JPS6311596B2 - - Google Patents

Info

Publication number
JPS6311596B2
JPS6311596B2 JP58030122A JP3012283A JPS6311596B2 JP S6311596 B2 JPS6311596 B2 JP S6311596B2 JP 58030122 A JP58030122 A JP 58030122A JP 3012283 A JP3012283 A JP 3012283A JP S6311596 B2 JPS6311596 B2 JP S6311596B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
opening
gas
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58030122A
Other languages
Japanese (ja)
Other versions
JPS59157485A (en
Inventor
Kenji Yasuda
Kiichi Nagaya
Tsutomu Nakamura
Shinichi Tomita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP58030122A priority Critical patent/JPS59157485A/en
Publication of JPS59157485A publication Critical patent/JPS59157485A/en
Publication of JPS6311596B2 publication Critical patent/JPS6311596B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Packages (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 本発明は化学反応を用いて蓄熱を行なうことの
できる蓄熱装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat storage device that can store heat using chemical reactions.

省エネルギー技術の一環として、各種の蓄エネ
ルギー、蓄熱技術が研究開発され、各種の方法が
提案されている。蓄熱技術には (a) 顕熱蓄熱 (b) 潜熱蓄熱 (c) 化学反応蓄熱 などに分類され、常温においても蓄熱状態を維持
し得る特徴をもつ(c)についての蓄熱物質よる熱輸
送が可能な蓄熱装置が考えられている。
As part of energy saving technology, various energy storage and heat storage technologies have been researched and developed, and various methods have been proposed. Heat storage technology is classified into (a) sensible heat storage, (b) latent heat storage, (c) chemical reaction heat storage, etc., and it is possible to transport heat using heat storage materials for (c), which has the characteristic of maintaining heat storage even at room temperature. A heat storage device is being considered.

すなわち、次のような可逆反応 A・B+QA+B (1) なる反応系があつたとする。 That is, the following reversible reaction A・B+QA+B (1) Suppose we have a reaction system like this.

蓄熱工程では、物質A・BにエネルギーQを加
え、AとBの物質に分解して分離・貯蔵する。Q
は通常熱エネルギーが考えられるが、光、電気な
ど他のエネルギーも利用される。
In the heat storage process, energy Q is added to substances A and B to decompose them into substances A and B, which are then separated and stored. Q
Usually, thermal energy is considered, but other energies such as light and electricity can also be used.

放熱工程では、熱が必要な時にAとBの物質を
反応させることによつて反応熱Qを発生させ、熱
を取り出す。
In the heat dissipation step, when heat is required, reaction heat Q is generated by reacting substances A and B, and the heat is extracted.

この時、物質AとBをそれぞれ化学変化を生じ
ない状態で貯蔵すれば、蓄熱工程と放熱工程の間
に時間的あるいは場所的な隔りがあつても、蓄・
放熱サイクルは成立するので、熱輸送が可能であ
る。
At this time, if substances A and B are stored in a state where no chemical changes occur, even if there is a time or place gap between the heat storage process and the heat release process, the storage and
Since the heat radiation cycle is established, heat transport is possible.

なお、AとBの物質は例えばAが固体、Bが液
体または気体のようにA〜B間が分離し易い状
態、すなわち相の異なつた状態が利用される。
Note that the substances A and B are used in a state in which A and B are easily separated, ie, in a state in which they have different phases, such that A is a solid and B is a liquid or gas.

例えばAとして硫化ナトリウム、Bとして水
(水蒸気)が考えられる。
For example, A may be sodium sulfide, and B may be water (steam).

本発明は、このような一般的な化学反応熱を利
用した蓄熱技術のうち、次のような限定された条
件下で実施される蓄熱装置に関する。
The present invention relates to a heat storage device that is implemented under the following limited conditions among such general heat storage techniques that utilize the heat of chemical reaction.

(1) 蓄熱工程は、廃熱など余剰熱源が存在する場
所Xで実施され、放熱工程はAとBを反応させ
て発生する熱を利用熱源とする場所Yで実施さ
れる。場所Xで蓄熱された物質をYまで輸送、
放熱し、放熱後再蓄熱のために蓄熱物質をXに
再輸送する。
(1) The heat storage process is carried out at location X, where a surplus heat source such as waste heat exists, and the heat dissipation process is carried out at location Y, where the heat generated by reacting A and B is used as the heat source. Transport the material stored in heat at location X to Y,
Heat is released, and after heat release, the heat storage material is transported back to X for restorage.

(2) 輸送される蓄熱物質はAとB、もしくはAと
考える。すなわち、反応物Bが水蒸気のような
通常容易に入手あるいは廃棄できる物質で、X
において分離したBをYまで輸送しなくてもY
で入手できれば放熱反応は可能となるので、こ
の場合Aのみを輸送すれば良いことになる。本
発明では、Bの輸送の有無にかかわらず、蓄熱
物質Aのみの輸送に関する。
(2) The heat storage materials to be transported are considered to be A and B, or A. That is, reactant B is a substance such as water vapor that is normally easily available or discarded, and X
Even if B separated at is not transported to Y, Y
If A is available, a heat dissipation reaction will be possible, so in this case it is only necessary to transport A. The present invention relates to the transportation of only the heat storage material A, regardless of whether or not B is transported.

(3) 反応条件下においては、物質A・BおよびA
は固体粒子、Bは気体である。すなわち、蓄熱
物質Aは、空気と長時間接触すると空気中の酸
素、炭酸ガス、水分などと反応し、変質もしく
は放熱するものである。本発明では、特に人体
と接触すると有害な物質に対して有効である。
(3) Under the reaction conditions, substances A, B and A
is a solid particle and B is a gas. That is, when the heat storage material A comes into contact with air for a long time, it reacts with oxygen, carbon dioxide, moisture, etc. in the air, and changes in quality or radiates heat. The present invention is particularly effective against substances that are harmful when they come into contact with the human body.

上記のような条件下で蓄熱システムを構成する
場合、通常、蓄熱槽を輸送することになるが、こ
れを第1図を例にとつて説明する。第1図は蓄熱
槽の断面図であり、1は蓄熱槽本体、2は多管式
熱交換器の場合は伝熱管、プレート式熱交換器の
場合は伝熱プレートを表わす。3は蓄熱槽への熱
交換流体流入部、4は熱交換流体流出部、5は伝
熱管または伝熱プレート2により熱交換流体と隔
絶された蓄熱物質充填部、6は蓄熱物質充填部5
への蒸気出入部である。
When constructing a heat storage system under the above conditions, the heat storage tank is normally transported, and this will be explained using FIG. 1 as an example. FIG. 1 is a sectional view of a heat storage tank, where 1 represents the heat storage tank body, 2 represents heat transfer tubes in the case of a multi-tubular heat exchanger, and heat transfer plates in the case of a plate heat exchanger. 3 is a heat exchange fluid inflow part to the heat storage tank, 4 is a heat exchange fluid outlet part, 5 is a heat storage material filling part separated from the heat exchange fluid by a heat transfer tube or heat transfer plate 2, and 6 is a heat storage material filling part 5
This is the section where steam enters and exits.

蓄熱工程は次の通りである。すなわち、上記条
件(1)から場所Xには余剰熱源が存在するので、こ
の熱を流体熱媒体を介して流入部3から蓄熱槽へ
導入する。熱媒体は伝熱管または伝熱プレート2
内を通過する間に伝熱壁面を通して充填部5の粒
子層に熱を与えた後、流出部4から排出される。
この与えられた熱によつて反応式(1)の左から右へ
の反応が生じ、Aなる固体とBなる気体が生成す
る。発生した気体Bは蒸気出入部6に取付けられ
たバルブ7を通つて蓄熱槽外に排出され、冷却に
よる凝縮、圧縮による液化、吸収剤による吸収な
どの操作によつて貯蔵部(図示せず)に貯蔵され
る。反応が終了したならば、バルブ7を閉鎖して
充填部5を外気と遮断するとともに、熱交換流体
流入部3、流出部4、バルブ7をこれに接続する
配管部(図示せず)から切り離す。
The heat storage process is as follows. That is, since a surplus heat source exists at the location X based on the above condition (1), this heat is introduced from the inflow portion 3 to the heat storage tank via the fluid heat medium. The heat medium is a heat transfer tube or heat transfer plate 2
After imparting heat to the particle layer in the filling part 5 through the heat transfer wall surface while passing through the inside, the particles are discharged from the outflow part 4.
This applied heat causes a reaction from left to right in reaction formula (1), producing a solid A and a gas B. The generated gas B is discharged to the outside of the heat storage tank through the valve 7 attached to the steam inlet/outlet part 6, and is transferred to a storage part (not shown) through operations such as condensation by cooling, liquefaction by compression, and absorption by an absorbent. stored in When the reaction is completed, the valve 7 is closed to isolate the filling section 5 from the outside air, and the heat exchange fluid inflow section 3, outflow section 4, and valve 7 are separated from the piping section (not shown) that connects them. .

輸送工程では、第1図に示した蓄熱槽部分と、
必要ならばBの貯蔵部とを何らかの輸送手段例え
ばトラツク、鉄道などによつてXからYまで輸送
する。
In the transportation process, the heat storage tank part shown in Figure 1,
If necessary, the storage portion of B is transported from X to Y by some means of transportation, such as a truck or a railway.

放熱工程は次の通りである。すなわち、場所Y
において、熱を回収するための熱媒体の流入配管
部に流入部3を、排出配管部に流出部4を接続す
るとともに、バルブ7を気体Bの導入部(もしく
は同時に輸送してきたBの貯蔵部)に接続する。
そして熱回収媒体を流入部3から流出部4へ流し
ながらバルブ7を開放すると、気体Bが蓄熱物質
充填部5に流入し、反応式(1)の右から左に進む反
応によつて反応熱を発生する。この熱は伝熱管ま
たは伝熱プレート2を通して熱回収媒体に移動し
て回収される。反応終了後は、蓄熱工程終了と同
様、バルブ7を閉鎖し、流入部3、流出部4、バ
ルブ7をこれに接続する配管部から切り離す。
The heat dissipation process is as follows. That is, location Y
, the inflow part 3 is connected to the inflow pipe part of the heat medium for recovering heat, and the outflow part 4 is connected to the discharge pipe part, and the valve 7 is connected to the introduction part of gas B (or to the storage part of B transported at the same time). ).
Then, when the valve 7 is opened while the heat recovery medium is flowing from the inflow part 3 to the outflow part 4, the gas B flows into the heat storage material filling part 5, and the reaction heat is generated by the reaction proceeding from right to left in reaction equation (1). occurs. This heat is transferred to a heat recovery medium through heat transfer tubes or heat transfer plates 2 and is recovered. After the reaction is completed, the valve 7 is closed, and the inflow section 3, the outflow section 4, and the valve 7 are separated from the piping section connected thereto, similarly to the end of the heat storage step.

次の輸送工程では、第1図に示した蓄熱槽部分
と、必要ならばB貯蔵部の空容器とをYからXに
輸送する。そして、流入部3、流出部4、バルブ
7をそれぞれ必要部分に接続し、再び蓄熱工程を
実施する。
In the next transportation step, the heat storage tank portion shown in FIG. 1 and, if necessary, the empty container of the B storage section are transported from Y to X. Then, the inflow part 3, the outflow part 4, and the valve 7 are connected to necessary parts, respectively, and the heat storage process is performed again.

以上が上記条件下における通常の熱輸送可能な
蓄熱装置であるが、この場合の長所および短所を
述べると次のようになる。
The above is a typical heat storage device capable of transporting heat under the above conditions, and the advantages and disadvantages of this case are as follows.

長 所 (イ) 熱交換部から蓄熱物質粒子を分離しなくて良
い。もし、蓄熱物質粒子のみを輸送するとする
と、蓄・放熱工程1サイクル当り、熱交換部へ
の粒子の充填、分離作業をそれぞれ2回ずつ行
なわなければならないが、この方法によれば、
その手間が省け、そのための設備も不要であ
る。
Advantages (a) There is no need to separate heat storage material particles from the heat exchange section. If only the heat storage material particles were to be transported, each cycle of the heat storage/radiation process would require the filling and separation of the particles into the heat exchange section twice, but with this method,
This saves time and requires no equipment.

(ロ) また、蓄・放熱工程から輸送工程に移る際に
も、バルブ7を閉鎖するだけでよく、蓄熱物質
が人体に接触することもなく、外気と遮断され
た状態下で作業が行なえる。
(b) Also, when moving from the heat storage/dissipation process to the transportation process, it is only necessary to close the valve 7, and the heat storage material does not come into contact with the human body, and the work can be carried out in a state where it is isolated from the outside air. .

短 所 (イ) 一般に、固体粒子の熱伝導度は小さく、単位
時間当りの熱移動量を大きくしようとすると、
伝熱面積が増加し、熱交換部重量が増加する。
また、蓄・放熱反応を加圧もしくは減圧で行な
わせる場合が多いが、この時は蓄熱槽を耐圧構
造にする必要から蓄熱槽の外殻部重量も増加す
る。それ故、蓄熱物質粒子のみの輸送に比べる
とはるかに輸送重量が増加する。
Disadvantages (a) Generally, the thermal conductivity of solid particles is low, and if you try to increase the amount of heat transfer per unit time,
The heat transfer area increases and the weight of the heat exchange section increases.
Furthermore, heat storage and heat dissipation reactions are often carried out under increased pressure or reduced pressure, but in this case, the heat storage tank must have a pressure-resistant structure, which increases the weight of the outer shell of the heat storage tank. Therefore, compared to transporting only heat storage material particles, the weight to be transported increases significantly.

(ロ) 輸送工程から蓄・放熱工程に移る際には、少
なくとも熱源あるいは熱回収のための熱媒体の
流出入部の配管部への接続と、反応気体の流出
入部の配管部への接続が必要であり、この接続
に手間がかかる。現在ワンタツチ式接手と呼ば
れるものが入手可能であるが、大口径の配管用
のものは現実には入手困難である。
(b) When moving from the transportation process to the heat storage/radiation process, it is necessary to connect at least the inflow/outflow part of the heat source or heat medium for heat recovery to the piping part, and the connection of the inflow/outflow part of the reaction gas to the piping part. This connection takes time and effort. Currently, what is called a one-touch type joint is available, but it is actually difficult to obtain one for large diameter piping.

本発明は、以上のような事柄を考え、効率的な
熱輸送を行なうことのできる蓄熱装置を提供する
ことを目的とするものである。
The present invention has been made in consideration of the above-mentioned problems, and an object of the present invention is to provide a heat storage device that can efficiently transport heat.

本発明は、上記目的を達成するために、熱媒体
の流入口および流出口を有する熱媒体流通室と気
体出入口を有する気体流通室とこれらの間に形成
されて中央に開口部を有する隔壁とを備え、かつ
前記気体流通室側上端が開放された蓄熱槽外殻部
を設け、前記蓄熱槽外殻部に着脱自在な上蓋を設
け、蓄熱物質が充填されて前記熱媒体流通室内に
位置する充填部と、この充填部に連通して前記開
口部を通して前記気体流通室内に位置する筒状部
と、前記隔壁と係合して前記熱媒体流通室と前記
気体流通室とを仕切る仕切板とを有する内殻部を
設け、この内殻部の筒状部に、その上端に設けた
開口を通つて突出するとともに前記開口を閉鎖す
る方向に付勢された自動弁を設け、前記蓋部に、
蓄熱槽外殻部への装着時に前記自動弁の突出部に
係合して前記開口を開放する方向に押圧する突部
を設けたものであり、上蓋を取り去るだけで自動
弁が閉じられ、内殻槽は輸送できて別の場所で熱
交換が可能となる。このとき輸送工程では外殻槽
を輸送しなくてよいので、輸送重量が大巾に軽減
できるとともに、熱交換部の熱媒体流入口、流出
口や気体出入口への配管部の取り外しは不必要で
あるので作業は簡単であり、しかも、蓄熱物質粒
子の充填取り出しは人体と直接接触することがな
く、また長期間空気と接触することもない状態で
容易に行なえる。
In order to achieve the above object, the present invention provides a heat medium circulation chamber having a heat medium inlet and an outlet, a gas circulation chamber having a gas inlet and outlet, and a partition wall formed between these and having an opening in the center. and a heat storage tank outer shell part with an open upper end on the side of the gas flow chamber, a removable top cover provided on the heat storage tank outer shell part, filled with a heat storage substance and located in the heat medium flow chamber. a filling part, a cylindrical part that communicates with the filling part and is located in the gas circulation chamber through the opening, and a partition plate that engages with the partition wall and partitions the heat medium circulation chamber and the gas circulation chamber. An automatic valve is provided in the cylindrical part of the inner shell part, the automatic valve protrudes through an opening provided at the upper end of the inner shell part and is biased in a direction to close the opening. ,
The automatic valve is provided with a protrusion that engages with the protrusion of the automatic valve and presses the opening in the direction when it is attached to the outer shell of the heat storage tank, and the automatic valve is closed simply by removing the top cover, and the inner part is closed. The shell tank can be transported and heat exchanged at another location. At this time, there is no need to transport the outer shell tank during the transportation process, so the transportation weight can be greatly reduced, and there is no need to remove the piping to the heat medium inlet, outlet, or gas inlet of the heat exchanger. The operation is simple, and the heat storage material particles can be easily filled and removed without coming into direct contact with the human body or with the air for a long period of time.

以下本発明の一実施例を図面に基づいて説明す
る。第2図は本発明の蓄熱装置の断面図である。
11は鉄、ステンレスなどの通常の金属材料から
なる蓄熱槽外殻部で、下部の熱媒体流通室12と
上部の気体流通室13とからなつている。14は
蓄熱槽内殻部で、下部に前記熱媒体流通室12に
収まる程度の大きさの、蓄熱物質15のための充
填部16が設けられ、上部に前記蓄熱物質充填部
16に連通するとともに、前記気体流通室13内
に突出する筒状部17が設けられ、中間部に設け
られた仕切板18は外殻部11の熱媒体流通室1
2と気体流通室13の間に設けられた中央に開口
部を有する隔壁19上にOリング20を介して載
置され、前記熱媒体流通室12と気体流通室13
はこれにより分離されている。また、筒状部17
の頂部には、通常はバネ21により筒状部17の
頂部の開口を閉塞する方向の上方に付勢される自
動弁22を有し、上蓋23が閉じられた時にその
裏面に突設された突部24によりバネ21に抗し
て押されて開弁するようになつている。前記上蓋
23は止め具25によりワンタツチ式に開閉が可
能であり、Oリング26を介して外殻部11を密
封できる構造になつている。27は内殻部14の
蓄熱物質充填部16の外周に設けられたフイン
で、蓄熱物質15の伝熱を促進する。28は仕切
板18に設置された吊り下げ具で、内殻部14の
外殻部11からの取り出し、取り入れに使用す
る。29と30は熱媒体流通室12と連通するよ
うに外殻部11下部に設けられた熱媒体流入口と
流出口、31は気体流通室13と連通するように
外殻部11上部に設けられた反応気体のための気
体出入口である。
An embodiment of the present invention will be described below based on the drawings. FIG. 2 is a sectional view of the heat storage device of the present invention.
Reference numeral 11 denotes a heat storage tank outer shell made of a common metal material such as iron or stainless steel, and is composed of a lower heat medium flow chamber 12 and an upper gas flow chamber 13. Reference numeral 14 designates an inner shell portion of the heat storage tank, in which a filling portion 16 for the heat storage material 15 is provided at the lower part and is large enough to fit in the heat medium circulation chamber 12, and the upper portion communicates with the heat storage material filling portion 16. , a cylindrical part 17 protruding into the gas circulation chamber 13 is provided, and a partition plate 18 provided in the middle part is connected to the heat medium circulation chamber 1 of the outer shell part 11.
The heating medium circulation chamber 12 and the gas circulation chamber 13 are placed on a partition wall 19 having an opening in the center provided between the heat medium circulation chamber 12 and the gas circulation chamber 13 via an O-ring 20.
are separated by this. Moreover, the cylindrical part 17
It has an automatic valve 22 on the top of which is normally biased upward in the direction of closing the opening at the top of the cylindrical part 17 by a spring 21, and is provided protruding from the back surface of the top lid 23 when the top lid 23 is closed. The valve is opened by being pushed by the protrusion 24 against the spring 21. The upper cover 23 can be opened and closed in a one-touch manner using a stopper 25, and has a structure in which the outer shell 11 can be sealed via an O-ring 26. Reference numeral 27 denotes a fin provided on the outer periphery of the heat storage material filling portion 16 of the inner shell portion 14, which promotes heat transfer of the heat storage material 15. A hanging tool 28 is installed on the partition plate 18 and is used to take out and take in the inner shell part 14 from the outer shell part 11. 29 and 30 are provided at the bottom of the outer shell 11 to communicate with the heat medium circulation chamber 12, and 31 are provided at the top of the outer shell 11 to communicate with the gas circulation chamber 13. This is the gas inlet/outlet for the reactant gas.

蓄熱物質の装填工程では、外殻部11の上蓋2
3を開放し、吊り下げ具28を利用して内殻部1
4を隔壁19上にセツトし、Oリング26を押し
付けることによりシールする。次に上蓋23を止
め具25で閉じるが、この時上蓋23の突部24
によつて自動弁22が下方に押されることによつ
て開弁し、内殻部14の蓄熱物質充填部16の内
部と外殻部11の気体流通室13が連通される。
In the step of loading the heat storage material, the upper lid 2 of the outer shell portion 11 is
3, and using the hanging tool 28, remove the inner shell part 1.
4 on the partition wall 19 and seal by pressing the O-ring 26. Next, the upper lid 23 is closed with the stopper 25, but at this time, the protrusion 24 of the upper lid 23
The automatic valve 22 is opened by being pushed downward, and the inside of the heat storage material filling part 16 of the inner shell part 14 and the gas circulation chamber 13 of the outer shell part 11 are communicated with each other.

蓄熱工程では、流入口29から熱源用流体が流
入し、充填部16内の蓄熱物質15に熱を与え、
流出口30から排出される。加熱された蓄熱物質
15は反応式(1)の左から右へ進む反応によつて気
体Bを発生し、気体流通室13を経て気体出入口
31から排出され、図示されていないが、凝縮、
加圧などによる液化などの方法で貯蔵もしくは廃
棄される。
In the heat storage step, the heat source fluid flows in from the inlet 29 and gives heat to the heat storage material 15 in the filling part 16,
It is discharged from the outlet 30. The heated heat storage material 15 generates gas B by the reaction proceeding from left to right in reaction formula (1), which is discharged from the gas inlet/outlet 31 via the gas distribution chamber 13, and condenses, although not shown in the figure.
It is stored or disposed of by methods such as liquefaction under pressure.

放熱工程では逆に気体出入口31から気体Bが
供給され、蓄熱物質に吸収されて反応式(1)の右か
ら左への反応が生じ、熱を発生する。この熱は流
入口29から流入する熱回収用流体に伝熱され、
流出口30から回収される。
In the heat dissipation process, on the contrary, gas B is supplied from the gas inlet/outlet 31, is absorbed by the heat storage material, and a reaction occurs from right to left in reaction formula (1), generating heat. This heat is transferred to the heat recovery fluid flowing in from the inlet 29,
It is collected from the outlet 30.

蓄熱物質の取り出し工程では、蓄熱もしくは放
熱工程終了後、装填工程とは逆に上蓋23を開放
すれば、自動的に自動弁22が閉弁され、内殻部
14を吊り下げ具28を利用して上方に引き上
げ、この部分だけを適切な輸送手段によつて次の
工程を行う場所に輸送する。
In the process of taking out the heat storage material, when the top cover 23 is opened after the heat storage or heat dissipation process is completed, contrary to the loading process, the automatic valve 22 is automatically closed, and the inner shell part 14 is suspended using the hanging tool 28. This part is then transported by suitable means of transport to the location where the next process will be carried out.

以上本発明によれば、蓄放熱を別の場所で行う
場合、次のような効果を得ることができる。
As described above, according to the present invention, when heat storage and radiation is performed at another location, the following effects can be obtained.

(イ) 蓄熱、放熱工程でそれぞれ蓄熱物質粒子を充
填した部分の切り離し、取り付け作業は必要で
あるが、蓄熱物質粒子が人体と接触することも
なく、また空気と長時間接触することもなしに
容易に行なえる。
(b) Although it is necessary to separate and attach the parts filled with heat storage material particles in the heat storage and heat dissipation processes, the heat storage material particles do not come into contact with the human body or come into contact with the air for a long time. Easy to do.

(ロ) 蓄熱物質粒子を充填した部分だけを輸送する
ので、輸送重量が大巾に軽減される。
(b) Since only the portion filled with heat storage material particles is transported, the transport weight is greatly reduced.

(ハ) 蓄熱槽と、熱源および熱回収のための熱媒体
の配管や反応気体出入口の取り外しは不必要
で、簡単な操作で蓄・放熱工程が行なえる。
(c) It is not necessary to remove the heat storage tank, heat source and heat medium piping for heat recovery, and reaction gas inlet and outlet, and the heat storage and release process can be performed with simple operations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は通常の蓄熱槽の一例を示す断面図、第
2図は本発明に使用する蓄熱槽の一実施例を示す
断面図である。 11……蓄熱槽外殻部、12……熱媒体流通
室、13……気体流通室、14……蓄熱槽内殻
部、15……蓄熱物質、16……蓄熱物質充填
部、18……仕切板、22……自動弁、23……
上蓋、24……突部、25……止め具、28……
吊り下げ具、29,30……熱媒体流入口および
流出口、31……気体出入口。
FIG. 1 is a sectional view showing an example of a normal heat storage tank, and FIG. 2 is a sectional view showing an embodiment of the heat storage tank used in the present invention. DESCRIPTION OF SYMBOLS 11... Heat storage tank outer shell part, 12... Heat medium circulation chamber, 13... Gas circulation chamber, 14... Heat storage tank inner shell part, 15... Heat storage material, 16... Heat storage material filling part, 18... Partition plate, 22... Automatic valve, 23...
Upper lid, 24... protrusion, 25... stopper, 28...
Hanging tool, 29, 30... heat medium inlet and outlet, 31... gas inlet/outlet.

Claims (1)

【特許請求の範囲】[Claims] 1 熱媒体の流入口および流出口を有する熱媒体
流通室と気体出入口を有する気体流通室とこれら
の間に形成されて中央に開口部を有する隔壁とを
備え、かつ前記気体流通室側上端が開放された蓄
熱槽外殻部を設け、前記蓄熱槽外殻部に着脱自在
な上蓋を設け、蓄熱物質が充填されて前記熱媒体
流通室内に位置する充填部と、この充填部に連通
して前記開口部を通して前記気体流通室内に位置
する筒状部と、前記隔壁と係合して前記熱媒体流
通室と前記気体流通室とを仕切る仕切板とを有す
る内殻部を設け、この内殻部の筒状部に、その上
端に設けた開口を通つて突出するとともに前記開
口を閉鎖する方向に付勢された自動弁を設け、前
記蓋部に、蓄熱槽外殻部への装着時に前記自動弁
の突出部に係合して前記開口を開放する方向に押
圧する突部を設けたことを特徴とする蓄熱装置。
1. A heating medium distribution chamber having an inlet and an outlet for a heating medium, a gas distribution chamber having a gas inlet and an outlet, and a partition wall formed between these and having an opening in the center, and the upper end on the side of the gas distribution chamber is An open outer shell of the heat storage tank is provided, a removable top lid is provided on the outer shell of the heat storage tank, and the filled part is in communication with a filling part filled with a heat storage material and located in the heat medium circulation chamber. an inner shell portion having a cylindrical portion located in the gas flow chamber through the opening, and a partition plate that engages with the partition wall to partition the heat medium flow chamber and the gas flow chamber; The cylindrical part of the part is provided with an automatic valve that protrudes through an opening provided at the upper end thereof and is biased in a direction to close the opening, and the lid part is provided with an automatic valve that protrudes through an opening provided at the upper end of the part and is biased in a direction to close the opening. A heat storage device comprising a protrusion that engages with a protrusion of an automatic valve and presses the opening in a direction to open the opening.
JP58030122A 1983-02-23 1983-02-23 Heat storage material transporting method Granted JPS59157485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58030122A JPS59157485A (en) 1983-02-23 1983-02-23 Heat storage material transporting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58030122A JPS59157485A (en) 1983-02-23 1983-02-23 Heat storage material transporting method

Publications (2)

Publication Number Publication Date
JPS59157485A JPS59157485A (en) 1984-09-06
JPS6311596B2 true JPS6311596B2 (en) 1988-03-15

Family

ID=12294972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58030122A Granted JPS59157485A (en) 1983-02-23 1983-02-23 Heat storage material transporting method

Country Status (1)

Country Link
JP (1) JPS59157485A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127505A (en) * 2008-11-26 2010-06-10 Keio Gijuku Method of forming hydrate, heat storage material and heat storage device
JP7206951B2 (en) * 2019-01-25 2023-01-18 いすゞ自動車株式会社 heat storage system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755395A (en) * 1980-09-17 1982-04-02 Sekisui Chem Co Ltd Portable heating or cooling device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755395A (en) * 1980-09-17 1982-04-02 Sekisui Chem Co Ltd Portable heating or cooling device

Also Published As

Publication number Publication date
JPS59157485A (en) 1984-09-06

Similar Documents

Publication Publication Date Title
GB1594307A (en) Heat transfer apparatus
JPS6311596B2 (en)
JPS5833097A (en) Heat accumulating device
JPH02247598A (en) Cooler for heat generating member
JPS635677B2 (en)
JPS635676B2 (en)
JPS6166089A (en) Chemical reaction heat storage device
JPS5925956B2 (en) metal hydride container
JPS635675B2 (en)
JPS57142488A (en) Recovering apparatus for waste heat
JPS58127047A (en) Heat regenerative type hot water supply system
JPH0128304B2 (en)
JPH03282190A (en) Heat accumulating device
JPH02290478A (en) Direct contact type condenser and heat cycle apparatus using the same
JPS5925955B2 (en) Metal hydride heat storage device
JPH04126961A (en) Chemical heat accumulative heat pump
JP2573862B2 (en) Heat storage device
JPS63259391A (en) Chemical heat storage apparatus
JPS6350624Y2 (en)
JPS5852560Y2 (en) Closed cleaning equipment
JPS6249100A (en) Metal hydride container
JPH044510B2 (en)
JPS6020679B2 (en) Heat exchanger
GB2132327A (en) Heat transfer apparatus
JPS63143493A (en) Heat exchanger for chemical heat accumulator