する側壁面の少なくとも一部は着
脱自在のフイルター部材で構成し、前記熱媒流路
用管体と上記熱媒配管は前記内容器の外部におい
て相互に着脱自在に接続すると共に、前記水素導
管は前記空〓内に解放して設けられている点に存
在する。 As a result of research conducted to solve the above-mentioned drawbacks, the present invention has found that, as long as the heat exchanger has a structure in which the hydrogen storage metal storage part, that is, the part corresponding to the filling tube in the illustrated example, can be easily taken out and replaced, the above-mentioned I came up with an idea that could eliminate all of the shortcomings of . The present invention was completed as a result of further research in order to embody these ideas, and the gist of the present invention is based on a pressure vessel for pressurizing hydrogen gas and an inner container disposed inside the pressure vessel through an air gap. The hydrogen gas pressurizing container is composed of a lid body in which a hydrogen conduit and a heat medium pipe are arranged, and a pressure vessel main body, and the inner container is provided with a fan for promoting heat transfer on the outer peripheral surface. The tube for the heat medium flow path is arranged by being folded back at least once in the vertical direction, and the folded tube is partitioned approximately horizontally between the folded tubes with a partition shelf, so that the inside of the inner container can be arranged in the vertical direction. The partitioned space is filled with a metal for absorbing hydrogen, and at least a part of the side wall surface of the inner container perpendicular to the partition shelf is constituted by a removable filter member, and the partitioned space is filled with a metal for absorbing hydrogen. The flow path pipe and the heat medium pipe are removably connected to each other outside the inner container, and the hydrogen pipe is provided so as to be open in the space.
以下、図面を参照しながら本発明の構成および
作用効果をを詳細に説明する。 Hereinafter, the configuration and effects of the present invention will be explained in detail with reference to the drawings.
第3図は本発明にかかる熱交換器を例示する一
部破断展開斜視図であり、1aは熱交換器、2a
は水素ガス圧入用圧力容器(以下、圧力容器とい
う)、3aは水素吸蔵用金属充填用の内容器、9
は蓋体、10はフイルター部材、11は熱媒流路
用管体(以下、熱媒管という)12は仕切棚、3
は伝熱促進用のフインを夫々示している。 FIG. 3 is a partially cutaway exploded perspective view illustrating a heat exchanger according to the present invention, where 1a is a heat exchanger, 2a is a
9 is a pressure vessel for pressurizing hydrogen gas (hereinafter referred to as pressure vessel), 3a is an inner container for filling with metal for hydrogen storage, and 9
1 is a lid, 10 is a filter member, 11 is a heat medium flow pipe (hereinafter referred to as a heat medium pipe) 12 is a partition shelf, 3
indicate fins for promoting heat transfer.
内容器3aは、対向する2つの面(図では右手
前側と左奥側)に開口部を有する箱体内に仕切棚
12を略水平に設けると共に、各仕切空間にはフ
イン13付きの熱媒管11を複数本配設してな
り、該熱媒管11は湾曲管11aを介して上下方
向に少なくとも1回(図示例では3回)折り返し
てその間に仕切棚12が来る様に配置する。そし
て該熱媒管11は、内容器への入口部Bおよび内
容器からの出口部Aにおいて1本の集合熱媒管1
1bに合流し、系外の熱媒配管に連結される。尚
フイン13は伝熱促進のために設けられるもので
あり、その形状、構造はどのようなものであつて
もよく、例えば矩形状のフインに凹凸を設けて伝
熱性能の向上を図ることも可能である。また図示
例では熱媒管11bを蓋体9に固定し、ユニオン
継手15を介して該熱媒管11bを前記入口部B
および出力部Aに着脱可能に接続した例を示した
が、接続構造および接続場所自体はもとより図示
例に限定されるわけではない。 The inner container 3a has partition shelves 12 provided approximately horizontally within a box body having openings on two opposing sides (front right side and rear left side in the figure), and heat medium pipes with fins 13 in each partition space. A plurality of heat medium pipes 11 are arranged, and the heat medium pipes 11 are bent vertically at least once (three times in the illustrated example) via a curved pipe 11a, and the partition shelf 12 is placed between them. The heat medium pipes 11 include one collective heat medium pipe 1 at the inlet B to the inner container and the outlet A from the inner container.
1b, and is connected to a heat medium pipe outside the system. The fins 13 are provided to promote heat transfer, and may have any shape or structure. For example, rectangular fins may be provided with irregularities to improve heat transfer performance. It is possible. Further, in the illustrated example, the heat medium pipe 11b is fixed to the lid 9, and the heat medium pipe 11b is connected to the inlet portion B through the union joint 15.
Although an example is shown in which it is detachably connected to the output section A, the connection structure and the connection location itself are not limited to the illustrated example.
また熱媒管11bは、水素導管14の接続され
た蓋体9に貫通固定されている。更に内容器3a
には、仕切空間を埋める様に水素吸蔵用金属Mが
充填され且つ前述の両側開口部の少なくとも一方
にはフイルター部材10が取り付けられている。
この様な内容器3aを圧力容器2a内に収納する
と共に蓋体9と圧力容器2aをフランジ接続など
によつて締結すると熱交換器1aが構成される。 Further, the heat medium pipe 11b is fixed through the lid 9 to which the hydrogen conduit 14 is connected. Furthermore, the inner container 3a
is filled with hydrogen storage metal M so as to fill the partitioned space, and a filter member 10 is attached to at least one of the openings on both sides.
When such an inner container 3a is housed in a pressure vessel 2a and the lid 9 and the pressure vessel 2a are fastened together by flange connection or the like, a heat exchanger 1a is constructed.
上記構成の熱交換器を用いて第1図の例と同様
に低温乃至中温の熱媒Lを流しながら水素導管1
4から水素を導入すると、水素吸蔵熱によつて充
填金属Mが発熱しフイン付き熱媒管11を介して
熱媒Lが加熱され、一方常温乃至高温の熱媒Lを
流しながら水素吸蔵用金属Mから水素を放出させ
ると、水素吸蔵時の吸熱によつて充填金属Mが降
温し熱媒Lが冷却される。 Using the heat exchanger with the above configuration, the hydrogen conduit 1 is heated while flowing the low to medium temperature heat medium L in the same manner as in the example shown in FIG.
When hydrogen is introduced from 4, the filling metal M generates heat due to the heat of hydrogen storage, and the heating medium L is heated through the finned heating medium pipe 11. On the other hand, while the heating medium L at room temperature to high temperature is flowing, the filling metal M generates heat due to the heat of hydrogen storage. When hydrogen is released from M, the temperature of the filling metal M is lowered due to heat absorption during hydrogen storage, and the heating medium L is cooled.
この様に加熱或は冷却された熱媒Lを利用して
暖房または冷房が行われる。 Heating or cooling is performed using the heat medium L heated or cooled in this way.
上記熱交換器において、冷房と暖房を切り替え
る場合あるいは内容器3内の水素吸蔵用金属Mが
微粉化して装置効率が低下した場合には、水素吸
蔵用金属Mを入れ替える必要が生ずるが、入れ替
えに当たつては、まず蓋体9と圧力容器2aの締
結を解除する。次いで蓋体9と一体化した内容器
3aを圧力容器から抜き出した後、ユニオン継手
15による結合を解除して蓋体9と内容器3aを
分離し、別途準備した内容器(新しい水素吸蔵用
金属を充填したもの)と交換する。一方、内容器
3a内の使用済み水素吸蔵用金属Mを取り替える
場合には、フイルター部材10を外した後、使用
済みの水素吸蔵用金属Mを抜き出して新しいもの
と入れ替える。 In the above heat exchanger, when switching between cooling and heating, or when the hydrogen storage metal M in the inner container 3 is pulverized and device efficiency decreases, it becomes necessary to replace the hydrogen storage metal M. In this case, first, the lid 9 and the pressure vessel 2a are uncoupled. Next, after removing the inner container 3a integrated with the lid body 9 from the pressure vessel, the connection by the union joint 15 is released to separate the lid body 9 and the inner container 3a, and a separately prepared inner container (a new hydrogen storage metal Replace with one filled with On the other hand, when replacing the used hydrogen storage metal M in the inner container 3a, after removing the filter member 10, the used hydrogen storage metal M is taken out and replaced with a new one.
フイルター部材としては、水素吸蔵用金属Mの
通過を阻止し且つ水素ガスの通過を許すものであ
ればどの様なものでも良いが、代表的なものとし
ては2μm程度の通気孔を有する焼結金属製フイ
ルターが挙げられる。 The filter member may be of any material as long as it blocks the passage of the hydrogen storage metal M and allows the passage of hydrogen gas, but a typical example is a sintered metal with vents of about 2 μm. An example is a manufactured filter.
また本発明で仕切棚12を必須の構成要件とし
て設けた理由は次のとおりである。即ち内容器3
a内に充填された水素吸蔵用金属Mは、水素の吸
蔵・放出に伴つて生じる水素ガスの流れ或は外部
から熱交換器にかかる振動などによつて繰り返し
揺すぶられるため、該金属Mは自重で下方に押し
詰められる状態となり、下方側の充填密度と上方
側の充填密度に極端な差ができる。そして上方側
では伝熱効率が要化し、下方側では圧密化が進み
過ぎて水素ガスの流通が不十分になり、吸蔵・放
出の効率が悪くなるという問題が生じてくる。 Further, the reason why the partition shelf 12 is provided as an essential component in the present invention is as follows. That is, the inner container 3
The hydrogen storage metal M filled in a is repeatedly shaken by the flow of hydrogen gas generated as hydrogen is stored and released, or by vibrations applied to the heat exchanger from the outside. is compressed downward by its own weight, creating an extreme difference between the packing density on the lower side and the packing density on the upper side. Then, heat transfer efficiency is required on the upper side, and the problem arises that on the lower side, compaction progresses too much, resulting in insufficient hydrogen gas flow and poor occlusion/desorption efficiency.
しかしながら、図示する様に折り返された熱媒
管11の間を仕切棚12で企画しておけば、上記
の様な問題がなくなり、仕切られた各区画内で効
率よく水素の吸蔵・放出および熱交換が行われる
ことになる。 However, if a partition shelf 12 is used between the folded heat medium pipes 11 as shown in the figure, the above-mentioned problems will be eliminated, and hydrogen storage and release will be carried out efficiently and heat will be efficiently stored and released in each partitioned compartment. An exchange will take place.
フイン付き熱媒管や内容器の構造は特異なもの
ではなく、一般的な熱交換器に使用されるフイン
チユーブ及び容器を改造して用いることができ
る。その他、圧力容器の内・外壁あるいは内容器
のフイルター面を除く外周面を断熱材で被覆して
おけば、圧力容器外部への顕熱ロスを少なくする
ことができるので好ましい。 The structure of the finned heat transfer tube and the inner container is not unique, and the finches and container used in general heat exchangers can be modified and used. In addition, it is preferable to cover the inner and outer walls of the pressure vessel or the outer circumferential surface of the inner vessel, excluding the filter surface, with a heat insulating material, since sensible heat loss to the outside of the pressure vessel can be reduced.
本発明は以上の様に構成されており、必要に応
じて内容器を容易に取り替えることができるの
で、暖房と冷房の運転切替えや水素吸蔵能力が低
下した時の内容器の入れ替えを僅かな労力で行な
えると共に、水素吸蔵用金属は内容器のフイルタ
ー部材を取り外すだけで容易に抜出すことができ
るので、暖房用水素吸蔵用金属あるいは冷房用水
素吸蔵用金属を充填した専用の内容器を用意する
必要もなく、設備的な無駄を省くことができる。
しかも装置内における水素吸蔵用金属の充填密度
を上下方向で均一に維持することができるので、
全体としての水素吸蔵・放出および熱交換を効率
よく遂行することができる。 The present invention is configured as described above, and the inner container can be easily replaced as necessary, so switching between heating and cooling operations or replacing the inner container when the hydrogen storage capacity decreases can be done with little effort. In addition, the hydrogen storage metal can be easily removed by simply removing the filter member of the inner container, so a special inner container filled with hydrogen storage metal for heating or cooling hydrogen storage metal is prepared. There is no need to do this, and equipment waste can be avoided.
Moreover, the filling density of the hydrogen storage metal within the device can be maintained uniformly in the vertical direction.
Hydrogen storage/release and heat exchange can be carried out efficiently as a whole.
しかも内容器の容量を大きくした場合でも、仕
切棚により上下方向の充填密度を均等に保つこと
ができるので、特に大型で水素吸蔵・放出能力の
大きな設備として有効に活用することができる。 Moreover, even when the capacity of the inner container is increased, the vertical packing density can be maintained evenly by the partition shelf, so it can be effectively used as a particularly large-sized facility with a large hydrogen storage and release capacity.
第1図は、従来の水素吸蔵放出型熱交換器を示
す模式図、第2図は、第1図における−線断
面矢視図、第3図は、本発明の水素吸蔵放出型熱
交換器を例示する一部破断展開斜視図、第4図及
び第5図は、金属の水素解離圧と水素解離温度の
関係を示すグラフである。
1,1a:熱交換器、2,2a:圧力容器、
3:充填チユーブ、3a:内容器、10:フイル
ター、11:熱媒流路用管体、M:水素吸蔵用金
属、L:熱媒。
Fig. 1 is a schematic diagram showing a conventional hydrogen storage/release type heat exchanger, Fig. 2 is a cross-sectional view taken along the line - in Fig. 1, and Fig. 3 is a hydrogen storage/release type heat exchanger of the present invention. 4 and 5 are graphs showing the relationship between hydrogen dissociation pressure and hydrogen dissociation temperature of metal. 1, 1a: heat exchanger, 2, 2a: pressure vessel,
3: Filling tube, 3a: Inner container, 10: Filter, 11: Pipe body for heat medium flow path, M: Metal for hydrogen storage, L: Heat medium.
Claims (1)
介しては配設される内容器とからなり、上記水素
ガス圧入容器は、水素導管および熱媒配管が配設
された蓋体と圧力容器本体によつて構成し、一方
前記内容器には、外周面に伝熱促進用フインを設
けた熱媒流路用管体を、上下方向に少なくとも1
回折返して配設すると共に、折返された該管体の
間を仕切棚によつて略水平方向に仕切ることによ
り該内容器内を上下方向に区画し、区画された該
空間には水素吸蔵用金属を充填し、且つ前記内容
器における前記仕切棚と直交する側壁面の少なく
とも一部は着脱自在のフイルター部材で構成し、
前記熱媒流路用管体と上記熱媒配管は前記内容器
の外部において相互に着脱自在に接続すると共
に、前記水素導管は前記空〓内に解放して設けら
れていることを特徴とする水素吸蔵・放出型熱交
換器。1 Consists of a pressure vessel for pressurizing hydrogen gas and an inner container disposed inside the pressure vessel via air, and the hydrogen gas pressurizing vessel consists of a lid body in which a hydrogen conduit and a heat medium pipe are arranged, and a pressure vessel. On the other hand, the inner container has at least one pipe body for a heat medium flow path provided with heat transfer promoting fins on the outer peripheral surface in the vertical direction.
The interior of the inner container is divided vertically by dividing the folded tubes in a substantially horizontal direction with a partition shelf, and the divided space is used for hydrogen storage. filled with metal, and at least a portion of a side wall surface of the inner container perpendicular to the partition shelf is configured with a removable filter member,
The heat medium flow pipe and the heat medium pipe are detachably connected to each other outside the inner container, and the hydrogen conduit is provided so as to be open to the space. Hydrogen storage/release heat exchanger.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10455483A JPS59231393A (en) | 1983-06-10 | 1983-06-10 | Hydrogen occlusion and emission type heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10455483A JPS59231393A (en) | 1983-06-10 | 1983-06-10 | Hydrogen occlusion and emission type heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59231393A JPS59231393A (en) | 1984-12-26 |
JPH056119B2 true JPH056119B2 (en) | 1993-01-25 |
Family
ID=14383682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10455483A Granted JPS59231393A (en) | 1983-06-10 | 1983-06-10 | Hydrogen occlusion and emission type heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59231393A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5723796A (en) * | 1980-07-21 | 1982-02-08 | Kawasaki Heavy Ind Ltd | Structure of heat exchanger utilizing hydrogen storing metal |
JPS5855690A (en) * | 1981-09-30 | 1983-04-02 | Agency Of Ind Science & Technol | Heat accumulating apparatus utilizing hydrogenated metal |
-
1983
- 1983-06-10 JP JP10455483A patent/JPS59231393A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5723796A (en) * | 1980-07-21 | 1982-02-08 | Kawasaki Heavy Ind Ltd | Structure of heat exchanger utilizing hydrogen storing metal |
JPS5855690A (en) * | 1981-09-30 | 1983-04-02 | Agency Of Ind Science & Technol | Heat accumulating apparatus utilizing hydrogenated metal |
Also Published As
Publication number | Publication date |
---|---|
JPS59231393A (en) | 1984-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0891294B1 (en) | Apparatus and methods for storing and releasing hydrogen | |
US4205531A (en) | Method in the cooling of a space and apparatus for carrying out said method | |
US20050051294A1 (en) | Solid filling tank | |
JPH056119B2 (en) | ||
JP2007327534A (en) | Hydrogen storage container and hydrogen occlusion/release device | |
JPS62185192A (en) | Nuclear reactor pressure vessel | |
JPS6116880B2 (en) | ||
JPH09242995A (en) | Square heat transfer vessel filled with hydrogen storage alloy for storing hydrogen | |
JPS591950B2 (en) | Structure of heat exchanger using hydrogen storage metal | |
CN220727904U (en) | Solid-state hydrogen storage device | |
CN206291540U (en) | Condenser and handpiece Water Chilling Units | |
JPH0261401B2 (en) | ||
JPS635677B2 (en) | ||
JP2607677B2 (en) | Generator hydrogen purity maintenance device by metal hydride | |
CN116906806A (en) | Solid-state hydrogen storage device | |
JP2000055300A (en) | Hydrogen storage container | |
JPS60101398A (en) | Hydrogen occluding container | |
JPH056120B2 (en) | ||
JPH0730878B2 (en) | Container for hydrogen storage alloy | |
JPH073250Y2 (en) | Hydrogen storage / desorption heat exchanger | |
JPS635675B2 (en) | ||
CN114593363A (en) | Alloy hydrogen storage tank with fins for heat dissipation | |
JPS5855689A (en) | Structure of heat exchanger utilizing hydrogenated metal | |
JPS635676B2 (en) | ||
JPH04188A (en) | Heat storage unit and heat storage device provided with the heat storage unit |