JP2016008744A - Heat transport system using chemical heat storage element repeating heat storage and heat radiation by reversible reaction - Google Patents

Heat transport system using chemical heat storage element repeating heat storage and heat radiation by reversible reaction Download PDF

Info

Publication number
JP2016008744A
JP2016008744A JP2014128504A JP2014128504A JP2016008744A JP 2016008744 A JP2016008744 A JP 2016008744A JP 2014128504 A JP2014128504 A JP 2014128504A JP 2014128504 A JP2014128504 A JP 2014128504A JP 2016008744 A JP2016008744 A JP 2016008744A
Authority
JP
Japan
Prior art keywords
heat
heat storage
reactor
chemical
storage body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014128504A
Other languages
Japanese (ja)
Inventor
堀井 雄介
Yusuke Horii
雄介 堀井
竹村 晋一
Shinichi Takemura
晋一 竹村
万里明 岩間
Masahiro Iwama
万里明 岩間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014128504A priority Critical patent/JP2016008744A/en
Publication of JP2016008744A publication Critical patent/JP2016008744A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/003Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0004Particular heat storage apparatus
    • F28D2020/0026Particular heat storage apparatus the heat storage material being enclosed in mobile containers for transporting thermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat transport system A using a chemical heat storage element repeating heat storage and heat radiation by a reversible reaction and capable of greatly reducing a transport cost per unit calorific value, and a reactor used in the system and including means for increasing a reaction speed.SOLUTION: A heat transport system A using a chemical heat storage element 20 repeating heat storage and heat radiation by a reversible reaction comprises: a heat storage-side device B; a heat use-side device C; and chemical-heat-storage-element conveyance means D. The chemical-heat-storage-element conveyance means D conveys only the chemical heat storage element 20 between the heat storage-side device B and the heat use-side device C, and circulates the chemical heat storage element 20 between the heat storage-side device B and the heat use-side device C. A reactor 10 (50) used in each device includes means for agitating and fluidizing the chemical heat storage element 20 inside.

Description

本発明は、可逆的反応により蓄熱と放熱を繰り返す化学蓄熱体を用いた熱輸送システムと、そこで用いる反応器に関する。   The present invention relates to a heat transport system using a chemical heat storage body that repeats heat storage and heat release by a reversible reaction, and a reactor used there.

可逆的反応により蓄熱と放熱を繰り返す化学蓄熱体を用いて熱を輸送するシステムが知られている。その一例が特許文献1に記載されており、そこでは、化学的蓄熱反応部と凝縮部とを備え、可逆的反応により蓄熱と放熱を繰り返すことを可能としたケミカルヒートポンプを1つのコンテナとして組み上げ、そのコンテナの全体を車両に載せることで、生成する熱の輸送を図るようにしている。   There is known a system for transporting heat using a chemical heat storage body that repeats heat storage and heat release by a reversible reaction. One example is described in Patent Document 1, in which a chemical heat pump that includes a chemical heat storage reaction section and a condensation section, and that can repeat heat storage and heat release by a reversible reaction, is assembled as one container, By transporting the entire container on a vehicle, the generated heat is transported.

特開2008−025853号公報JP 2008-025853 A

特許文献1に記載されるシステムは、コンテナ内に反応の司る装置を収容した状態で搬送するものであり、車両での運搬が可能となる利点があるが、化学的蓄熱反応部や凝縮部といった反応系部材の容器体積が大きくならざるを得ず、容積当たりの蓄熱密度が低下して単位熱量当たりの輸送コストが大きくなるのを避けられないという不都合がある。   The system described in Patent Document 1 is transported in a state in which a device for reaction is accommodated in a container, and has an advantage of being able to be transported by a vehicle, such as a chemical heat storage reaction section and a condensation section. There is an inconvenience that the container volume of the reaction system member is inevitably increased, and it is inevitable that the heat storage density per volume decreases and the transportation cost per unit calorie increases.

本発明は、その課題を解決することを目的としており、可逆的反応により蓄熱と放熱を繰り返す化学蓄熱体を用いた熱輸送システムにおいて、単位熱量当たりの輸送コストを大きく低減することができるようにした熱輸送システムを提供することを課題とする。また、そのシステムで用いる反応器であって反応速度を向上させる手段を備えた反応器を提供することを課題とする。   An object of the present invention is to solve the problem, and in a heat transport system using a chemical heat storage body that repeatedly stores and releases heat by a reversible reaction, the transport cost per unit heat quantity can be greatly reduced. It is an object to provide an improved heat transport system. Another object of the present invention is to provide a reactor that is used in the system and includes a means for improving the reaction rate.

本発明による熱輸送システムは、可逆的反応により蓄熱と放熱を繰り返す化学蓄熱体を用いる熱輸送システムであって、前記熱輸送システムは蓄熱側装置と熱利用側装置と化学蓄熱体運搬手段を備え、前記蓄熱側装置は化学蓄熱体に蓄熱反応を生じさせる反応器と前記反応器に放熱済み化学蓄熱体を投入しかつ蓄熱後の化学蓄熱体を取り出す蓄熱側蓄熱体搬送手段を少なくとも有し、前記熱利用側装置は化学蓄熱体に放熱反応を生じさせる反応器と前記反応器に蓄熱後の化学蓄熱体を投入しかつ放熱済みの化学蓄熱体を取り出す放熱側蓄熱体搬送手段を少なくとも有し、前記化学蓄熱体運搬手段は前記蓄熱側蓄熱体搬送手段と放熱側蓄熱体搬送手段との間で化学蓄熱体の運搬を行うことで化学蓄熱体を前記蓄熱側装置と熱利用側装置との間で循環させることを特徴とする。   The heat transport system according to the present invention is a heat transport system using a chemical heat storage body that repeats heat storage and heat release by a reversible reaction, and the heat transport system includes a heat storage side device, a heat utilization side device, and a chemical heat storage material transport means. The heat storage side device has at least a heat storage side heat storage body conveying means for introducing a heat storage reaction to the chemical heat storage body and putting the radiated chemical heat storage body into the reactor and taking out the chemical heat storage body after the heat storage, The heat utilization side device includes at least a reactor for causing a heat radiation reaction in the chemical heat storage body and a heat radiation side heat storage body transporting means for charging the chemical heat storage body after storing heat into the reactor and taking out the heat radiated chemical heat storage body. The chemical heat storage body transporting means transfers the chemical heat storage body between the heat storage side apparatus and the heat utilization side apparatus by transporting the chemical heat storage body between the heat storage side heat storage body transport means and the heat radiation side heat storage body transport means. Between Characterized in that to the ring.

本発明による熱輸送システムでは、可逆的反応により蓄熱と放熱を繰り返す化学蓄熱体を用いる熱輸送システムを、蓄熱側装置と熱利用側装置と化学蓄熱体運搬手段の3つの主要要素で構成している。そして、蓄熱側装置で化学蓄熱体を蓄熱した状態とされ、蓄熱された状態の化学蓄熱体は化学蓄熱体運搬手段により熱利用側装置に運搬される。熱利用側装置では蓄熱された化学蓄熱体を化学蓄熱体運搬手段から受け取り、その熱を取り出して熱利用部に供給する。放熱済みの化学蓄熱体は、再度、化学蓄熱体運搬手段に乗せられて蓄熱側装置まで運搬され再度蓄熱処理が施される。   In the heat transport system according to the present invention, a heat transport system using a chemical heat storage body that repeats heat storage and heat release by a reversible reaction is composed of three main elements: a heat storage side device, a heat utilization side device, and a chemical heat storage body transport means. Yes. And it is set as the state which heat-stored the chemical heat storage body with the heat storage side apparatus, and the chemical heat storage body of the state stored heat is conveyed to the heat utilization side apparatus by a chemical heat storage body conveyance means. In the heat utilization side device, the stored chemical heat storage body is received from the chemical heat storage body transporting means, and the heat is taken out and supplied to the heat utilization section. The heat-removed chemical heat storage body is again placed on the chemical heat storage body transporting means, transported to the heat storage side device, and subjected to heat storage heat treatment again.

上記のように、本発明による熱輸送システムでは、化学蓄熱体運搬手段は、化学蓄熱体本体のみを運搬して蓄熱側装置と熱利用側装置との間を循環させるようにしており、運搬時の蓄熱密度は大きく向上する。それにより、単位熱量当たりの輸送コストを大きく低減することができる。また、蓄熱側装置と熱利用側装置とをそれぞれ独立した装置とすることにより、熱エネルギーの時間的・空間的な需要のギャップを効果的に解消することができる。   As described above, in the heat transport system according to the present invention, the chemical heat storage body transporting means transports only the chemical heat storage body main body and circulates between the heat storage side apparatus and the heat utilization side apparatus, The heat storage density is greatly improved. Thereby, the transportation cost per unit calorie | heat amount can be reduced significantly. Further, by making the heat storage side device and the heat utilization side device independent from each other, the gap between the temporal and spatial demands of thermal energy can be effectively eliminated.

本発明において、化学蓄熱体は可逆的反応により蓄熱と放熱を繰り返す物質であれば制限はない。可逆的反応も、可逆的化学反応に限らず、発熱、吸熱を伴う吸着反応であってもよい。化学蓄熱体は、成形体であってもよく、粉体での使用であってもよい。   In the present invention, the chemical heat storage body is not limited as long as it is a substance that repeatedly stores and releases heat by a reversible reaction. The reversible reaction is not limited to a reversible chemical reaction, and may be an adsorption reaction with exotherm and endotherm. The chemical heat storage body may be a molded body or may be used in powder form.

本発明による熱輸送システムにおいて、前記化学蓄熱体として水和反応を伴う物質を用いる場合には、前記蓄熱側装置は反応器への熱供給手段と反応により生じた水(水蒸気)の回収手段を備え、前記熱利用側装置は反応器への水(水蒸気)の供給手段と反応により生じた熱の回収手段を備える。より好ましくは、その態様において、前記蓄熱側装置は蓄熱反応で生じる水蒸気を凝縮するための凝縮器を備える、また、前記熱利用側装置は反応器へ供給する水を水蒸気化するための蒸発器を備える。   In the heat transport system according to the present invention, when a substance with a hydration reaction is used as the chemical heat storage body, the heat storage side device has a heat supply means to the reactor and a means for collecting water (steam) generated by the reaction. The heat utilization side device includes a means for supplying water (steam) to the reactor and a means for recovering heat generated by the reaction. More preferably, in the embodiment, the heat storage side device includes a condenser for condensing water vapor generated by the heat storage reaction, and the heat utilization side device is an evaporator for steaming water supplied to the reactor. Is provided.

本発明は、さらに、上記したいずれかの熱輸送システムで用いる反応器であって、反応器の内部で化学蓄熱体を撹拌し流動させるための手段を備えることを特徴とする反応器をも開示する。化学蓄熱体を撹拌し流動させるための手段は任意であってよい。例として、反応器の内部に備えたフィン、反応器に付設する揺動台、あるいは反応器に回転を与える回転用ローラー等を挙げることができる。   The present invention further discloses a reactor used in any of the above-described heat transport systems, the reactor comprising means for stirring and flowing the chemical heat storage body inside the reactor. To do. Means for stirring and flowing the chemical heat storage may be arbitrary. Examples include fins provided inside the reactor, a swinging table attached to the reactor, a rotating roller that rotates the reactor, and the like.

反応器が上記のような化学蓄熱体を撹拌し流動させるための手段を備えることにより、蓄熱反応時および放熱反応時に、化学蓄熱体と雰囲気ガスおよび反応器の壁面との接触面積を大きくすることができ、伝熱速度やガス拡散速度を向上させることが可能となる。   Increasing the contact area between the chemical heat storage body and the atmospheric gas and the reactor wall surface during the heat storage reaction and the heat release reaction by providing the reactor with means for stirring and flowing the chemical heat storage body as described above It is possible to improve the heat transfer rate and gas diffusion rate.

本発明によれば、可逆的反応により蓄熱と放熱を繰り返す化学蓄熱体を用いる熱輸送システムであって、単位熱量当たりの輸送コストを大きく低減することのできる熱輸送システムが提供される。また、そのシステムで用いる反応器として、伝熱速度やガス拡散速度を向上させることのできる反応器が提供される。   ADVANTAGE OF THE INVENTION According to this invention, it is a heat transport system using the chemical heat storage body which repeats heat storage and heat dissipation by reversible reaction, Comprising: The heat transport system which can reduce the transportation cost per unit calorie | heat_amount greatly is provided. Moreover, the reactor which can improve a heat-transfer rate and a gas diffusion rate is provided as a reactor used with the system.

本発明による熱輸送システムの一実施の形態を説明する模式的図。The schematic diagram explaining one Embodiment of the heat-transport system by this invention. 本発明による熱輸送システムで用いる反応器の一実施の形態を示す模式的図。The schematic diagram which shows one Embodiment of the reactor used with the heat transport system by this invention. 本発明による熱輸送システムで用いる反応器の他の実施の形態を示す2つの模式的図。Two schematic diagrams showing another embodiment of the reactor used in the heat transport system according to the present invention.

以下、図面を参照しながら、本発明による熱輸送システムおよびそこで用いる反応器の実施の形態を説明する。図1は、本発明による熱輸送システムの一実施の形態の全体を示す模式的図であり、熱輸送システムAは、基本的構成として、蓄熱側装置Bと熱利用側装置Cと化学蓄熱体運搬手段Dとを備える。なお、以下では、可逆的反応により蓄熱と放熱を繰り返す化学蓄熱体として、MgO+HO⇔Mg(OH)の可逆的化学反応を使用する成形体を例として説明するが、これは例示であって、後に記載するように、化学蓄熱体はこれに限らない。 Hereinafter, embodiments of a heat transport system according to the present invention and a reactor used therein will be described with reference to the drawings. FIG. 1 is a schematic diagram showing the entirety of an embodiment of a heat transport system according to the present invention. The heat transport system A has a heat storage side device B, a heat utilization side device C, and a chemical heat storage body as a basic configuration. A transportation means D; In the following, a molded body using a reversible chemical reaction of MgO + H 2 O⇔Mg (OH) 2 will be described as an example as a chemical heat storage body that repeats heat storage and heat release by a reversible reaction. As described later, the chemical heat storage body is not limited to this.

[蓄熱側装置B]
蓄熱側装置Bは、化学蓄熱体20に蓄熱反応を生じさせる反応器10と、前記反応器10に放熱済み化学蓄熱体20(20a)を投入しかつ蓄熱後の化学蓄熱体20(20b)を取り出すための蓄熱側蓄熱体搬送手段30aとを有する。
[Heat storage side device B]
The heat storage side device B includes a reactor 10 that causes the chemical heat storage body 20 to generate a heat storage reaction, and a chemical heat storage body 20 (20b) that has been radiated heat and is stored in the reactor 10. It has the heat storage side heat storage body conveyance means 30a for taking out.

反応器10は、投入される放熱済み化学蓄熱体20a(Mg(OH))を加熱して、Mg(OH)→MgO+HOの反応を生じさせるためのものであり、この例では、熱源として工業炉・ボイラなどを廃熱源1とし、その廃熱を熱交換器2を介して熱媒油3に顕熱として回収し、その熱を反応器10に供給している。熱媒油3は、熱媒油循環ポンプ4によって反応器10内と熱交換器2との間を循環するようにされている。安全性の観点から、熱媒油3の循環系には熱媒油膨張タンク5が備えられている。 The reactor 10 is for heating the heat-dissipated chemical heat storage body 20a (Mg (OH) 2 ) to cause a reaction of Mg (OH) 2 → MgO + H 2 O. In this example, An industrial furnace, a boiler, or the like is used as a heat source as a heat source, and the waste heat is recovered as sensible heat in a heat transfer oil 3 via a heat exchanger 2 and the heat is supplied to the reactor 10. The heat medium oil 3 is circulated between the reactor 10 and the heat exchanger 2 by a heat medium oil circulation pump 4. From the viewpoint of safety, the circulation system of the heat medium oil 3 is provided with a heat medium oil expansion tank 5.

図2は、反応器10の概略を断面で示している。反応器10は二重殻構造の円筒形のものであり、内殻10aと外殻10bとの間に熱媒油3を循環する熱媒流路11を有し、内殻10aの内部に化学蓄熱体20を保有できる構造となっている。熱媒流路11内を加熱された熱媒油3が循環することで、反応器10の内部は加熱される。図示しないが、外殻10bの外側は適宜の保温材で覆われている。反応器10の内部と外部で水蒸気を出し入れするための蒸気流路12が設けられており、蒸気流路12を介して蒸気が反応器10の内殻10aの内部に供給される。蒸気流路12の先端には化学蓄熱材20が蒸気流路12内に流入するのを防止するためのストレーナ13が設けられている。図1に示すように、蒸気流路12は、凝縮器6および真空ポンプ7に接続しており、凝縮器6には冷却塔8からの冷却水が供与される。なお、この種の凝縮器6自体は従来知られたものであり、詳細な説明は省略する。   FIG. 2 schematically shows the reactor 10 in cross section. The reactor 10 has a cylindrical shape with a double shell structure, and has a heat medium flow path 11 for circulating the heat medium oil 3 between the inner shell 10a and the outer shell 10b, and a chemical inside the inner shell 10a. The heat storage body 20 can be held. As the heated heat medium oil 3 circulates in the heat medium flow path 11, the inside of the reactor 10 is heated. Although not shown, the outer side of the outer shell 10b is covered with an appropriate heat insulating material. A steam channel 12 for taking in and out water vapor inside and outside the reactor 10 is provided, and steam is supplied into the inner shell 10 a of the reactor 10 through the steam channel 12. A strainer 13 for preventing the chemical heat storage material 20 from flowing into the steam channel 12 is provided at the tip of the steam channel 12. As shown in FIG. 1, the steam flow path 12 is connected to a condenser 6 and a vacuum pump 7, and cooling water from a cooling tower 8 is supplied to the condenser 6. In addition, this kind of condenser 6 itself is conventionally known, and detailed description is abbreviate | omitted.

反応器10の回転部(反応器10本体)と固定部(熱媒流路11や蒸気流路12)とは真空をシールできるロータリージョイント14を介して接続されており、該ロータリージョイント14内を前記熱媒流路11および蒸気流路12が通過している。また、反応器10の内部には、撹拌と伝熱促進用の適数枚のフィン15が軸方向にほぼ平行に取り付けられている。さらに、反応器10のロータリージョイント14側とは反対の側には、化学蓄熱体20を内部に投入し、また取り出すための投入出口16が設けられている。   The rotating part (reactor 10 main body) of the reactor 10 and the fixed part (the heat medium flow path 11 and the steam flow path 12) are connected via a rotary joint 14 that can seal a vacuum. The heat medium passage 11 and the steam passage 12 pass therethrough. In addition, an appropriate number of fins 15 for stirring and heat transfer promotion are attached in the reactor 10 substantially in parallel to the axial direction. Further, a charging outlet 16 is provided on the side opposite to the rotary joint 14 side of the reactor 10 for charging and removing the chemical heat storage body 20 therein.

反応器10全体は台座19によって支持されており、この例では、回転用ローラー17を備えた揺動台18を介して、台座19上に回動および揺動自在に支持されている。図示しない駆動機構によって回転用ローラー17には回転が与えられ、回転用ローラー17の回転力によって反応器10は、図1の矢印で示すように回動する。また、図示の例では、図示しない駆動機構によって、揺動台18には支軸18aを回転中心とする揺動運動が与えられ、それにより、反応器10は回転用ローラー17と共に揺動する。   The entire reactor 10 is supported by a pedestal 19. In this example, the reactor 10 is supported on the pedestal 19 via a swinging table 18 provided with a rotation roller 17 so as to be rotatable and swingable. Rotation is given to the rotation roller 17 by a drive mechanism (not shown), and the reactor 10 is rotated by the rotational force of the rotation roller 17 as shown by the arrow in FIG. Further, in the illustrated example, a swinging motion about the support shaft 18 a is given to the swing base 18 by a drive mechanism (not shown), whereby the reactor 10 swings together with the rotation roller 17.

蓄熱側蓄熱体搬送手段30aは気密可能な運搬パレット31を有している。該運搬パレット31は、放熱済み化学蓄熱体20aを反応器10に設けた投入出口16を通して反応器10の内部に投入し、さらに投入出口16から排出される蓄熱後の化学蓄熱体20bを受け取るために用いられる。   The heat storage side heat storage body conveyance means 30a has the conveyance pallet 31 which can be airtight. The transport pallet 31 inputs the heat-removed chemical heat storage body 20a into the reactor 10 through the input / output port 16 provided in the reactor 10, and further receives the chemical heat storage body 20b after heat storage discharged from the input / output port 16. Used for.

[熱利用側装置C]
熱利用側装置Cは、化学蓄熱体に放熱反応を生じさせる反応器50と、前記反応器50に蓄熱後の化学蓄熱体20(20b)を投入しかつ放熱済みの化学蓄熱体20(20a)を取り出すための熱利用側蓄熱体搬送手段30bとを有する。
[Heat utilization side device C]
The heat utilization side device C has a reactor 50 for causing a heat dissipation reaction in the chemical heat storage body, and a chemical heat storage body 20 (20b) after heat storage in the reactor 50, and the heat release side chemical heat storage body 20 (20a). And a heat utilization side heat storage body conveying means 30b for taking out the heat.

反応器50は、投入される蓄熱後の化学蓄熱体20b(MgO)に水蒸気を付与して、MgO+HO→Mg(OH)の反応を生じさせるためのものであり、反応器50自体の構造は、図2に示した蓄熱側装置Bで用いられる反応器10と同じであってよく、説明は省略する。熱利用側装置Cは蒸発器61を備えており、該蒸発器61の内部に純水装置62より純水が供給される。蒸発器61には適宜の手段で蒸気潜熱が供給され、発生した蒸気が前記蒸気流路12を通して反応器50の内部に供給される。好ましくは、化学蓄熱体20の反応速度の向上のため、反応器50の内部および蒸発器61の内部を真空にするための真空ポンプ63が備えられる。この種の蒸発器61自体は従来知られたものであり、詳細な説明は省略する。 The reactor 50 is used to cause the reaction of MgO + H 2 O → Mg (OH) 2 by applying water vapor to the chemical heat storage body 20b (MgO) after heat storage to be input. The structure may be the same as that of the reactor 10 used in the heat storage side device B shown in FIG. The heat utilization side device C includes an evaporator 61, and pure water is supplied into the evaporator 61 from a pure water device 62. Vapor latent heat is supplied to the evaporator 61 by an appropriate means, and the generated steam is supplied into the reactor 50 through the vapor channel 12. Preferably, a vacuum pump 63 for evacuating the inside of the reactor 50 and the inside of the evaporator 61 is provided for improving the reaction rate of the chemical heat storage body 20. This type of evaporator 61 itself is known in the art and will not be described in detail.

反応器50の内部で、供給される蒸気と蓄熱後の化学蓄熱体20bは混合され、発熱反応(加水反応)が継続的に進行して、発熱する。反応器50の内部で発生した熱は熱媒油64によって顕熱として回収される。熱媒油64は、熱媒油循環ポンプ65によって反応器50内と熱交換器66との間を循環する。安全性の観点から、熱媒油64の循環系には熱媒油膨張タンク67が備えられる。この例において、熱交換器66は蒸気ボイラとされており、ボイラで発生した蒸気が適宜の蒸気使用設備68に供給することで有効利用される。この例において、発生した蒸気の一部は蒸発器61にも供給される。   Inside the reactor 50, the supplied steam and the chemical heat storage body 20b after heat storage are mixed, and an exothermic reaction (hydrolysis) proceeds continuously to generate heat. The heat generated inside the reactor 50 is recovered as sensible heat by the heat transfer oil 64. The heat medium oil 64 is circulated between the reactor 50 and the heat exchanger 66 by a heat medium oil circulation pump 65. From the viewpoint of safety, a heat medium oil expansion tank 67 is provided in the circulation system of the heat medium oil 64. In this example, the heat exchanger 66 is a steam boiler, and steam generated in the boiler is effectively used by supplying it to an appropriate steam use facility 68. In this example, a part of the generated steam is also supplied to the evaporator 61.

熱利用側蓄熱体搬送手段30bも気密可能な運搬パレット31を有しており、蓄熱後の化学蓄熱体20bを反応器50に設けた投入出口16から反応器50の内部に投入し、さらに排出される放熱済み化学蓄熱体20aを受け取るために用いられる。   The heat utilization side heat accumulator conveying means 30b also has an airtight conveyance pallet 31, and the chemical heat accumulator 20b after the heat accumulation is introduced into the reactor 50 through the introduction outlet 16 provided in the reactor 50, and further discharged. It is used to receive the radiated chemical heat storage body 20a.

[化学蓄熱体運搬手段D]
化学蓄熱体運搬手段Dは、前記した運搬パレット31を、蓄熱側装置Bの反応器10から熱利用側装置Cの反応器50へ、また、熱利用側装置Cの反応器50から蓄熱側装置Bの反応器10へ運搬するものであり、化学蓄熱体運搬手段Dの上記運搬によって、化学蓄熱体20は、蓄熱側装置Bと熱利用側装置Cとを循環する。化学蓄熱体運搬手段Dは運搬パレット31を運搬できるものであればよく、通常の輸送トラック等であってよい。
[Chemical heat storage material transport means D]
The chemical heat storage material transport means D transfers the transport pallet 31 from the reactor 10 of the heat storage side device B to the reactor 50 of the heat utilization side device C, and from the reactor 50 of the heat utilization side device C to the heat storage side device. The chemical heat storage body 20 circulates between the heat storage side device B and the heat utilization side device C by the above transport of the chemical heat storage material transport means D. The chemical heat storage material transporting means D is not limited as long as it can transport the transporting pallet 31 and may be a normal transport truck or the like.

[上記した熱輸送システムAの作動]
最初に、運搬パレット31に収容されている放熱済みの化学蓄熱体20a(Mg(OH))を蓄熱側装置B側の反応器10内に投入する。また、放熱済み化学蓄熱体20aの反応速度の向上のため反応器10の内部および凝縮器6の内部を真空ポンプ7にて真空にする。反応器10に回転と必要な場合には揺動を与えながら、廃熱源1と熱交換することで昇温した熱媒油3を反応器10内に循環させる。反応器10では熱媒油3によって供給された熱によって化学蓄熱体20が加熱され、蓄熱反応(脱水反応)が継続的に進行する。
[Operation of heat transport system A described above]
First, the heat-radiated chemical heat storage body 20a (Mg (OH) 2 ) housed in the transport pallet 31 is charged into the reactor 10 on the heat storage side device B side. Further, the inside of the reactor 10 and the inside of the condenser 6 are evacuated by the vacuum pump 7 in order to improve the reaction rate of the heat radiated chemical heat storage body 20a. The heat transfer oil 3 that has been heated by exchanging heat with the waste heat source 1 is circulated in the reactor 10 while rotating and rotating the reactor 10 when necessary. In the reactor 10, the chemical heat storage body 20 is heated by the heat supplied by the heat transfer oil 3, and the heat storage reaction (dehydration reaction) proceeds continuously.

脱水反応によって生じる水蒸気は、凝縮器6にて冷却水によって冷却されて凝縮する。この凝縮により反応器10の内部および凝縮器6の内部の真空が維持される。昇温した冷却水は冷却塔8によって再度冷却される。   Water vapor generated by the dehydration reaction is cooled by the cooling water in the condenser 6 and condensed. This condensation maintains a vacuum inside the reactor 10 and inside the condenser 6. The raised cooling water is cooled again by the cooling tower 8.

所要時間の加熱によって蓄熱反応が完了あるいはほぼ完了したときに、反応器10の内部を大気開放して真空を破壊する。その後、反応器10の内部から蓄熱後の化学蓄熱体20bを投入出口16を通して取り出し、空となっている運搬パレット31に再度収容する。好ましくは、運搬パレット31は、蓄熱後の化学蓄熱体20bが大気中水分を吸湿するのを防ぐために気密状態に維持される。   When the heat storage reaction is completed or almost completed by heating for the required time, the inside of the reactor 10 is opened to the atmosphere to break the vacuum. Then, the chemical heat storage body 20b after heat storage is taken out from the inside of the reactor 10 through the charging / unloading outlet 16, and is accommodated again in the empty transport pallet 31. Preferably, the transport pallet 31 is maintained in an airtight state in order to prevent the chemical heat storage body 20b after heat storage from absorbing moisture in the atmosphere.

蓄熱後の化学蓄熱体20bを内部に収容して気密にされた運搬パレット31を、図示しないリフトなどによって蓄熱側蓄熱体搬送手段30aから化学蓄熱体運搬手段Dの一例である輸送トラック40等に積載する。そして、輸送トラック40により運搬パレット31を熱利用側装置Cに運搬する。   The transport pallet 31 that is airtight and contains the chemical heat storage body 20b after heat storage is transferred from the heat storage side heat storage body transport means 30a to the transport truck 40, which is an example of the chemical heat storage body transport means D, by a lift or the like (not shown). To load. Then, the transport pallet 31 is transported to the heat utilization side device C by the transport truck 40.

なお、輸送トラック40による運搬パレット31の運搬に、距離的および時間的な制約はない。近接した場所に独立した状態で蓄熱側装置Bと熱利用側装置Cとを設置する場合には、熱需要の時間的ギャップに効果的に対処することが容易となる。また、遠い距離離れた場所に設置する場合には、熱需要の時間的および空間的なギャップの双方に効果的に対処することが可能となる。   There are no distance and time restrictions on the transportation of the transportation pallet 31 by the transportation truck 40. In the case where the heat storage side device B and the heat utilization side device C are installed in an independent state in a close place, it becomes easy to effectively cope with the time gap of heat demand. In addition, when installed in a place far away, it is possible to effectively deal with both temporal and spatial gaps in heat demand.

運搬パレット31を積載した輸送トラック40は熱利用側装置Cまで走行し、熱利用側蓄熱体搬送装置30bを用いて、運搬パレット31から反応容器50の内部に、蓄熱後の化学蓄熱体20bを投入する。一方、蒸発器61には純水装置62から純水を送り込むとともに、蓄熱後の化学蓄熱体20bの反応速度の向上のために、反応器50および蒸発器61の内部を真空ポンプ63にて真空(低圧)にする。そして、適宜の手段により、図示の例では熱交換器66で発生した蒸気の一部を、蒸発器61に蒸発潜熱として供給し、発生した蒸気を反応器50の内部に供給する。   The transport truck 40 loaded with the transport pallet 31 travels to the heat utilization side device C, and uses the heat utilization side heat storage material transport device 30b to transfer the chemical heat storage body 20b after heat storage from the transport pallet 31 to the inside of the reaction vessel 50. throw into. On the other hand, pure water is fed into the evaporator 61 from the pure water device 62, and the inside of the reactor 50 and the evaporator 61 is evacuated by a vacuum pump 63 in order to improve the reaction rate of the chemical heat storage body 20b after heat storage. (Low pressure). In the illustrated example, a part of the steam generated in the heat exchanger 66 is supplied to the evaporator 61 as latent heat of evaporation by appropriate means, and the generated steam is supplied to the inside of the reactor 50.

回転用ローラー17を駆動し、必要な場合には揺動台18も駆動して、反応器50に回転と必要な場合には揺動運動を与えながら、反応器50内部で供給された水蒸気と蓄熱後の化学蓄熱体20bを積極的に混合する。それによって、両者の発熱反応(加水反応)を継続的に進行させ、発熱させる。反応器50の内部で発生した熱は熱媒油64によって顕熱として回収される。加熱された熱媒油64を熱媒油循環ポンプ65にて熱利用側の熱交換器66との間に循環させる。図示のもののように、熱利用側の熱交換器66が蒸気ボイラの場合には、発生した蒸気を蒸気利用設備に供給することで有効利用することかできる。   The rotation roller 17 is driven, and if necessary, the oscillating table 18 is also driven to rotate the reactor 50 and, if necessary, to oscillate the water vapor supplied inside the reactor 50. The chemical heat storage body 20b after heat storage is positively mixed. Thereby, the exothermic reaction (hydrolysis) of both proceeds continuously to generate heat. The heat generated inside the reactor 50 is recovered as sensible heat by the heat transfer oil 64. The heated heat medium oil 64 is circulated between the heat utilization side heat exchanger 66 by the heat medium oil circulation pump 65. When the heat exchanger 66 on the heat utilization side is a steam boiler as shown in the figure, the generated steam can be effectively utilized by supplying it to the steam utilization facility.

所定時間の給水により放熱反応が完了あるいはほぼ完了したときに、反応器50の内部を大気開放し、真空を破壊する。そして、反応器50の内部から放熱済み化学蓄熱体20aを投入出口16を通して取り出し、空となっている運搬パレット31に再度収容する。ここでも、運搬パレット31は、放熱済み化学蓄熱体20aが大気中水分を吸湿するのを防ぐために気密状態に維持されるのが好ましい。   When the heat release reaction is completed or almost completed by supplying water for a predetermined time, the inside of the reactor 50 is opened to the atmosphere and the vacuum is broken. Then, the heat radiated chemical heat storage body 20a is taken out from the inside of the reactor 50 through the charging / discharging outlet 16, and is accommodated again in the empty transport pallet 31. Here again, the transport pallet 31 is preferably maintained in an airtight state in order to prevent the radiated chemical heat storage body 20a from absorbing moisture in the atmosphere.

放熱済み化学蓄熱体20bを収容し気密にされた運搬パレット31は、図示しないリフトなどによって熱利用側蓄熱体搬送手段30bから輸送トラック40に積載され、輸送トラック40により蓄熱側装置Bに戻される。蓄熱側装置B側では、輸送トラック40から運搬パレット31をリフトなどで蓄熱側蓄熱体搬送装置30aに下ろし、適当なときに再度放熱済み化学蓄熱体20aを蓄熱側装置Bの反応器10内に投入する。   The transport pallet 31 containing the heat-dissipated chemical heat storage body 20b and hermetically sealed is loaded on the transport truck 40 from the heat utilization side heat storage body transport means 30b by a lift (not shown) and returned to the heat storage side apparatus B by the transport truck 40. . On the heat storage side device B side, the transport pallet 31 is lowered from the transport truck 40 to the heat storage side heat storage material transfer device 30a by a lift or the like, and the heat-radiated chemical heat storage material 20a is again put into the reactor 10 of the heat storage side device B when appropriate. throw into.

上記のように本発明による熱輸送システムを用い、かつ上記の手順を繰り返すことで、可逆的反応により蓄熱と放熱を繰り返す化学蓄熱体を用いて、蓄熱側から熱利用側へ、熱を時間的・空間的ギャップを解消した状態で効果的に輸送することが可能となる。また、蓄熱側から熱利用側への運搬物は化学蓄熱体20のみであり、運搬パレット31での運搬時の蓄熱密度は大きく向上し、単位熱量当たりの輸送コストは大きく低減する。   By using the heat transport system according to the present invention as described above and repeating the above procedure, the heat is temporally transferred from the heat storage side to the heat utilization side using a chemical heat storage body that repeatedly stores and releases heat by a reversible reaction.・ Effective transportation is possible with the spatial gap eliminated. Moreover, only the chemical heat storage body 20 is transported from the heat storage side to the heat utilization side, the heat storage density during transportation on the transportation pallet 31 is greatly improved, and the transportation cost per unit heat quantity is greatly reduced.

[他の実施の形態]
[装置としての他の実施の形態]
図2では、反応器10(50)として、二重殻構造であって、内殻10aと外殻10bとの間に熱媒油3を循環する熱媒流路11を有し、内殻10aの内部に化学蓄熱体20を保有できる構造のものを示したが、本発明による反応器10(50)の構成は、反応器の内部で化学蓄熱体20を撹拌し流動させるための手段を備えることを条件に、他の構成であってもよい。
[Other embodiments]
[Other Embodiments as Apparatus]
In FIG. 2, the reactor 10 (50) has a double shell structure, and has a heat medium passage 11 for circulating the heat medium oil 3 between the inner shell 10a and the outer shell 10b, and the inner shell 10a. The structure of the reactor 10 (50) according to the present invention includes means for stirring and flowing the chemical heat storage body 20 inside the reactor. Other configurations may be used on the condition.

例えば、二重殻構造ではなく、図示しないが、化学蓄熱体20を収容する、好ましくは回転可能なシェルの中に適数本のチューブ状の熱媒体(熱媒油3)の流路11が配置されている構成のものであってもよい。シェル内に収容された化学蓄熱体20(20a)は撹拌されかつ流動しながら、反応器10の場合には、熱媒油3によって供給された熱によって化学蓄熱体20が加熱されて蓄熱反応(脱水反応)が効果的かつ継続的に進行し、また、反応器50の場合には、シェル内に収容された化学蓄熱体20(20b)と供給される水蒸気は積極的に混合されて両者の発熱反応(加水反応)は効果的かつ継続的に進行する。発生した熱はチューブ内を流れる熱媒体(熱媒油64)により回収される。   For example, it is not a double shell structure, and although not shown, an appropriate number of tube-shaped heat medium (heat medium oil 3) flow paths 11 are accommodated in a shell that accommodates the chemical heat storage body 20 and is preferably rotatable. The thing of the structure arrange | positioned may be sufficient. In the case of the reactor 10, the chemical heat storage body 20 (20 a) accommodated in the shell is stirred and fluidized, and in the case of the reactor 10, the chemical heat storage body 20 is heated by the heat supplied by the heat transfer oil 3 and the heat storage reaction ( The dehydration reaction) proceeds effectively and continuously. In the case of the reactor 50, the chemical heat storage body 20 (20b) accommodated in the shell and the supplied water vapor are positively mixed together. The exothermic reaction (hydrolysis) proceeds effectively and continuously. The generated heat is recovered by a heat medium (heat medium oil 64) flowing in the tube.

また、二重殻構造の場合であっても、熱媒体を内側、化学蓄熱体を外側に配置する構造であってもよい。さらに、蓄熱側装置Bにおいては、反応器10の加熱源として電力によるヒーティングを用いることもできる。その場合には、熱効率を上げるために、電力ヒータと化学蓄熱体とが直接接触する構成とすることが望ましい。   Moreover, even if it is a case of a double shell structure, the structure which arrange | positions a heat carrier inside and a chemical heat storage body may be sufficient. Further, in the heat storage side device B, heating by electric power can be used as a heating source of the reactor 10. In that case, in order to increase thermal efficiency, it is desirable that the power heater and the chemical heat storage body be in direct contact with each other.

反応器10(50)内での化学蓄熱体20の撹拌方法は、図2に示したような回転式あるいは揺動式に限ることはなく、図3(a)に示すように、反応器10(50)に振動モーター70を取り付けて反応器に振動を与え、それにより、内部の化学蓄熱体20を流動させ撹拌するような形態も可能である。また、図3(b)に示すように、撹拌棒や羽根やスクリュー体のような撹拌部材71を内部に配置し、それをモーター72で回転させることで、内部に収容した化学蓄熱体20を流動させ撹拌するような形態であってもよい。   The stirring method of the chemical heat storage body 20 in the reactor 10 (50) is not limited to the rotary type or the swing type as shown in FIG. 2, but as shown in FIG. A vibration motor 70 is attached to (50) to give vibration to the reactor, whereby the internal chemical heat storage body 20 is flowed and stirred. Moreover, as shown in FIG.3 (b), the chemical heat storage body 20 accommodated in the inside is arrange | positioned by arrange | positioning the stirring member 71 like a stirring rod, a blade | wing, and a screw body inside, and rotating it with the motor 72. It may be in the form of flowing and stirring.

さらに、反応器10(50)の内部を真空にするのは、反応速度を向上させるためであるが、化学蓄熱体20の種類等の関係から真空(低圧)にしなくても所期の反応速度が得られる場合には、真空にすることなく、大気圧下、加圧下であっても、所期の目的は達成可能である。反応器10(50)の材質はSUSであることが好ましいが、必要な強度および耐腐食性を有する材料であれば、任意の材料を用いることもできる。   Furthermore, the reason why the inside of the reactor 10 (50) is evacuated is to improve the reaction rate. However, the desired reaction rate can be obtained without using a vacuum (low pressure) due to the type of the chemical heat storage body 20 or the like. Can be achieved even under atmospheric pressure and pressure without applying a vacuum. The material of the reactor 10 (50) is preferably SUS, but any material can be used as long as it has the necessary strength and corrosion resistance.

さらに、図1に示した例では、蓄熱側装置Bにおいて、廃熱源1からの廃熱の回収を熱交換器2を用いて行う例を説明したが、直接反応器10内に廃熱を導入する方式であってもよい。また、熱源は廃熱に限ることなく、太陽熱、地熱等の自然エネルギーを用いてもよい。前記したように、電力によるヒーティングも可能である。凝縮器6の使用も必須ではなく、反応温度が高温の場合であって大気圧以上の蒸気圧が発生する場合には、大気開放も可能である。冷却方式も冷却塔8の使用は例示であり、空冷、チラーによる冷却、地下水による冷却なども用いることができる。   Further, in the example shown in FIG. 1, in the heat storage side apparatus B, the example in which the waste heat from the waste heat source 1 is recovered using the heat exchanger 2 has been described. However, the waste heat is directly introduced into the reactor 10. It may be a system to do. The heat source is not limited to waste heat, and natural energy such as solar heat or geothermal heat may be used. As described above, heating by electric power is also possible. The use of the condenser 6 is not essential, and when the reaction temperature is high and a vapor pressure higher than the atmospheric pressure is generated, the atmosphere can be opened to the atmosphere. As for the cooling method, use of the cooling tower 8 is merely an example, and air cooling, cooling with a chiller, cooling with groundwater, or the like can also be used.

化学蓄熱体20の運搬方法も運搬パレット31を用いるのは例示であり、化学蓄熱体20の種類等によっては、ローリーや密閉トラックなどへのばら積みも可能である。また、運搬パレット31を用いる場合でも、化学蓄熱体の反応性によっては気密機能を備えないものを用いることも可能である。   The method of transporting the chemical heat storage body 20 is also exemplified by the use of the transport pallet 31. Depending on the type of the chemical heat storage body 20, etc., it can be bulk-loaded on a lorry or a closed truck. Even when the transport pallet 31 is used, it is also possible to use a material that does not have an airtight function depending on the reactivity of the chemical heat storage body.

図1に示した例では、熱利用側装置Cにおいて、純水装置62を用いる例を示したが、工業用水や飲料水も使用可能である。化学蓄熱体20の種類等の関係から所期の反応速度が得られる場合には、反応器50内を真空にすることは必須でなく、大気圧下、加圧下であってもよい。蒸発器61も必須ではなく、例えば他のボイラからの蒸気の直接噴霧、あるいは水の直接噴霧であっても、所期の目的は達成可能である。熱の回収方法も、図1に基づき説明したような反応器50内に熱媒油64を循環させる方法ではなく、直接反応器50内に被加熱物を導入する方式であってもよい。また熱交換器66は蒸気ボイラに限らず、プレート式熱交換器、先に説明したようなシェルアンドチューブ式の熱交換器など、従来知られた各種の熱交換器を使用することができる。また、熱利用側装置C側においても、運搬パレット31を用いるのは例示であり、化学蓄熱体20の種類等によっては、ローリーや密閉トラックなどへのばら積みも可能である。運搬パレット31を用いる場合でも、化学蓄熱体の反応性によっては気密機能を備えないものを用いることも可能である。   In the example shown in FIG. 1, although the example using the pure water apparatus 62 was shown in the heat utilization side apparatus C, industrial water and drinking water can also be used. When the desired reaction rate can be obtained from the relationship of the type of the chemical heat storage body 20, etc., it is not essential to evacuate the reactor 50, and it may be under atmospheric pressure or under pressure. The evaporator 61 is not essential, and the intended purpose can be achieved even by direct spraying of steam from another boiler or direct spraying of water, for example. The heat recovery method may be a method of directly introducing an object to be heated into the reactor 50 instead of the method of circulating the heat transfer oil 64 in the reactor 50 as described with reference to FIG. The heat exchanger 66 is not limited to a steam boiler, and various conventionally known heat exchangers such as a plate heat exchanger and a shell and tube heat exchanger as described above can be used. In addition, the use of the transport pallet 31 is also an example on the heat utilization side device C side, and depending on the type of the chemical heat storage body 20 or the like, it can be stacked on a lorry or a sealed truck. Even when the transporting pallet 31 is used, it is possible to use one having no airtight function depending on the reactivity of the chemical heat storage body.

[化学蓄熱体の他の実施の形態]
上記の例では、化学蓄熱体20として、MgO+HO⇔Mg(OH)の可逆的化学反応を使用する成形体を例として説明したが、化学蓄熱体20としては、これに限らず、可逆的反応により蓄熱と放熱を繰り返す物質であれば、他に多くのものを用いることができる。本明細書では、可逆的反応により蓄熱と放熱を繰り返す物質の総称として「化学蓄熱体」の語を用いている。以下に、それらの物質の幾つかを反応式と共に例示する。
[Other Embodiments of Chemical Heat Storage]
In the above example, as the chemical heat storage body 20, a molded body using a reversible chemical reaction of MgO + H 2 O⇔Mg (OH) 2 has been described as an example. However, the chemical heat storage body 20 is not limited thereto, and is reversible. Many other substances can be used as long as they repeat heat storage and heat release by a chemical reaction. In this specification, the term “chemical heat storage body” is used as a general term for substances that repeatedly store and release heat by a reversible reaction. In the following, some of these substances are exemplified together with the reaction formula.

(a)可逆的化学反応を伴うもの
(a−1)HO型
Ca(OH)(s)⇔CaO(s)+HO(g)
MgCl・4HO(s)⇔MgCl・2HO(s)+2HO(g)
CaSO・2HO(s)⇔CaSO(s)+2HO(g)
CaCl・2HO(s)⇔CaCl(s)+2HO(g)
(a−2)Hydrogan型
TiH(s)⇔Ti(s)+H(g)
NaH(s)⇔Na(s)+(1/2)H(g)
MgH(s)⇔Mg(s)+H(g)
LaNi(s)⇔LaNi(s)+3H(g)
(a−3)Ammonia型
FeCl・NH(g)⇔FeCl(s)+NH(g)
FeCl・2NH(g)⇔FeCl・NH(s)+NH(g)
NiCl・6NH(g)⇔NiCl・2NH(s)+4NH(g)
FeCl・6NH(g)⇔FeCl・2NH(s)+4NH(g)
CaCl・8NH(g)⇔CaCl・4NH(s)+4NH(g)
(a−4)CO
LiCO(s)⇔LiO(s)+CO(g)
SrCO(s)⇔SrO(s)+CO(g)
CaCO(s)⇔CaO(s)+CO(g)
MgCO(s)⇔MgO(s)+CO(g)
(A) Reversible chemical reaction (a-1) H 2 O type Ca (OH) 2 (s) sCaO (s) + H 2 O (g)
MgCl 2 .4H 2 O (s) ⇔MgCl 2 .2H 2 O (s) + 2H 2 O (g)
CaSO 4 · 2H 2 O (s) ⇔CaSO 4 (s) + 2H 2 O (g)
CaCl 2 · 2H 2 O (s) ⇔CaCl 2 (s) + 2H 2 O (g)
(A-2) Hydrogen type TiH 2 (s) ⇔Ti (s) + H 2 (g)
NaH (s) ⇔Na (s) + (1/2) H 2 (g)
MgH 2 (s) ⇔Mg (s) + H 2 (g)
LaNi 5 H 6 (s) ⇔LaNi 5 (s) + 3H 2 (g)
(A-3) Ammonia type FeCl 2 · NH 3 (g) ⇔FeCl 2 (s) + NH 3 (g)
FeCl 2 · 2NH 3 (g) ⇔FeCl 2 · NH 3 (s) + NH 3 (g)
NiCl 2 · 6NH 3 (g) ⇔NiCl 2 · 2NH 3 (s) + 4NH 3 (g)
FeCl 2 .6NH 3 (g) ⇔FeCl 2 .2NH 3 (s) + 4NH 3 (g)
CaCl 2 .8NH 3 (g) ⇔CaCl 2 .4NH 3 (s) + 4NH 3 (g)
(A-4) CO 2 type Li 2 CO 3 (s) ⇔Li 2 O (s) + CO 2 (g)
SrCO 3 (s) ⇔SrO (s) + CO 2 (g)
CaCO 3 (s) ⇔CaO (s) + CO 2 (g)
MgCO 3 (s) ⇔MgO (s) + CO 2 (g)

なお、上記(a−1)から(a−4)において、(s)はsolid(固体相)、また(g)はgas(気体相)を示している。そして、上記の、
(a−2)Hydrogan型においては、蓄熱側装置BではH(水素)が反応器から発生し、熱利用側装置Cでは反応器にH(水素)が供給されるので、それに応じて、従来知られた手法によりHの供給・回収ができるように装置が改造される。
(a−3)Ammonia型においては、蓄熱側装置BではNH(アンモニア)が反応器から発生し、熱利用側装置Cでは反応器にNH(アンモニア)が供給されるので、それに応じて、従来知られた手法によりNHの供給・回収ができるように装置が改造される。
(a−4)CO型においては、蓄熱側装置BではCO(二酸化炭素)が反応器から発生し、熱利用側装置Cでは反応器にCO(二酸化炭素)が供給されるので、それに応じて、従来知られた手法によりCOの供給・回収ができるように装置が改造される。
In the above (a-1) to (a-4), (s) indicates solid (solid phase), and (g) indicates gas (gas phase). And above,
(A-2) In the Hydrogan type, in the heat storage side device B, H 2 (hydrogen) is generated from the reactor, and in the heat utilization side device C, H 2 (hydrogen) is supplied to the reactor. The apparatus is modified so that H 2 can be supplied and recovered by a conventionally known method.
(A-3) In the Ammonia type, NH 3 (ammonia) is generated from the reactor in the heat storage side device B, and NH 3 (ammonia) is supplied to the reactor in the heat utilization side device C. The apparatus is modified so that NH 3 can be supplied and recovered by a conventionally known method.
In (a-4) CO 2 type, storage-side apparatus B in CO 2 (carbon dioxide) is generated from the reactor, since CO 2 is (CO) is supplied to the heat utilization side unit C in the reactor, Accordingly, the apparatus is modified so that CO 2 can be supplied and recovered by a conventionally known method.

(b)化学反応ではなく発熱・吸熱熱を伴う吸着反応を伴うもの
この例としては、ゼオライトに水を加える反応を例示できる。具体的には、Me2/xO・Al・mSiO・nHO⇔Me2/x・Al・mSiO+nHOのような可逆反応が進行する。ここで、Meはゼオライト細孔に存在するX価のカチオンを表す。他に、シリカゲルなどを挙げることができる。
(B) Not accompanied by a chemical reaction but accompanied by an adsorption reaction involving exothermic / endothermic heat As an example, a reaction of adding water to zeolite can be exemplified. Specifically, a reversible reaction such as Me 2 / x O.Al 2 O 3 .mSiO 2 .nH 2 O⇔Me 2 / x · Al 2 O 3 .mSiO 2 + nH 2 O proceeds. Here, Me represents an X-valent cation present in the zeolite pores. Other examples include silica gel.

A…熱輸送システム、
B…蓄熱側装置、
C…熱利用側装置、
D…化学蓄熱体運搬手段、
1…廃熱源、
2、66…熱交換器、
3、64…熱媒油、
4、65…熱媒油循環ポンプ、
5、67…熱媒油膨張タンク、
6…凝縮器、
7、63…真空ポンプ、
8…冷却塔、
10…化学蓄熱体に蓄熱反応を生じさせる反応器、
10a…反応器の内殻、
10b…反応器の外殻、
11…熱媒流路、
12…蒸気流路、
13…ストレーナ、
14…ロータリージョイント、
15…フィン、
16…化学蓄熱体の投入出口、
17…回転用ローラー、
18…揺動台、
19…反応器の台座、
20…化学蓄熱体、
20a…放熱済み化学蓄熱体、
20b…蓄熱後の化学蓄熱体、
30…蓄熱体搬送手段、
30a…蓄熱側蓄熱体搬送手段、
30b…熱利用側蓄熱体搬送手段、
31…運搬パレット、
50…化学蓄熱体に放熱反応を生じさせる反応器、
61…蒸発器、
62…純水装置。
A ... heat transport system,
B ... Heat storage side device,
C ... Heat utilization side device,
D ... Chemical heat storage material transport means,
1 ... Waste heat source,
2, 66 ... heat exchanger,
3, 64 ... heat transfer oil,
4, 65 ... Heat transfer oil circulation pump,
5, 67 ... Heat transfer oil expansion tank,
6 ... Condenser,
7, 63 ... vacuum pump,
8 ... Cooling tower,
10 ... Reactor for causing a heat storage reaction in a chemical heat storage body,
10a ... inner shell of the reactor,
10b ... reactor outer shell,
11 ... Heat medium flow path,
12 ... steam flow path,
13 ... Strainer,
14 ... Rotary joint,
15 ... Fins,
16 ... Chemical heat storage body inlet / outlet,
17 ... roller for rotation,
18 ... Oscillator,
19 ... Reactor pedestal,
20 ... chemical heat storage,
20a ... Heat radiated chemical heat storage,
20b ... Chemical heat storage body after heat storage,
30 ... thermal storage means transport means,
30a ... Heat storage side heat storage body conveying means,
30b ... Heat utilization side heat storage body conveying means,
31 ... Transport pallet,
50 ... Reactor that causes a heat dissipation reaction in a chemical heat storage body,
61 ... Evaporator,
62: Pure water device.

Claims (8)

可逆的反応により蓄熱と放熱を繰り返す化学蓄熱体を用いる熱輸送システムであって、
前記熱輸送システムは蓄熱側装置と熱利用側装置と化学蓄熱体運搬手段とを備え、
前記蓄熱側装置は化学蓄熱体に蓄熱反応を生じさせる反応器と前記反応器に放熱済み化学蓄熱体を投入しかつ蓄熱後の化学蓄熱体を取り出す蓄熱側蓄熱体搬送手段を少なくとも有し、
前記熱利用側装置は化学蓄熱体に放熱反応を生じさせる反応器と前記反応器に蓄熱後の化学蓄熱体を投入しかつ放熱済みの化学蓄熱体を取り出す放熱側蓄熱体搬送手段を少なくとも有し、
前記化学蓄熱体運搬手段は前記蓄熱側蓄熱体搬送手段と放熱側蓄熱体搬送手段との間で化学蓄熱体の運搬を行うことで化学蓄熱体を前記蓄熱側装置と熱利用側装置との間で循環させる、
ことを特徴とする熱輸送システム。
A heat transport system using a chemical heat storage body that repeatedly stores and releases heat by a reversible reaction,
The heat transport system includes a heat storage side device, a heat utilization side device, and a chemical heat storage body transporting means,
The heat storage side device has at least a heat storage side heat storage body conveying means for introducing a heat storage reaction to the chemical heat storage body and putting the heat-radiated chemical heat storage body into the reactor and taking out the chemical heat storage body after heat storage,
The heat utilization side device includes at least a reactor for causing a heat radiation reaction in the chemical heat storage body and a heat radiation side heat storage body transporting means for charging the chemical heat storage body after storing heat into the reactor and taking out the heat radiated chemical heat storage body. ,
The chemical heat storage body transport means transports the chemical heat storage body between the heat storage side apparatus and the heat utilization side apparatus by transporting the chemical heat storage body between the heat storage side heat storage body transport means and the heat radiation side heat storage body transport means. Circulate in
A heat transport system characterized by that.
前記化学蓄熱体は水和反応を伴う物質であり、前記蓄熱側装置は反応器への熱供給手段と反応により生じた水の回収手段を備え、前記熱利用側装置は反応器への水の供給手段と反応により生じた熱の回収手段を備えることを特徴とする請求項1に記載の熱輸送システム。   The chemical heat storage body is a substance accompanied by a hydration reaction, the heat storage side device includes a heat supply means to the reactor and a recovery means of water generated by the reaction, and the heat utilization side device includes water to the reactor. The heat transport system according to claim 1, further comprising a supply unit and a recovery unit for recovering heat generated by the reaction. 前記蓄熱側装置は蓄熱反応で生じる水蒸気を凝縮するための凝縮器を備えることを特徴とする請求項2に記載の熱輸送システム。   The heat storage system according to claim 2, wherein the heat storage side device includes a condenser for condensing water vapor generated by a heat storage reaction. 前記熱利用側装置は反応器へ供給する水を水蒸気化するための蒸発器を備えることを特徴とする請求項2に記載の熱輸送システム。   The heat transport system according to claim 2, wherein the heat utilization side device includes an evaporator for steaming water supplied to the reactor. 請求項1〜4のいずれか一項に記載の熱輸送システムで用いる反応器であって、前記反応器は反応器の内部で化学蓄熱体を撹拌し流動させるための手段を備えることを特徴とする反応器。   Reactor used in the heat transport system according to any one of claims 1 to 4, wherein the reactor includes means for stirring and flowing the chemical heat storage body inside the reactor. To reactor. 前記手段は反応器の内部に備えたフィンであることを特徴とする請求項5に記載の反応器。   The reactor according to claim 5, wherein the means is a fin provided inside the reactor. 前記手段は反応器に付設する揺動台であることを特徴とする請求項5に記載の反応器。   The reactor according to claim 5, wherein the means is a rocking base attached to the reactor. 前記手段は反応器に回転を与える回転用ローラーであることを特徴とする請求項5に記載の反応器。   The reactor according to claim 5, wherein the means is a rotating roller that imparts rotation to the reactor.
JP2014128504A 2014-06-23 2014-06-23 Heat transport system using chemical heat storage element repeating heat storage and heat radiation by reversible reaction Pending JP2016008744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014128504A JP2016008744A (en) 2014-06-23 2014-06-23 Heat transport system using chemical heat storage element repeating heat storage and heat radiation by reversible reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014128504A JP2016008744A (en) 2014-06-23 2014-06-23 Heat transport system using chemical heat storage element repeating heat storage and heat radiation by reversible reaction

Publications (1)

Publication Number Publication Date
JP2016008744A true JP2016008744A (en) 2016-01-18

Family

ID=55226420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014128504A Pending JP2016008744A (en) 2014-06-23 2014-06-23 Heat transport system using chemical heat storage element repeating heat storage and heat radiation by reversible reaction

Country Status (1)

Country Link
JP (1) JP2016008744A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3074570A1 (en) * 2017-12-04 2019-06-07 Jean-Emmanuel Faure METHOD AND DEVICE FOR RECOVERING / REDISTRIBING THERMOCHEMICAL CALORIFIC ENERGY AND REDISTRIBUTION STATION
CN115507412A (en) * 2022-11-21 2022-12-23 杭州圣钘能源有限公司 Heat supply system
CN115597106A (en) * 2022-11-21 2023-01-13 杭州圣钘能源有限公司(Cn) Heat supply system
CN115682094A (en) * 2022-11-10 2023-02-03 广东力王科技股份有限公司 Intelligent central hot water management method and system
WO2023176406A1 (en) * 2022-03-14 2023-09-21 住友重機械工業株式会社 Chemical heat storage reactor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157484A (en) * 1983-02-23 1984-09-06 Hitachi Zosen Corp Heat storage material transporting device
US20110277747A1 (en) * 2008-07-14 2011-11-17 The Regents Of The University Of California Systems and methods for solar energy storage, transportation, and conversion
JP2013221712A (en) * 2012-04-18 2013-10-28 Osaka Gas Co Ltd Heat transfer system, heat transfer unit, and heat transfer method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157484A (en) * 1983-02-23 1984-09-06 Hitachi Zosen Corp Heat storage material transporting device
US20110277747A1 (en) * 2008-07-14 2011-11-17 The Regents Of The University Of California Systems and methods for solar energy storage, transportation, and conversion
JP2013221712A (en) * 2012-04-18 2013-10-28 Osaka Gas Co Ltd Heat transfer system, heat transfer unit, and heat transfer method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3074570A1 (en) * 2017-12-04 2019-06-07 Jean-Emmanuel Faure METHOD AND DEVICE FOR RECOVERING / REDISTRIBING THERMOCHEMICAL CALORIFIC ENERGY AND REDISTRIBUTION STATION
WO2019110896A1 (en) * 2017-12-04 2019-06-13 Faure Jean Emmanuel Method and device for thermochemically recovering/redistributing heat energy and redistribution station
WO2023176406A1 (en) * 2022-03-14 2023-09-21 住友重機械工業株式会社 Chemical heat storage reactor
CN115682094A (en) * 2022-11-10 2023-02-03 广东力王科技股份有限公司 Intelligent central hot water management method and system
CN115507412A (en) * 2022-11-21 2022-12-23 杭州圣钘能源有限公司 Heat supply system
CN115597106A (en) * 2022-11-21 2023-01-13 杭州圣钘能源有限公司(Cn) Heat supply system
CN115507412B (en) * 2022-11-21 2023-03-14 杭州圣钘能源有限公司 Heat supply system

Similar Documents

Publication Publication Date Title
JP2016008744A (en) Heat transport system using chemical heat storage element repeating heat storage and heat radiation by reversible reaction
AU2007268277B2 (en) Chemical heat pump working with a hybrid substance
CN101395439B (en) Method of heat accumulation and heat accumulation system
US20110056234A1 (en) Thermal solar energy collector for producing heat and/or cooling
US20100205981A1 (en) Storing/transporting energy
CA2789834C (en) Method, heat accumulator and heat accumulator system for heating and cooling a working fluid
US20110277956A1 (en) Method for transporting heat, transport system for a heat carrier and the use thereof
JP5531334B2 (en) Chemical heat pump container
JP2015215125A (en) Gas storage and supply system
WO2017013152A1 (en) System and method for storing and releasing heat
CN104654844A (en) Fluid three-chamber heat pipe heat accumulator and fluid three-chamber heat pipe heat accumulating vehicle
JP6215048B2 (en) Thermal storage management system
JP2022003304A (en) Chemical heat storage device
JP7269583B2 (en) Steam generator and steam generation system
JP2016118315A (en) Chemical heat storage reactor and heat transport system using the same
JP5783525B2 (en) Chemical heat pump and heat recovery method
CN104654855A (en) Fluid heat accumulator and heat accumulating vehicle
WO2023176406A1 (en) Chemical heat storage reactor
WO2023171447A1 (en) Cartridge type chemical heat storage reactor, cartridge type chemical heat storage reactor linkage body, heat insulator, heat exchange pipe linkage tool, and chemical heat storage method
JPS61285284A (en) Chemical heat accumulation and apparatus therefor
Scapino Sorption thermal energy storage for smart grids: a system-scale analysis
US20160245554A1 (en) Cooling device and method for cooling a medium
JP5477328B2 (en) Gas collection method and gas collection device
JP2022517778A (en) Heat distributor
AU2019280881A1 (en) System and method for transferring energy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171031