JP2013221712A - Heat transfer system, heat transfer unit, and heat transfer method - Google Patents
Heat transfer system, heat transfer unit, and heat transfer method Download PDFInfo
- Publication number
- JP2013221712A JP2013221712A JP2012094969A JP2012094969A JP2013221712A JP 2013221712 A JP2013221712 A JP 2013221712A JP 2012094969 A JP2012094969 A JP 2012094969A JP 2012094969 A JP2012094969 A JP 2012094969A JP 2013221712 A JP2013221712 A JP 2013221712A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- reactor
- heat transfer
- reaction material
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
Description
本発明は、熱発生部の熱を蓄熱可能、且つ、当該蓄熱した熱を熱需要部に放熱可能な可搬式の熱搬送ユニットを備えた熱搬送システム、及び、当該熱搬送システムに利用される熱搬送ユニット、並びに、当該熱搬送ユニットを利用して前記熱発生部の熱を前記熱需要部に搬送する熱搬送方法に関する。 INDUSTRIAL APPLICABILITY The present invention is used for a heat transfer system including a portable heat transfer unit capable of storing heat of a heat generation unit and dissipating the stored heat to a heat demand unit, and the heat transfer system. The present invention relates to a heat transfer unit and a heat transfer method for transferring heat of the heat generation unit to the heat demand unit using the heat transfer unit.
ごみ焼却場、発電所、製鉄所などの施設で発生した高温の排熱は、例えばその施設に設置された発電用蒸気タービンを駆動するための高温蒸気として、現地において有効利用される。しかし、蒸気タービンを駆動した後に排出される150℃程度の低温蒸気などのように、比較的低温の排熱については、施設内又はその周辺での使い道が少なく、多くの場合には余剰として廃棄されてしまう。そして、近年、省エネルギ及び省資源の面で、このような余剰排熱についても有効利用することがすることが求められている。 High-temperature exhaust heat generated in facilities such as a garbage incineration plant, a power plant, and a steel mill is effectively used locally as, for example, high-temperature steam for driving a power generation steam turbine installed in the facility. However, relatively low-temperature exhaust heat, such as low-temperature steam of about 150 ° C that is exhausted after driving the steam turbine, has little use in and around the facility and is often discarded as surplus Will be. In recent years, there is a demand for effective use of such excess exhaust heat in terms of energy saving and resource saving.
余剰排熱を有効利用する技術の一つとして、トレーラなどに搭載されて蓄熱・放熱を交互に繰り返すことができる可搬式の熱搬送ユニットを利用して、ごみ焼却場などの熱発生部の熱を当該熱発生部から離れた各家庭や商業施設などの熱需要部に搬送して有効利用するというような熱搬送技術の開発が進められている。そして、従来の熱搬送ユニットとして、最も一般的に利用されている潜熱蓄熱材を用いたもの(例えば特許文献1を参照。)の他、ケミカルヒートポンプを利用した所謂ケミカルヒートポンプコンテナが知られている(例えば、特許文献2を参照。)。 As one of the technologies to effectively use surplus waste heat, heat from heat generating parts such as garbage incinerators is installed using a portable heat transfer unit that is mounted on a trailer and can alternately store and release heat. Development of a heat transfer technology is underway, in which the heat is transferred to a heat demanding part of each household or commercial facility away from the heat generating part for effective use. As a conventional heat transfer unit, a so-called chemical heat pump container using a chemical heat pump is known in addition to one using the most commonly used latent heat storage material (see, for example, Patent Document 1). (For example, see Patent Document 2).
従来のケミカルヒートポンプコンテナは、吸熱を伴う脱水反応と発熱を伴う水和反応とを可逆的に行う反応材を内部に収容してなる反応器を備えると共に、その反応器に対して、ガス通路及びそのガス通路に設けた遮断弁を介して連通され、当該ガス通路を通じて水蒸気の授受を行う蒸発凝縮器を備える。更に、反応器には、反応材と熱媒流体(特許文献1における「高温流体」)との間で熱交換を行う反応器用熱交換部が設けられており、一方、蒸発凝縮器には、蒸発凝縮器の内部を冷却水や加熱水(特許文献1における「低温流体」)との熱交換により加熱又は冷却する蒸発凝縮器用熱交換部が設けられている。
即ち、この種のケミカルヒートポンプコンテナは、反応器と蒸発凝縮器との両方が設置されており、更に、外部に対する接続部として、反応器に配置された反応器用熱交換部に対して熱媒流体の授受を行うための一対の熱媒流体用接続部と、蒸発凝縮器に配置された蒸発凝縮器用熱交換部に対して冷却水や加熱水等の低温流体の授受を行うための一対の低温流体用接続部とが必要となる。
A conventional chemical heat pump container includes a reactor containing therein a reaction material that reversibly performs a dehydration reaction with endotherm and a hydration reaction with exotherm, and a gas passage and An evaporative condenser is provided that communicates via a shut-off valve provided in the gas passage and transfers water vapor through the gas passage. Furthermore, the reactor is provided with a heat exchanger for the reactor that performs heat exchange between the reaction material and the heat transfer fluid (“high temperature fluid” in Patent Document 1), while the evaporation condenser includes There is provided an evaporative condenser heat exchange section that heats or cools the interior of the evaporative condenser by heat exchange with cooling water or heating water (“low temperature fluid” in Patent Document 1).
That is, this type of chemical heat pump container is provided with both a reactor and an evaporative condenser, and further, as a connection part to the outside, a heat transfer fluid to a heat exchange part for the reactor arranged in the reactor. A pair of low-temperature fluids for transferring and receiving low-temperature fluid such as cooling water and heating water to a pair of heating medium fluid connection parts for transferring and receiving and a heat exchanger for evaporating condensers arranged in the evaporating condenser A fluid connection is required.
このように構成されたケミカルヒートポンプコンテナを利用した熱搬送方法によれば、以下に示すような蓄熱操作及び放熱操作が行われることになる。
即ち、熱発生部側で行われる蓄熱操作では、反応器用熱交換部との間で循環させる熱媒流体を介して反応材に熱を与えながら、遮断弁を開放して反応器と蒸発凝縮器とを連通状態とし、更に、蒸発凝縮器用熱交換部との間で冷却水を循環させる。すると、反応器において、反応材が吸熱を伴う脱水反応を行う形態で熱を蓄えることになり、当該脱水反応により発生した水蒸気がガス通路を通じて蒸発凝縮器側に送られる。そして、蒸発凝縮器において、その水蒸気が冷却・凝縮されて凝縮水として蓄えられることになる。尚、この熱発生部側での蓄熱操作では、高温の熱を反応材に与えて反応器に当該熱を蓄熱することの他、反応器の内圧を低くして比較的低温の熱を反応材に与える形態で熱発生部側において冷熱生成を行うこともできる。
また、この蓄熱操作が完了すると、遮断弁が遮断されることで反応材の脱水状態が維持され、その状態で熱需要部に搬送される。
一方、熱需要部で行われる放熱操作では、反応器用熱交換部との間で循環させる熱媒流体を介して反応材から熱を回収しながら、遮断弁を開放して反応器と蒸発凝縮器とを連通状態とし、更に、蒸発凝縮器用熱交換部との間で加熱水を循環させる。すると、蒸発凝縮器において、凝縮水が加熱されて蒸発することで、水蒸気が発生し、その水蒸気がガス通路を通じて反応器側に送られる。そして、反応器において、その水蒸気を利用して、反応材が発熱を伴う水和反応を行う形態で熱を放出することになる。
According to the heat transfer method using the chemical heat pump container configured as described above, a heat storage operation and a heat dissipation operation as described below are performed.
That is, in the heat storage operation performed on the heat generating unit side, the reactor and the evaporation condenser are opened by opening the shut-off valve while supplying heat to the reaction material via the heat transfer fluid circulated with the heat exchange unit for the reactor. And the cooling water is circulated between the heat exchanger for the evaporative condenser. Then, in the reactor, heat is stored in a form in which the reaction material performs a dehydration reaction accompanied by endotherm, and water vapor generated by the dehydration reaction is sent to the evaporation condenser side through the gas passage. Then, in the evaporative condenser, the water vapor is cooled and condensed and stored as condensed water. In this heat storage operation on the heat generating part side, in addition to applying high temperature heat to the reaction material to store the heat in the reactor, the internal pressure of the reactor is lowered to generate relatively low temperature heat. Cold heat generation can also be performed on the heat generating unit side in the form given to the above.
Moreover, when this heat storage operation is completed, the dewatering state of the reaction material is maintained by shutting off the shutoff valve, and in this state, the reaction material is conveyed to the heat demand section.
On the other hand, in the heat radiation operation performed in the heat demand section, while recovering heat from the reaction material via the heat transfer fluid circulated between the heat exchange section for the reactor, the shutoff valve is opened and the reactor and the evaporation condenser are recovered. And the heated water is circulated with the heat exchanger for the evaporative condenser. Then, in the evaporative condenser, the condensed water is heated and evaporated to generate water vapor, and the water vapor is sent to the reactor side through the gas passage. And in a reactor, using the water vapor | steam, a reaction material will discharge | release heat in the form which performs the hydration reaction accompanied by heat_generation | fever.
しかしながら、上記従来の熱搬送ユニットを利用した熱搬送方法では、コンテナに反応器と蒸発凝縮器との両方を設置する必要があるため、蓄熱容量あたりの外形寸法が比較的大きくなっていた。また、蓄熱操作が完了した後に熱発生部から熱需要部まで搬送する際においては、蒸発凝縮器には比較的多量の水が蓄えられていることになるため、蓄熱容量あたりの重量が比較的大きくなっていた。即ち、従来の熱搬送ユニットでは、外形寸法及び重量の面で課題が存在しており、熱搬送による省エネルギ及び省資源の効果を充分に享受することができなかった。 However, in the heat transfer method using the above conventional heat transfer unit, both the reactor and the evaporative condenser need to be installed in the container, so that the outer dimensions per heat storage capacity are relatively large. In addition, when transporting from the heat generation unit to the heat demand unit after the heat storage operation is completed, a relatively large amount of water is stored in the evaporative condenser, so the weight per heat storage capacity is relatively low. It was getting bigger. That is, in the conventional heat transfer unit, there are problems in terms of external dimensions and weight, and the effects of energy saving and resource saving by heat transfer cannot be fully enjoyed.
本発明は、かかる点に着目してなされたものであり、その目的は、熱搬送ユニットのコンパクト化且つ軽量化を実現して多くの熱を搬送して省エネルギ及び省資源の効果を充分に享受できる熱搬送技術を提供する点にある。 The present invention has been made paying attention to such a point, and its purpose is to realize a compact and lightweight heat transfer unit to transfer a large amount of heat and sufficiently achieve energy saving and resource saving effects. It is in providing heat transfer technology that can be enjoyed.
上記目的を達成するための本発明に係る熱搬送システムは、
熱発生部の熱を蓄熱可能、且つ、当該蓄熱した熱を熱需要部に放熱可能な可搬式の熱搬送ユニットを備えた熱搬送システムであって、
その第1特徴構成は、
前記熱搬送ユニットに、吸熱を伴う脱水反応と発熱を伴う水和反応とを可逆的に行う反応材を内部に収容してなる反応器を設け、
前記熱発生部に、前記反応材に熱を与える与熱手段と、前記反応器から水蒸気を吸引するガス吸引手段とを設け、
前記熱需要部に、前記反応材から熱を回収する熱回収手段と、前記反応器に水蒸気を供給する水蒸気供給手段とを設けてなる点にある。
In order to achieve the above object, a heat transfer system according to the present invention comprises:
A heat transfer system including a portable heat transfer unit capable of storing heat of the heat generation unit and capable of radiating the stored heat to the heat demand unit,
The first characteristic configuration is
The heat transfer unit is provided with a reactor containing therein a reaction material that reversibly performs a dehydration reaction with endotherm and a hydration reaction with heat generation,
The heat generating unit is provided with heating means for applying heat to the reaction material, and gas suction means for sucking water vapor from the reactor,
The heat demand section is provided with a heat recovery means for recovering heat from the reaction material and a steam supply means for supplying steam to the reactor.
上記熱搬送システムの第1特徴構成によれば、熱発生部にガス吸引手段が設けられている共に熱需要部に水蒸気供給手段が設けられているので、熱搬送ユニットに蒸発凝縮器を設ける必要がなく、熱搬送ユニット側の反応材に吸熱を伴う脱水反応をさせて熱発生部の熱を熱搬送ユニット側の反応器へ蓄える蓄熱操作と、熱搬送ユニット側の反応材に発熱を伴う水和反応をさせて反応器に蓄えた熱を熱需要部側へ放出する放熱操作とを実行する形態で、熱発生部から熱需要部へ熱を搬送することができる。
即ち、熱発生部においては、与熱手段を作動させて反応材に熱を与えながら吸引手段を作動させて反応器からガスとしての水蒸気を吸引する形態で、上記蓄熱操作を実行することができる。
一方、熱需要部においては、熱回収手段を作動させて反応材から熱を回収しながら供給手段を作動させて反応器に水蒸気を供給する形態で、上記放熱操作を実行することができる。
よって、熱搬送ユニットは、蒸発凝縮器を省略することで、蓄熱容量あたりの外形寸法を比較的小さくでき、更には、蓄熱操作において反応材の脱水反応により発生した水蒸気は、凝縮水として熱搬送ユニットに蓄えるのではなく熱発生部側に排出するので、蓄熱容量あたりの重量を比較的小さくできる。
従って、本発明の熱搬送システムにより、熱搬送ユニットのコンパクト化且つ軽量化を実現して多くの熱を搬送して省エネルギ及び省資源の効果を充分に享受できる熱搬送技術を提供することができる。
According to the first characteristic configuration of the heat transfer system, the heat generating unit is provided with the gas suction unit, and the heat demanding unit is provided with the water vapor supply unit. Therefore, it is necessary to provide the evaporative condenser in the heat transfer unit. Heat storage operation that causes the reaction material on the heat transfer unit side to perform a dehydration reaction with endotherm and stores the heat of the heat generation unit in the reactor on the heat transfer unit side, and water that generates heat on the reaction material on the heat transfer unit side Heat can be transported from the heat generating part to the heat demanding part in a form in which a heat radiation operation is performed to release the heat stored in the reactor to the heat demanding part side through a sum reaction.
That is, in the heat generation unit, the heat storage operation can be performed in a form in which the suction unit is operated while operating the heating unit to apply heat to the reaction material to suck the water vapor as the gas from the reactor. .
On the other hand, in the heat demand section, the heat radiation operation can be performed in such a form that the steam is supplied to the reactor by operating the supply means while operating the heat recovery means to recover heat from the reaction material.
Therefore, by omitting the evaporative condenser, the heat transfer unit can make the outer dimensions per heat storage capacity relatively small, and further, the water vapor generated by the dehydration reaction of the reaction material in the heat storage operation is heat transferred as condensed water. Since the heat is not stored in the unit but is discharged to the heat generating part, the weight per heat storage capacity can be made relatively small.
Therefore, by the heat transfer system of the present invention, it is possible to provide a heat transfer technology that can realize a compact and lightweight heat transfer unit to transfer a large amount of heat and fully enjoy the effects of energy saving and resource saving. it can.
本発明に係る熱搬送システムの第2特徴構成は、上記第1特徴構成に加えて、
前記熱搬送ユニットに設けた前記反応器に、前記反応材と熱媒流体との間で熱交換を行う反応器用熱交換部を設け、
前記与熱手段及び前記熱回収手段が、前記反応器用熱交換部との間で循環させる熱媒流体を介して熱の授受を行うように構成されている点にある。
In addition to the first feature configuration, the second feature configuration of the heat transfer system according to the present invention is:
The reactor provided in the heat transfer unit is provided with a heat exchanger for the reactor that performs heat exchange between the reaction material and the heat transfer fluid,
The heating means and the heat recovery means are configured to exchange heat via a heat transfer fluid that circulates between the heat exchange means for the reactor.
上記熱搬送システムの第2特徴構成によれば、熱発生部での蓄熱操作において、与熱手段は、反応器に配置された反応器用熱交換部に接続された状態で、熱発生部側で熱を与えて加熱した熱媒流体を反応器用熱交換部に供給しながら、同反応器用熱交換部において反応材の脱水反応による吸熱作用により冷却された熱媒流体を熱発生部側に取り出すという合理的な構成で、熱発生部側の熱を熱搬送ユニットの反応器の反応材に与えることができる。
一方、熱需要部での放熱操作において、熱回収手段は、反応器に配置された反応器用熱交換部に接続された状態で、反応器用熱交換部で反応材の水和反応による発熱作用により加熱された熱媒流体を熱需要部側に取り出しながら、熱需要部側で冷却した熱媒流体を反応器用熱交換部に供給するという合理的な構成で、熱搬送ユニットの反応器の反応材から熱を回収することができる。
According to the second characteristic configuration of the heat transfer system, in the heat storage operation at the heat generation unit, the heating means is connected to the heat exchange unit for the reactor disposed in the reactor, and on the heat generation unit side. While supplying the heat transfer fluid heated by supplying heat to the heat exchange section for the reactor, the heat transfer fluid cooled by the endothermic action by the dehydration reaction of the reaction material in the heat exchange section for the reactor is taken out to the heat generation section side. With a rational configuration, heat on the heat generating unit side can be applied to the reaction material of the reactor of the heat transfer unit.
On the other hand, in the heat radiation operation in the heat demand section, the heat recovery means is connected to the heat exchange section for the reactor arranged in the reactor, and generates heat due to the hydration reaction of the reaction material in the reactor heat exchange section. With the rational configuration of supplying the heat transfer fluid cooled on the heat demand section side to the heat exchange section for the reactor while taking out the heated heat transfer fluid to the heat demand section side, the reaction material of the reactor of the heat transfer unit Heat can be recovered.
本発明に係る熱搬送システムの第3特徴構成は、上記第1乃至第2特徴構成の何れかに加えて、
前記熱発生部に設けた前記ガス吸引手段が、前記反応器に連通するガス通路に接続可能に配置され、前記ガス通路を通じて前記反応器から前記水蒸気を吸引して外部に排出するガス吸引ポンプで構成されている点にある。
In addition to any of the first to second feature configurations described above, the third feature configuration of the heat transfer system according to the present invention includes:
A gas suction pump, wherein the gas suction means provided in the heat generation unit is arranged to be connectable to a gas passage communicating with the reactor, and sucks the water vapor from the reactor through the gas passage and discharges it to the outside; It is in the point which is comprised.
上記熱搬送システムの第3特徴構成によれば、熱発生部での蓄熱操作において、熱搬送ユニット側の反応器からガスを吸引するガス吸引手段を、上記ガス吸引ポンプで構成することができる。即ち、熱発生部での蓄熱操作において、上記ガス吸引ポンプを反応器に接続した状態で作動させることで、常時反応器から水蒸気等のガスを吸引して反応器の内圧を低く維持し、反応材の脱水反応を継続させることができる。 According to the 3rd characteristic structure of the said heat transfer system, the gas suction means which attracts | sucks gas from the reactor by the side of a heat transfer unit in the heat storage operation in a heat generation part can be comprised with the said gas suction pump. That is, in the heat storage operation in the heat generation part, by operating the gas suction pump connected to the reactor, gas such as water vapor is constantly sucked from the reactor to keep the internal pressure of the reactor low, and the reaction The dehydration reaction of the material can be continued.
本発明に係る熱搬送システム第4特徴構成は、上記第1乃至第2特徴構成の何れかに加えて、
前記熱発生部に設けた前記ガス吸引手段が、前記反応器に連通するガス通路に接続可能に配置された凝縮器と、前記凝縮器の内部を冷却水との熱交換により冷却する凝縮器用熱交換部と、前記凝縮器に溜まった水を排出可能且つ当該凝縮器を減圧可能な凝縮器用吸引ポンプとで構成されている点にある。
The fourth characteristic configuration of the heat transfer system according to the present invention is in addition to any of the first to second characteristic configurations,
Heat for the condenser that cools the inside of the condenser by heat exchange between the condenser disposed so as to be connectable to a gas passage communicating with the reactor and the cooling water by the gas suction means provided in the heat generation unit. It is in the point comprised by the exchange part and the suction pump for condensers which can discharge | emit the water accumulated in the said condenser, and can pressure-reduce the said condenser.
上記熱搬送システムの第4特徴構成によれば、熱発生部での蓄熱操作において熱搬送ユニット側の反応器からガスを吸引するガス吸引手段を、上記凝縮器、上記凝縮器用熱交換部、並びに、上記凝縮器用吸引ポンプで構成することができる。即ち、熱発生部での蓄熱操作において、先ず、凝縮器に溜まっている水を排出した状態で、凝縮器用吸引ポンプを作動させることで、凝縮器を減圧することができる。次に、そのように減圧された凝縮器を熱搬送ユニット側の反応器に接続した状態で、凝縮器用熱交換部に冷却水を通流させることで、凝縮器並びに反応器の内圧を低く維持しながら、水蒸気等のガスを反応器から凝縮器へ向けて通流させることができるので、凝縮器における水蒸気の凝縮を伴って反応材の脱水反応を継続させることができる。 According to the fourth characteristic configuration of the heat transfer system, the gas suction means for sucking gas from the reactor on the heat transfer unit side in the heat storage operation in the heat generation unit includes the condenser, the heat exchanger for the condenser, and The condenser suction pump can be used. That is, in the heat storage operation in the heat generating unit, first, the condenser can be decompressed by operating the condenser suction pump in a state where the water accumulated in the condenser is discharged. Next, with the condenser thus depressurized connected to the reactor on the heat transfer unit side, the cooling water is passed through the heat exchanger for the condenser to keep the internal pressure of the condenser and the reactor low. However, since a gas such as water vapor can flow from the reactor toward the condenser, the dehydration reaction of the reaction material can be continued with the condensation of water vapor in the condenser.
本発明に係る熱搬送システムの第5特徴構成は、上記第1乃至第4特徴構成の何れかに加えて、
前記熱需要部に設けた前記水蒸気供給手段が、前記反応器に連通するガス通路に接続可能に配置された蒸発器と、前記蒸発器の内部を加熱水との熱交換により加熱する蒸発器用熱交換部と、前記蒸発器に給水可能な給水部とで構成されている点にある。
In addition to any of the first to fourth feature configurations described above, the fifth feature configuration of the heat transfer system according to the present invention includes:
Heat for the evaporator in which the water vapor supply means provided in the heat demand section is arranged to be connectable to a gas passage communicating with the reactor, and heats the interior of the evaporator by heat exchange with heated water. There exists in the point comprised by the replacement | exchange part and the water supply part which can supply water to the said evaporator.
上記熱搬送システムの第5特徴構成によれば、熱需要部での放熱操作において熱搬送ユニット側の反応器に蒸気を供給する水蒸気供給手段を、上記蒸発器、上記蒸発器用熱交換部、上記給水部、並びに、上記蒸発器用吸引ポンプで構成することができる。即ち、熱需要部での放熱操作において、先ず、給水部により蒸発器に給水して、蒸発器に水を溜めることができる。次に、そのように水が溜められた蒸発器を反応器に接続した状態で、蒸発器用熱交換部に加熱水を通流させることで、蒸発器並びに反応器の内圧を低く維持しながら、水蒸気を蒸発器から反応器へ向けて通流させることができるので、蒸発器の水の蒸発を伴って反応材の水和反応を継続させることができる。
また、このような構成において、蒸発器並びに反応器の内圧を低くするほど、蒸発器用熱交換部に通流させる加熱水の温度を低くすることができ、例えば、加熱水として常温の水道水を利用した場合でも、低圧の蒸発器においてその加熱水との熱交換により水を加熱して水蒸気を発生させることができる。
According to the fifth characteristic configuration of the heat transfer system, the water vapor supply means for supplying the vapor to the reactor on the heat transfer unit side in the heat radiation operation in the heat demand unit includes the evaporator, the heat exchanger for the evaporator, It can comprise with a water supply part and the said suction pump for evaporators. That is, in the heat radiation operation in the heat demand section, first, water can be supplied to the evaporator by the water supply section, and water can be stored in the evaporator. Next, in such a state that the evaporator in which water is stored is connected to the reactor, the heating water is allowed to flow through the evaporator heat exchanging portion, while maintaining the internal pressure of the evaporator and the reactor low, Since water vapor can flow from the evaporator to the reactor, the hydration reaction of the reactant can be continued with evaporation of the water in the evaporator.
Further, in such a configuration, the lower the internal pressure of the evaporator and the reactor, the lower the temperature of the heated water flowing through the heat exchanger for the evaporator, for example, normal temperature tap water can be used as the heated water. Even when it is used, it is possible to generate water vapor by heating water by heat exchange with the heated water in a low-pressure evaporator.
上記目的を達成するための本発明に係る熱搬送ユニットは、
熱を蓄熱可能、且つ、当該蓄熱した熱を放熱可能な可搬式の熱搬送ユニットであって、
その特徴構成は、
吸熱を伴う脱水反応と発熱を伴う水和反応とを可逆的に行う反応材を内部に収容してなる反応器を備えると共に、
外部との間で、前記反応材における熱の授受が可能、且つ、前記反応器における水蒸気の授受が可能に構成されて、
これまで説明した本発明に係る熱搬送システムの熱搬送ユニットとして構成されている点にある。
In order to achieve the above object, a heat transfer unit according to the present invention comprises:
A portable heat transfer unit capable of storing heat and dissipating the stored heat,
Its characteristic configuration is
While equipped with a reactor containing a reaction material that performs reversible dehydration reaction with endotherm and hydration reaction with heat generation inside,
It is possible to exchange heat with the reaction material with the outside, and to exchange water vapor in the reactor,
It exists in the point comprised as a heat transfer unit of the heat transfer system based on this invention demonstrated so far.
上記熱搬送ユニットの特徴構成によれば、これまで説明してきた本発明に係る熱搬送システムの熱搬送ユニットとして利用されることで、当該本発明に係る熱搬送システムと同様の作用効果を発揮する。
即ち、熱搬送ユニットには、蒸発凝縮器を省略して反応器のみを備える構成を採用することができ、コンパクト化且つ軽量化を実現しながら、熱発生部又は熱需要部である外部との間で反応材の熱の授受及び反応器の水蒸気の授受を行う形態で、熱発生部から熱需要部に熱を効率良く搬送することができる。
According to the characteristic configuration of the heat transfer unit, the same effect as the heat transfer system according to the present invention is exhibited by being used as the heat transfer unit of the heat transfer system according to the present invention described so far. .
That is, the heat transport unit can be configured to omit the evaporative condenser and include only the reactor, and while realizing a compact and light weight, the heat generating unit or the heat demanding unit is connected to the outside. Heat can be efficiently transferred from the heat generating part to the heat demanding part in a form in which heat is exchanged between the reaction materials and water vapor is exchanged in the reactor.
上記目的を達成するための本発明に係る熱搬送方法は、
熱発生部の熱を蓄熱可能、且つ、当該蓄熱した熱を熱需要部に放熱可能な可搬式の熱搬送ユニットを利用して、前記熱発生部の熱を前記熱需要部に搬送する熱搬送方法であって、
その特徴構成は、
前記熱搬送ユニットに、吸熱を伴う脱水反応と発熱を伴う水和反応とを可逆的に行う反応材を内部に収容してなる反応器を設け、
前記熱発生部に、前記反応材に熱を与える与熱手段と、前記反応器から水蒸気を吸引するガス吸引手段とを設け、
前記熱需要部に、前記反応材から熱を回収する熱回収手段と、前記反応器に水蒸気を供給する水蒸気供給手段とを設け、
前記熱発生部において、前記与熱手段を作動させて前記反応材に熱を与えながら前記吸引手段を作動させて前記反応器から水蒸気を吸引して、前記反応材に前記脱水反応をさせる蓄熱操作を実行した後に、
前記熱需要部において、前記熱回収手段を作動させて前記反応材から熱を回収しながら前記供給手段を作動させて前記反応器に水蒸気を供給して、前記反応材に前記水和反応をさせる放熱操作を実行する点にある。
In order to achieve the above object, the heat transfer method according to the present invention comprises:
Heat transport for transporting heat from the heat generation section to the heat demand section using a portable heat transport unit capable of storing heat from the heat generation section and dissipating the stored heat to the heat demand section A method,
Its characteristic configuration is
The heat transfer unit is provided with a reactor containing therein a reaction material that reversibly performs a dehydration reaction with endotherm and a hydration reaction with heat generation,
The heat generating unit is provided with heating means for applying heat to the reaction material, and gas suction means for sucking water vapor from the reactor,
The heat demand section is provided with heat recovery means for recovering heat from the reaction material, and steam supply means for supplying steam to the reactor,
In the heat generating section, a heat storage operation for operating the suction means while operating the heating means to apply heat to the reaction material to suck water vapor from the reactor and causing the reaction material to perform the dehydration reaction. After running
In the heat demand section, the heat recovery means is operated to recover the heat from the reaction material, and the supply means is operated to supply water vapor to the reactor to cause the reaction material to perform the hydration reaction. It is in the point which performs heat dissipation operation.
上記熱搬送方法の特徴構成によれば、これまで説明してきた本発明に係る熱搬送システムにより実行される方法であり、当該本発明に係る熱搬送システムと同様の作用効果を発揮する。
即ち、蒸発凝縮器を省略することでコンパクト化且つ軽量化を実現した熱搬送ユニットを利用して、熱発生部から熱需要部に熱を効率良く搬送することができる。
According to the characteristic structure of the said heat transfer method, it is a method performed by the heat transfer system which concerns on this invention demonstrated so far, and the same effect as the heat transfer system which concerns on the said this invention is exhibited.
That is, heat can be efficiently transferred from the heat generating unit to the heat demanding unit using a heat transfer unit that is compact and lightweight by omitting the evaporative condenser.
本発明に係る熱搬送システム、熱搬送ユニット、及び熱搬送方法の実施形態について、図面に基づいて説明する。
本実施形態の熱搬送システム及び熱搬送方法は、図1(a)に示すように、トレーラTなどに搭載されて蓄熱・放熱を交互に繰り返すことができる可搬式の熱搬送ユニットAを利用するものであり、図1(b)に示すように、ごみ焼却場などの熱発生部Bにおいて、当該熱発生部Bで発生した熱を熱搬送ユニットAに蓄える蓄熱操作を実行し、図1(c)に示すように、その蓄熱操作が完了した熱搬送ユニットAを各家庭や商業施設などの熱需要部Cに搬送し、当該熱需要部Cにおいて、熱搬送ユニットAに蓄えた熱を熱需要部Cに放出する放熱操作を実行する形態で、熱発生部Bから熱需要部Cへ熱を搬送するものとして構成されている。
以下、本実施形態の熱搬送システムの詳細構成を、熱搬送ユニットA、熱発生部B、熱需要部Cの順に説明する。
Embodiments of a heat transfer system, a heat transfer unit, and a heat transfer method according to the present invention will be described with reference to the drawings.
As shown in FIG. 1A, the heat transfer system and the heat transfer method of the present embodiment use a portable heat transfer unit A that is mounted on a trailer T and can alternately repeat heat storage and heat dissipation. As shown in FIG. 1 (b), in a heat generation part B such as a garbage incineration plant, a heat storage operation for storing heat generated in the heat generation part B in the heat transfer unit A is executed, and FIG. As shown in c), the heat transfer unit A that has completed the heat storage operation is transferred to the heat demanding part C of each home or commercial facility, and the heat stored in the heat transfer unit A is heated in the heat demanding part C. It is configured to carry heat from the heat generating part B to the heat demanding part C in the form of executing the heat radiation operation to be released to the demanding part C.
Hereinafter, the detailed configuration of the heat transfer system of the present embodiment will be described in the order of the heat transfer unit A, the heat generation unit B, and the heat demand unit C.
[熱搬送ユニットA]
熱搬送ユニットAの詳細構成について、図1(a)に基づいて説明する。
熱搬送ユニットAは、熱発生部B側の熱を蓄熱可能、且つ、当該蓄熱した熱を熱需要部C側に放熱可能に構成されており、具体的には、吸熱を伴う脱水反応と発熱を伴う水和反応とを可逆的に行う反応材A2を内部に収容してなる反応器A1を設けて構成されている。
尚、この熱搬送ユニットAには、背景技術の欄で説明したような蒸発凝縮器は設けられておらず、反応器A1、それに対する補機、並びに各種接続部のみで構成されているために、コンパクト化且つ軽量化が図られている。
[Heat transfer unit A]
A detailed configuration of the heat transfer unit A will be described with reference to FIG.
The heat transfer unit A is configured to be able to store heat on the heat generation unit B side and to dissipate the stored heat to the heat demand unit C side, specifically, dehydration reaction with heat absorption and heat generation. Is provided with a reactor A1 in which a reaction material A2 for reversibly performing a hydration reaction involving is contained.
The heat transfer unit A is not provided with an evaporating condenser as described in the background art section, and is composed of only the reactor A1, auxiliary equipment for the reactor, and various connections. Therefore, a reduction in size and weight is achieved.
反応器A1には、反応材A2の設置空間に配置した伝熱管内に熱媒流体FA1を通流させる形態で反応材A2と熱媒流体FA1との間で熱交換を行う反応器用熱交換器A3(反応器用熱交換部の一例)が設けられており、この反応器用熱交換器A3には、後述する熱発生部B及び熱需要部C等の外部との間で熱媒流体FA1を循環させる形態で当該熱媒流体FA1の授受を行うための一対の熱媒接続部A9と、その一対の熱媒接続部A9の夫々における熱媒流体FA1の通流を遮断可能な一対の熱媒遮断弁A8とが設けられている。
尚、この熱媒流体FA1としては、水を利用することができるが、例えば、100℃を超える場合にはスチームや油を利用することができる。
The reactor A1 includes a heat exchanger for a reactor that performs heat exchange between the reaction material A2 and the heat transfer fluid FA1 in such a manner that the heat transfer fluid FA1 flows through the heat transfer pipe disposed in the installation space of the reaction material A2. A3 (an example of a reactor heat exchange section) is provided, and in this reactor heat exchanger A3, a heat medium fluid FA1 is circulated between the heat generation section B and the heat demand section C described later. A pair of heat medium connection portions A9 for transferring the heat medium fluid FA1 in a form that causes the heat medium fluid FA1 to pass, and a pair of heat medium interruptions that can block the flow of the heat medium fluid FA1 in each of the pair of heat medium connection portions A9 A valve A8 is provided.
In addition, although water can be utilized as this heat transfer fluid FA1, for example, when it exceeds 100 ° C., steam or oil can be utilized.
反応器A1には、反応材A2の設置空間に連通するガス通路A5が設けられており、このガス通路A5には、後述する熱発生部B及び熱需要部C等の外部との間でガスの授受を行うためのガス接続部A7と、そのガス接続部A7におけるガスの通流を遮断可能なガス遮断弁A6とが設けられている。 The reactor A1 is provided with a gas passage A5 that communicates with the installation space of the reaction material A2, and the gas passage A5 includes gas between the heat generation section B and the heat demand section C described later. And a gas shutoff valve A6 capable of shutting off the gas flow in the gas connection A7.
この反応器A1の内部に設けられる反応材A2としては、ケミカルヒートポンプなどで使用される公知の反応材を利用することができ、例えば特開2007−247928号公報に開示されているように、塩化カルシウム、塩化マンガン、塩化マグネシウム、塩化ニッケル、炭酸ナトリウム、硫酸カルシウムから選択される一種以上の無機塩や、酸化マグネシウム、酸化カルシウムから選択される一種以上の酸化物を採用することができる。
また、この反応材A2は、当該反応材A2を溶媒に溶解させた反応材溶液を膨張黒鉛などのガス透過性材料に含浸させた後に乾燥させて製作された反応材A2の析出相とガス透過性材料が混在する複合層として、反応器A1に充填することができる。
As the reaction material A2 provided inside the reactor A1, a known reaction material used in a chemical heat pump or the like can be used. For example, as disclosed in Japanese Patent Application Laid-Open No. 2007-247928, chloride is used. One or more inorganic salts selected from calcium, manganese chloride, magnesium chloride, nickel chloride, sodium carbonate, and calcium sulfate, and one or more oxides selected from magnesium oxide and calcium oxide can be employed.
In addition, the reaction material A2 is formed by impregnating a reaction material solution obtained by dissolving the reaction material A2 in a solvent with a gas permeable material such as expanded graphite and then drying the reaction material A2. The reactor A1 can be filled as a composite layer in which a reactive material is mixed.
[熱発生部B]
熱発生部Bにおける熱搬送システムの詳細構成について、図1(b)及び図2に基づいて説明する。
熱発生部Bは、ごみ焼却場、発電所、製鉄所などのように、比較的多くの排熱が生じる施設を示し、例えば蒸気タービン発電用の高温蒸気として回収しきれない低温排熱を保有する。
そして、この熱発生部Bには、図1(b)に示すように、前述した熱搬送ユニットA側の反応材A2に上記のような低温排熱などの熱を与える与熱手段B2と、前述した熱搬送ユニットA側の反応器A1からガスを吸引するガス吸引手段B1とが設けられている。
また、熱発生部Bには、熱搬送ユニットA側の一対の熱媒接続部A9に対して着脱自在に接続される一対の熱媒接続部B9と、熱搬送ユニットA側のガス接続部A7に対して着脱自在に接続されるガス接続部B7とが設けられており、更に、その一対の熱媒接続部B9の夫々における熱媒流体FA1の通流を遮断可能な一対の熱媒遮断弁B8と、そのガス接続部B7におけるガスの通流を遮断可能なガス遮断弁B6とが設けられている。
[Heat generation part B]
A detailed configuration of the heat transfer system in the heat generating part B will be described with reference to FIG.
The heat generation part B indicates a facility that generates a relatively large amount of exhaust heat, such as a waste incineration plant, a power plant, and a steel plant, and has low-temperature exhaust heat that cannot be recovered as high-temperature steam for steam turbine power generation, for example. To do.
And in this heat generation part B, as shown in FIG.1 (b), the heating means B2 which gives heat, such as the above-mentioned low-temperature exhaust heat, to the reaction material A2 on the heat transfer unit A side described above, Gas suction means B1 for sucking gas from the reactor A1 on the heat transfer unit A side is provided.
The heat generation unit B includes a pair of heat medium connection portions B9 that are detachably connected to the pair of heat medium connection portions A9 on the heat transfer unit A side, and a gas connection portion A7 on the heat transfer unit A side. And a pair of heat medium shut-off valves capable of shutting off the flow of the heat medium fluid FA1 in each of the pair of heat medium connection parts B9. B8 and a gas shutoff valve B6 capable of shutting off the gas flow at the gas connection B7 are provided.
上記与熱手段B2は、図2に示すように、熱搬送ユニットA側の熱媒接続部A9と熱発生部B側の熱媒接続部B9とを接続して夫々の熱媒遮断弁A8,B8を開放した状態において、熱搬送ユニットA側の反応器用熱交換器A3との間で熱媒流体FA1を循環させる循環ポンプB22と、当該循環ポンプB22で循環される熱媒流体FA1を比較的高温の加熱媒体FB1との熱交換により加熱する形態で加熱媒体FB1の熱を熱媒流体FA1に与える加熱用熱交換器B21とを備えて構成されている。
そして、この与熱手段B2を作動させることにより、熱搬送ユニットA側の反応器用熱交換器A3には加熱された熱媒流体FA1が供給されて、反応材A2が当該反応器用熱交換器A3による熱交換により加熱されることになる。即ち、熱発生部B側の熱は、加熱媒体FB1及びそれと熱交換を行う熱媒流体FA1を通じて、熱搬送ユニットA側の反応材A2に与えられることになる。
As shown in FIG. 2, the heating means B2 connects a heat medium connecting part A9 on the heat transfer unit A side and a heat medium connecting part B9 on the heat generating part B side, and each heat medium shutoff valve A8, In a state where B8 is opened, a circulation pump B22 that circulates the heat medium fluid FA1 with the reactor heat exchanger A3 on the heat transfer unit A side, and a heat medium fluid FA1 that is circulated by the circulation pump B22 are relatively A heating heat exchanger B21 that heats the heating medium FB1 to the heating medium fluid FA1 in a form of heating by heat exchange with the high-temperature heating medium FB1 is provided.
Then, by operating this heating means B2, the heated heat medium fluid FA1 is supplied to the reactor heat exchanger A3 on the heat transfer unit A side, and the reaction material A2 is supplied to the reactor heat exchanger A3. It will be heated by heat exchange. That is, the heat on the heat generating unit B side is given to the reaction material A2 on the heat transfer unit A side through the heating medium FB1 and the heat medium fluid FA1 that exchanges heat with the heating medium FB1.
上記ガス吸引手段B1は、図2に示すように、熱搬送ユニットA側のガス接続部A7と熱発生部B側のガス接続部B7とを接続して夫々のガス遮断弁A6,B6を開放した状態において、熱搬送ユニットA側から熱発生部B側に向かう方向に、熱搬送ユニットA側の反応器A1に連通するガス通路A5からガスを吸引するガス吸引ポンプB11で構成されている。尚、このガス吸引ポンプB11で吸引したガスは適宜処理した後に排気される。 As shown in FIG. 2, the gas suction means B1 connects the gas connection part A7 on the heat transfer unit A side and the gas connection part B7 on the heat generation part B side, and opens the gas cutoff valves A6 and B6. In this state, the gas suction pump B11 sucks the gas from the gas passage A5 communicating with the reactor A1 on the heat transfer unit A side in the direction from the heat transfer unit A side toward the heat generating unit B side. The gas sucked by the gas suction pump B11 is exhausted after being appropriately treated.
〔蓄熱操作〕
このような熱発生部Bにおいては、与熱手段B2を作動させて熱搬送ユニットA側の反応材A2に熱を与えながら、ガス吸引手段B1を作動させて熱搬送ユニットA側の反応器A1からガスとしての水蒸気Sを吸引して、反応材A2に脱水反応をさせる形態で、熱発生部Bの熱を熱搬送ユニットA側に蓄熱する蓄熱操作を実行することができ、その詳細について以下に説明する。
[Heat storage operation]
In such a heat generating part B, the gas suction means B1 is operated while the heating means B2 is operated to apply heat to the reaction material A2 on the heat transfer unit A side, and the reactor A1 on the heat transfer unit A side. The heat storage operation of storing the heat of the heat generation part B on the heat transfer unit A side can be executed in a form in which the water vapor S as a gas is sucked from the reaction material to cause the reaction material A2 to perform a dehydration reaction. Explained.
熱発生部Bにおいて蓄熱操作を実行するにあたり、先ず、反応材A2が後述する放熱操作における水和反応後の水和状態である熱搬送ユニットAを搭載したトレーラTを準備し、熱搬送ユニットA側の熱媒接続部A9と熱発生部B側の熱媒接続部B9とを接続して夫々の熱媒遮断弁A8,B8を開放し、更に、熱搬送ユニットA側のガス接続部A7と熱発生部B側のガス接続部B7とを接続して夫々のガス遮断弁A6,B6を開放する。 In performing the heat storage operation in the heat generating part B, first, the reaction material A2 is prepared with a trailer T equipped with the heat transfer unit A which is a hydrated state after the hydration reaction in the heat release operation described later, and the heat transfer unit A Side heat medium connection part A9 and heat generation part B side heat medium connection part B9 are connected to open the respective heat medium shutoff valves A8, B8, and further, the gas connection part A7 on the heat transfer unit A side and The gas shutoff valves A6 and B6 are opened by connecting the gas connection part B7 on the heat generating part B side.
次に、上記ガス吸引ポンプB11による熱搬送ユニットA側の反応器A1からのガスの吸引を開始し、当該反応器A1の内圧が例えば5kPaに低下した時点で、上記循環ポンプB22による熱搬送ユニットA側の反応器用熱交換器A3への熱媒流体FA1の循環を開始すると共に、加熱用熱交換器B21への比較的高温の加熱媒体FB1の供給を開始して熱媒流体FA1の加熱を開始する。
ここで、熱搬送ユニットA側の反応器A1の内圧に相当する一時側圧力が例えば5kPa程度に維持されるようにガス吸引ポンプB11の出力が制御され、一方、熱搬送ユニットA側の反応器用熱交換器A3へ供給される熱媒流体FA1の温度が例えば120℃程度に維持されるように加熱用熱交換器B21への加熱媒体FB1の供給量が制御される。
Next, suction of gas from the reactor A1 on the heat transfer unit A side by the gas suction pump B11 is started, and when the internal pressure of the reactor A1 decreases to, for example, 5 kPa, the heat transfer unit by the circulation pump B22 Circulation of the heating medium fluid FA1 to the A-side reactor heat exchanger A3 is started, and supply of a relatively high-temperature heating medium FB1 to the heating heat exchanger B21 is started to heat the heating medium fluid FA1. Start.
Here, the output of the gas suction pump B11 is controlled so that the temporary pressure corresponding to the internal pressure of the reactor A1 on the heat transfer unit A side is maintained at, for example, about 5 kPa. The supply amount of the heating medium FB1 to the heating heat exchanger B21 is controlled so that the temperature of the heating medium fluid FA1 supplied to the heat exchanger A3 is maintained at about 120 ° C., for example.
そして、上記のような蓄熱操作を実行することで、熱搬送ユニットA側の反応器A1においては、反応材A2が反応器用熱交換器A3における熱媒流体FA1との熱交換により加熱されながら、反応器A1の内圧が常に低く維持されることになる。
すると、反応材A2は、以下の化学反応式(1)で示されるように、下記ΔHに相当する吸熱を伴う脱水反応を行う形態で、熱発生部B側の熱を蓄えることになり、この脱水反応により発生した水蒸気Sが、ガス吸引ポンプB11により熱発生部B側に吸引されて排出されることになる。
Then, by performing the heat storage operation as described above, in the reactor A1 on the heat transfer unit A side, the reaction material A2 is heated by heat exchange with the heat transfer fluid FA1 in the reactor heat exchanger A3, The internal pressure of the reactor A1 is always kept low.
Then, as shown in the following chemical reaction formula (1), the reaction material A2 stores heat on the heat generation part B side in a form of performing a dehydration reaction with endotherm corresponding to the following ΔH. The water vapor S generated by the dehydration reaction is sucked and discharged to the heat generating part B side by the gas suction pump B11.
CaCl2・4H2O+ΔH→CaCl2・H2O+3H2O(gas)・・・(1) CaCl 2 · 4H 2 O + ΔH → CaCl 2 · H 2 O + 3H 2 O (gas) (1)
上記のような蓄熱操作を実行した後には、夫々の熱媒遮断弁A8,B8を遮断して熱搬送ユニットA側の熱媒接続部A9と熱発生部B側の熱媒接続部B9との接続を解除し、更に、夫々のガス遮断弁A6,B6を遮断して熱搬送ユニットA側のガス接続部A7と熱発生部B側のガス接続部B7との接続を解除する。そして、このように反応材A2が脱水反応後の脱水状態となった熱搬送ユニットAは、トレーラTに搭載されて、後述する熱需要部Cに搬送されることになる。 After performing the heat storage operation as described above, the respective heat medium shutoff valves A8 and B8 are shut off, and the heat medium connecting part A9 on the heat transfer unit A side and the heat medium connecting part B9 on the heat generating part B side are connected. The connection is released, and the gas shutoff valves A6 and B6 are shut off to release the connection between the gas connection part A7 on the heat transfer unit A side and the gas connection part B7 on the heat generation part B side. Then, the heat transfer unit A in which the reaction material A2 is in the dehydrated state after the dehydration reaction is mounted on the trailer T and is transferred to the heat demand unit C described later.
[熱需要部C]
熱需要部Cにおける熱搬送システムの詳細構成について、図1(c)及び図3に基づいて説明する。
熱需要部Cは、各家庭や商業施設などのように、給湯や暖房等で熱を消費する施設を示す。
そして、この熱需要部Cには、図1(c)に示すように、前述した熱搬送ユニットA側の反応材A2から熱を回収する熱回収手段C2と、前述した熱搬送ユニットA側の反応器A1に対して水蒸気Sを供給する水蒸気供給手段C1とが設けられている。
また、熱需要部Cには、熱搬送ユニットA側の一対の熱媒接続部A9に対して着脱自在に接続される一対の熱媒接続部C9と、熱搬送ユニットA側のガス接続部A7に対して着脱自在に接続されるガス接続部C7とが設けられており、更に、その一対の熱媒接続部C9の夫々における熱媒流体FA1の通流を遮断可能な一対の熱媒遮断弁C8と、そのガス接続部C7におけるガスの通流を遮断可能なガス遮断弁C6とが設けられている。
[Heat demand department C]
A detailed configuration of the heat transfer system in the heat demand section C will be described with reference to FIG.
The heat demand section C indicates a facility that consumes heat by hot water supply or heating, such as each home or commercial facility.
And in this heat demand part C, as shown in FIG.1 (c), the heat recovery means C2 which collect | recovers heat from the reaction material A2 by the side of the heat transfer unit A mentioned above, and the heat transfer unit A side by the side mentioned above. Steam supply means C1 for supplying steam S to the reactor A1 is provided.
The heat demand section C includes a pair of heat medium connection sections C9 that are detachably connected to the pair of heat medium connection sections A9 on the heat transfer unit A side, and a gas connection section A7 on the heat transfer unit A side. And a pair of heat medium shutoff valves capable of shutting off the flow of the heat medium fluid FA1 in each of the pair of heat medium connection parts C9. C8 and a gas shut-off valve C6 capable of shutting off the gas flow at the gas connection C7 are provided.
上記熱回収手段C2は、図3に示すように、熱搬送ユニットA側の熱媒接続部A9と熱需要部C側の熱媒接続部C9とを接続して夫々の熱媒遮断弁A8,C8を開放した状態において、熱搬送ユニットA側の反応器用熱交換器A3との間で熱媒流体FA1を循環させる循環ポンプC22と、当該循環ポンプC22で循環される熱媒流体FA1を比較的低温の循環水FC2との熱交換により冷却する形態で熱媒流体FA1の熱を循環水FC2に回収する熱回収用熱交換器C21とを備えて構成されている。
そして、この熱回収手段C2を作動させることにより、熱搬送ユニットA側の反応器用熱交換器A3には冷却された熱媒流体FA1が供給されて、熱搬送ユニットA側の反応材A2が当該反応器用熱交換器A3による熱交換により冷却されることになる。即ち、熱搬送ユニットA側の反応器A1に蓄えられている熱は、熱媒流体FA1及びそれと熱交換を行う循環水FC2を通じて、熱需要部C側に回収されることになる。
尚、熱需要部Cにおいて、熱回収用熱交換器C21で熱媒流体FA1を冷却することによって比較的高温となった循環水FC2は、給湯用、暖房用、風呂追焚用等として利用することができる。
As shown in FIG. 3, the heat recovery means C2 connects the heat medium connecting part A9 on the heat transfer unit A side and the heat medium connecting part C9 on the heat demanding part C side to each heat medium shutoff valve A8, In a state where C8 is opened, a circulation pump C22 that circulates the heat medium fluid FA1 between the reactor heat exchanger A3 on the heat transfer unit A side and a heat medium fluid FA1 that is circulated by the circulation pump C22 are relatively A heat recovery heat exchanger C21 that recovers the heat of the heat medium fluid FA1 to the circulating water FC2 in a form of cooling by heat exchange with the low-temperature circulating water FC2 is provided.
And by operating this heat recovery means C2, the cooled heat transfer fluid FA1 is supplied to the reactor heat exchanger A3 on the heat transfer unit A side, and the reaction material A2 on the heat transfer unit A side is It is cooled by heat exchange by the reactor heat exchanger A3. That is, the heat stored in the reactor A1 on the heat transfer unit A side is recovered on the heat demand section C side through the heat medium fluid FA1 and the circulating water FC2 that exchanges heat with it.
In the heat demand section C, the circulating water FC2 that has become relatively high temperature by cooling the heat transfer fluid FA1 in the heat recovery heat exchanger C21 is used for hot water supply, heating, bath recuperation, and the like. be able to.
上記水蒸気供給手段C1は、熱搬送ユニットA側のガス接続部A7と熱需要部C側のガス接続部C7とを接続して夫々のガス遮断弁A6,C6を開放した状態において、熱需要部C側から熱搬送ユニットA側に向かう方向に、熱搬送ユニットA側の反応器A1に対してガス通路A5を通じて水蒸気Sを供給するように構成されている。
具体的に、水蒸気供給手段C1は、図3に示すように、熱搬送ユニットA側の反応器A1に連通するガス通路A5に上記ガス接続部C7及びガス遮断弁C6を介して接続可能に配置された蒸発器C11と、蒸発器C11の内部を加熱水FC1との熱交換により加熱する蒸発器用熱交換器C12(蒸発器用熱交換部の一例)と、蒸発器C11に給水可能な給水弁C13(給水部の一例)とを備えて構成されており、更には、蒸発器C11を減圧可能な蒸発器用吸引ポンプC14を備える。
The steam supply means C1 connects the gas connection part A7 on the heat transfer unit A side and the gas connection part C7 on the heat demand part C side, and opens the gas shut-off valves A6 and C6. In the direction from the C side toward the heat transfer unit A, the steam S is supplied to the reactor A1 on the heat transfer unit A side through the gas passage A5.
Specifically, as shown in FIG. 3, the water vapor supply means C1 is arranged to be connectable to the gas passage A5 communicating with the reactor A1 on the heat transfer unit A side via the gas connection portion C7 and the gas shutoff valve C6. The evaporator C11 thus formed, an evaporator heat exchanger C12 (an example of an evaporator heat exchanger) that heats the inside of the evaporator C11 by heat exchange with the heating water FC1, and a water supply valve C13 that can supply water to the evaporator C11 (An example of a water supply unit), and further includes an evaporator suction pump C14 capable of depressurizing the evaporator C11.
上記蒸発器C11は、内部に水を貯留することができる密閉容器で構成されており、その天井部はガス遮断弁C6を介してガス接続部C7に連通されている。
上記蒸発器用熱交換器C12は、蒸発器C11の内部の貯留水に浸漬する状態で配置した伝熱管内に加熱水FC1を通流させる形態で当該貯留水と加熱水FC1との間で熱交換を行うものとして構成されている。
The evaporator C11 is composed of a sealed container capable of storing water therein, and the ceiling portion thereof is communicated with the gas connection portion C7 via the gas cutoff valve C6.
The evaporator heat exchanger C12 exchanges heat between the stored water and the heated water FC1 in such a manner that the heated water FC1 flows through a heat transfer pipe disposed in a state of being immersed in the stored water inside the evaporator C11. Is configured to do.
上記給水弁C13は、一次側を水道管等に接続し二次側を蒸発器C11に接続してなる開閉弁からなり、この給水弁C13を開放することで、給水FC3を蒸発器C11の内部に供給して蒸発器C11の内部に当該給水FC3を貯留水として貯留させることができ、同給水弁C13を遮断することで、その給水FC3の供給を停止することができる。
上記蒸発器用吸引ポンプC14は、蒸発器C11の内部からガスを吸引して外部に排出することで、蒸発器C11の内圧を低下させるように構成されている。
The water supply valve C13 is an open / close valve having a primary side connected to a water pipe or the like and a secondary side connected to the evaporator C11. By opening the water supply valve C13, the water supply FC3 is supplied to the inside of the evaporator C11. The water supply FC3 can be stored in the evaporator C11 as stored water, and the supply of the water supply FC3 can be stopped by shutting off the water supply valve C13.
The evaporator suction pump C14 is configured to reduce the internal pressure of the evaporator C11 by sucking gas from the inside of the evaporator C11 and discharging it to the outside.
このように構成された水蒸気供給手段C1を作動させることにより、熱搬送ユニットA側の反応器A1に水蒸気Sを供給することができるのであるが、その作動手順の詳細について、以下に説明を加える。
先ず、給水弁C13を開放して蒸発器C11の内部に給水FC3を供給して、蒸発器C11の内部に給水FC3を貯留させる。次に、ガス遮断弁C6を開放すると、熱搬送ユニットA側の反応器A1の内圧が予め低い状態であることから、蒸発器C11の内圧も比較的低くなって、蒸発器C11での水の沸点が比較的低くなる。そして、蒸発器用熱交換器C12に加熱水FC1を通流させることで、蒸発器C11に貯留する給水FC3が加熱されて沸騰し、その沸騰により生成された水蒸気Sがガス通路A5を通じて反応器A1に供給されることになる。また、上記ガス遮断弁C6を開放する前に、蒸発器用吸引ポンプC14を作動させて予め蒸発器C11を減圧するようにすれば、ガス遮断弁C6を開放した後においても、蒸発器C11及び反応器A1の内圧をより低く保つことができるので、蒸発器C11における給水FC3の沸騰を促進させて、より多くの水蒸気Sを熱搬送ユニットA側の反応器A1に供給することができる。
By operating the steam supply means C1 configured as described above, the steam S can be supplied to the reactor A1 on the heat transfer unit A side. The details of the operation procedure will be described below. .
First, the water supply valve C13 is opened, the water supply FC3 is supplied to the inside of the evaporator C11, and the water supply FC3 is stored inside the evaporator C11. Next, when the gas shut-off valve C6 is opened, since the internal pressure of the reactor A1 on the heat transfer unit A side is in a low state in advance, the internal pressure of the evaporator C11 also becomes relatively low, and the water in the evaporator C11 The boiling point is relatively low. And by making the heating water FC1 flow through the evaporator heat exchanger C12, the feed water FC3 stored in the evaporator C11 is heated and boiled, and the water vapor S generated by the boiling passes through the gas passage A5 to the reactor A1. Will be supplied. Further, if the evaporator suction pump C14 is operated to open the evaporator C11 in advance before the gas shutoff valve C6 is opened, the evaporator C11 and the reaction can be performed even after the gas shutoff valve C6 is opened. Since the internal pressure of the vessel A1 can be kept lower, boiling of the feed water FC3 in the evaporator C11 can be promoted, and more steam S can be supplied to the reactor A1 on the heat transfer unit A side.
〔放熱操作〕
このような熱需要部Cにおいては、熱回収手段C2を作動させて熱搬送ユニットA側の反応材A2から熱を回収しながら、水蒸気供給手段C1を作動させて熱搬送ユニットA側の反応器A1へ水蒸気Sを供給して、反応材A2に水和反応をさせる形態で、熱搬送ユニットA側の熱を熱需要部Cに放熱する放熱操作を実行することができ、その詳細について以下に説明する。
[Heat dissipation operation]
In such a heat demand section C, the heat recovery means C2 is operated to recover heat from the reaction material A2 on the heat transfer unit A side, while the water vapor supply means C1 is operated to operate the reactor on the heat transfer unit A side. In the form of supplying water vapor S to A1 and causing the reaction material A2 to undergo a hydration reaction, a heat dissipating operation for dissipating the heat on the heat transfer unit A side to the heat demanding part C can be executed. explain.
熱需要部Cにおいて放熱操作を実行するにあたり、先ず、反応材A2が前述した蓄熱操作における脱水反応後の脱水状態である熱搬送ユニットAを搭載したトレーラTを準備し、熱搬送ユニットA側の熱媒接続部A9と熱需要部C側の熱媒接続部C9とを接続して夫々の熱媒遮断弁A8,C8を開放し、更に、熱搬送ユニットA側のガス接続部A7と熱需要部C側のガス接続部C7とを接続して夫々のガス遮断弁A6,C6を開放する。 In performing the heat radiation operation in the heat demanding part C, first, the trailer T on which the reaction material A2 is mounted with the heat transfer unit A in the dehydration state after the dehydration reaction in the heat storage operation described above is prepared, and the heat transfer unit A side The heat medium connection part A9 and the heat medium connection part C9 on the heat demand part C side are connected to open the respective heat medium shutoff valves A8, C8, and further, the gas connection part A7 on the heat transfer unit A side and the heat demand The gas shutoff valves A6 and C6 are opened by connecting the gas connecting part C7 on the part C side.
次に、上記蒸発器用吸引ポンプC14による蒸発器C11からのガスの吸引を行って、蒸発器C11の内圧を例えば5kPaに低下させる。
そして、蒸発器用吸引ポンプC14の作動を停止して、上記循環ポンプC22による熱搬送ユニットA側の反応器用熱交換器A3への熱媒流体FA1の循環を開始すると共に、熱回収用熱交換器C21への比較的低温の循環水FC2の供給を開始して熱媒流体FA1の加熱を開始する。
Next, gas is sucked from the evaporator C11 by the evaporator suction pump C14, and the internal pressure of the evaporator C11 is reduced to, for example, 5 kPa.
Then, the operation of the evaporator suction pump C14 is stopped, and the circulation of the heat transfer fluid FA1 to the reactor heat exchanger A3 on the heat transfer unit A side by the circulation pump C22 is started, and the heat recovery heat exchanger Supply of relatively low-temperature circulating water FC2 to C21 is started, and heating of the heat medium fluid FA1 is started.
そして、上記のような放熱操作を実行することで、熱搬送ユニットA側の反応器A1においては、熱需要部C側の蒸発器C11にて給水FC3が沸騰して生成された水蒸気Sが供給されながら、反応材A2が反応器用熱交換器A3における熱媒流体FA1との熱交換により冷却されることになる。
すると、反応材A2は、以下の化学反応式(2)で示されるように、下記Δhに相当する発熱を伴う水和反応を行う形態で、蓄えていた熱を熱需要部C側へ放出することになり、この水和反応に必要な水蒸気Sが、熱需要部C側の蒸発器C11から供給されることになる。
Then, by performing the heat radiation operation as described above, in the reactor A1 on the heat transfer unit A side, the water vapor S generated by boiling the feed water FC3 in the evaporator C11 on the heat demand section C side is supplied. However, the reaction material A2 is cooled by heat exchange with the heat medium fluid FA1 in the reactor heat exchanger A3.
Then, as shown in the following chemical reaction formula (2), the reaction material A2 releases the stored heat to the heat demand part C side in a form in which a hydration reaction accompanied by heat generation corresponding to the following Δh is performed. That is, the water vapor S necessary for this hydration reaction is supplied from the evaporator C11 on the heat demand section C side.
CaCl2・H2O+3H2O(gas)−Δh→CaCl2・4H2O・・・(2) CaCl 2 · H 2 O + 3H 2 O (gas) −Δh → CaCl 2 · 4H 2 O (2)
上記のような放熱操作を実行した後には、夫々の熱媒遮断弁A8,C8を遮断して熱搬送ユニットA側の熱媒接続部A9と熱需要部C側の熱媒接続部C9との接続を解除し、更に、夫々のガス遮断弁A6,C6を遮断して熱搬送ユニットA側のガス接続部A7と熱需要部C側のガス接続部C7との接続を解除する。そして、このように反応材A2が水和反応後の水和状態となった熱搬送ユニットAは、トレーラTに搭載されて、前述した熱需要部Cに搬送されることになる。 After performing the heat radiation operation as described above, the respective heat medium shutoff valves A8 and C8 are shut off, and the heat medium connection part A9 on the heat transfer unit A side and the heat medium connection part C9 on the heat demand part C side are connected. The connection is released, and the gas shutoff valves A6 and C6 are shut off to release the connection between the gas connection part A7 on the heat transfer unit A side and the gas connection part C7 on the heat demand part C side. Then, the heat transfer unit A in which the reaction material A2 is in a hydrated state after the hydration reaction is mounted on the trailer T and transferred to the heat demand unit C described above.
[別実施形態]
本発明のその他の実施形態について説明する。尚、以下に説明する各実施形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施形態の構成と組み合わせて適用することも可能である。
[Another embodiment]
Other embodiments of the present invention will be described. Note that the configuration of each embodiment described below is not limited to being applied independently, and can be applied in combination with the configuration of other embodiments as long as no contradiction arises.
(1)上記実施形態では、熱発生部Bにおけるガス吸引手段B1を、ガス吸引ポンプB11で構成したが、図4に示すように改変することができる。
即ち、図4に示すガス吸引手段B1は、反応器A1に連通するガス通路A5にガス接続部B7及びガス遮断弁B6を介して接続可能に配置された凝縮器B12と、凝縮器B12の内部を冷却水FB2との熱交換により冷却する凝縮器用熱交換器B13(凝縮器用熱交換部の一例)と、当該凝縮器B12を減圧可能な凝縮器用吸引ポンプB15とを備えて構成されている。
上記凝縮器B12は、内部に水を貯留することができる密閉容器で構成されており、その天井部はガス遮断弁B6を介してガス接続部B7に連通されている。
上記凝縮器用熱交換器B13は、凝縮器B12の内部に配置した伝熱管内に冷却水FB2を通流させる形態で当該凝縮器B12の内部の水蒸気Sなどのガスと冷却水FB2との間で熱交換を行うものとして構成されている。
上記凝縮器用吸引ポンプB15は、その一次側が凝縮器B12の天井部に接続されており、凝縮器B12の内部からガスを吸引して外部に排出することで、凝縮器B12の内圧を低下させるように構成されている。
また、凝縮器B12の底部には、排水弁B14が接続されており、この排水弁B14を開放することで、凝縮器B12の内部に貯留する凝縮水を外部に排出することができる。
このように構成されたガス吸引手段B1を蓄熱操作において作動させることにより、熱搬送ユニットA側の反応器A1からガスとしての水蒸気Sを吸引することができるのであるが、その作動手順の詳細について、以下に説明を加える。
先ず、排水弁B14を開放して凝縮器B12に溜まっている水を排出した後に当該排水弁B14を遮断した状態で、凝縮器用吸引ポンプB15を作動させて、凝縮器B12の内圧を低下させる。次に、前述した与熱手段B2を作動させて反応材A2を当該反応器用熱交換器A3による熱交換により加熱しながら、ガス遮断弁B6を開放して、減圧された凝縮器B12を反応器A1に接続した状態で、凝縮器用熱交換器B13に比較的低温の冷却水FB2を通流させる。
すると、凝縮器B12において水蒸気Sが凝縮器用熱交換器B13による熱交換により冷却されて凝縮することに伴って、反応器A1における脱水反応により生成された水蒸気Sが当該反応器A1からガス通路A5を通じて凝縮器B12へ向けて通流することになり、反応材A2の脱水反応が継続されることになる。
(1) In the above embodiment, the gas suction means B1 in the heat generating part B is configured by the gas suction pump B11, but can be modified as shown in FIG.
That is, the gas suction means B1 shown in FIG. 4 includes a condenser B12 disposed so as to be connectable to a gas passage A5 communicating with the reactor A1 via a gas connection portion B7 and a gas shutoff valve B6, and the interior of the condenser B12. Is provided with a condenser heat exchanger B13 (an example of a condenser heat exchanging unit) that cools the condenser B12 by heat exchange with the cooling water FB2 and a condenser suction pump B15 that can depressurize the condenser B12.
The condenser B12 is formed of a sealed container capable of storing water therein, and the ceiling portion thereof is communicated with a gas connection portion B7 via a gas cutoff valve B6.
The condenser heat exchanger B13 is configured such that the cooling water FB2 flows through the heat transfer pipe disposed inside the condenser B12 and between the cooling water FB2 and the gas such as the water vapor S inside the condenser B12. It is configured to perform heat exchange.
The primary side of the condenser suction pump B15 is connected to the ceiling of the condenser B12, and the internal pressure of the condenser B12 is reduced by sucking gas from the inside of the condenser B12 and discharging it to the outside. It is configured.
In addition, a drain valve B14 is connected to the bottom of the condenser B12. By opening the drain valve B14, the condensed water stored in the condenser B12 can be discharged to the outside.
By operating the gas suction means B1 thus configured in the heat storage operation, the water vapor S as gas can be sucked from the reactor A1 on the heat transfer unit A side. A description will be added below.
First, the drain valve B14 is opened to discharge the water accumulated in the condenser B12, and then the condenser suction pump B15 is operated in a state where the drain valve B14 is shut off, thereby reducing the internal pressure of the condenser B12. Next, while the above-described heating means B2 is operated to heat the reaction material A2 by heat exchange by the reactor heat exchanger A3, the gas shut-off valve B6 is opened, and the decompressed condenser B12 is replaced with the reactor. In a state of being connected to A1, the cooling water FB2 having a relatively low temperature is passed through the condenser heat exchanger B13.
Then, as the steam S is cooled and condensed in the condenser B12 by the heat exchange by the condenser heat exchanger B13, the steam S generated by the dehydration reaction in the reactor A1 flows from the reactor A1 to the gas passage A5. Then, the refrigerant flows toward the condenser B12, and the dehydration reaction of the reactant A2 is continued.
(2)上記実施の形態では、熱需要部Cにおいて、蒸発器用熱交換器C12に通流させる加熱水FC1と、熱回収用熱交換器C21に通流させる循環水FC2とを別のものとして説明したが、例えば、蒸発器用熱交換器C12を熱媒回収用熱交換器C21の下流側とする形態で、それらを直列に接続して、熱媒回収用熱交換器C21で加熱された循環水F21を蒸発器用熱交換器C12に供給して、水の加熱用として利用しても構わない。 (2) In the above embodiment, in the heat demand section C, the heating water FC1 to be passed to the evaporator heat exchanger C12 and the circulating water FC2 to be passed to the heat recovery heat exchanger C21 are different. As described above, for example, in a form in which the evaporator heat exchanger C12 is located downstream of the heat medium recovery heat exchanger C21, they are connected in series and are heated by the heat medium recovery heat exchanger C21. The water F21 may be supplied to the evaporator heat exchanger C12 and used for heating the water.
(3)上記実施の形態では、各種熱交換部を、一方の流体が存在する空間内に設置した伝熱管内に他方の流体を通流させて、それら流体間の熱交換を行うチューブ式の熱交換器として構成したが、例えばプレート式等の別の熱交換器として構成しても構わない。 (3) In the above-described embodiment, various heat exchanging units are tube-type tubes that allow the other fluid to flow through a heat transfer tube installed in a space where one fluid exists and exchange heat between the fluids. Although configured as a heat exchanger, it may be configured as another heat exchanger such as a plate type.
本発明は、熱発生部の熱を蓄熱可能、且つ、当該蓄熱した熱を熱需要部に放熱可能な可搬式の熱搬送ユニットを備えた熱搬送システム及び熱搬送方法として好適に利用可能である。 INDUSTRIAL APPLICABILITY The present invention can be suitably used as a heat transfer system and a heat transfer method including a portable heat transfer unit that can store heat of the heat generation unit and can radiate the stored heat to the heat demand unit. .
A :熱搬送ユニット
A1 :反応器
A2 :反応材
A3 :反応器用熱交換器
A5 :ガス通路
B :熱発生部
B1 :ガス吸引手段
B11 :ガス吸引ポンプ
B12 :凝縮器
B13 :凝縮器用熱交換器(凝縮器用熱交換部)
B15 :凝縮器用吸引ポンプ
B2 :与熱手段
C :熱需要部
C1 :水蒸気供給手段
C11 :蒸発器
C12 :蒸発器用熱交換器(蒸発器用熱交換部)
C13 :給水弁(給水部)
C2 :熱回収手段
C21 :熱回収用熱交換器(熱回収用熱交換部)
FA1 :熱媒流体
FC3 :給水
S :水蒸気
A: Heat transfer unit A1: Reactor A2: Reactant A3: Reactor heat exchanger A5: Gas passage B: Heat generating part B1: Gas suction means B11: Gas suction pump B12: Condenser B13: Heat exchanger for condenser (Heat exchanger for condenser)
B15: Condenser suction pump B2: Heating means C: Heat demand part C1: Steam supply means C11: Evaporator C12: Heat exchanger for evaporator (heat exchanger for evaporator)
C13: Water supply valve (water supply part)
C2: Heat recovery means C21: Heat recovery heat exchanger (heat recovery heat exchanger)
FA1: Heat transfer fluid FC3: Feed water S: Water vapor
Claims (7)
前記熱搬送ユニットに、吸熱を伴う脱水反応と発熱を伴う水和反応とを可逆的に行う反応材を内部に収容してなる反応器を設け、
前記熱発生部に、前記反応材に熱を与える与熱手段と、前記反応器から水蒸気を吸引するガス吸引手段とを設け、
前記熱需要部に、前記反応材から熱を回収する熱回収手段と、前記反応器に水蒸気を供給する水蒸気供給手段とを設けてなる熱搬送システム。 A heat transfer system including a portable heat transfer unit capable of storing heat of the heat generation unit and capable of radiating the stored heat to the heat demand unit,
The heat transfer unit is provided with a reactor containing therein a reaction material that reversibly performs a dehydration reaction with endotherm and a hydration reaction with heat generation,
The heat generating unit is provided with heating means for applying heat to the reaction material, and gas suction means for sucking water vapor from the reactor,
A heat transfer system comprising a heat recovery means for recovering heat from the reaction material and a steam supply means for supplying steam to the reactor in the heat demand section.
前記与熱手段及び前記熱回収手段が、前記反応器用熱交換部との間で循環させる熱媒流体を介して熱の授受を行うように構成されている請求項1に記載の熱搬送システム。 The reactor provided in the heat transfer unit is provided with a heat exchanger for the reactor that performs heat exchange between the reaction material and the heat transfer fluid,
2. The heat transfer system according to claim 1, wherein the heating means and the heat recovery means are configured to transfer heat through a heat transfer fluid that is circulated between the heat exchange unit for the reactor.
吸熱を伴う脱水反応と発熱を伴う水和反応とを可逆的に行う反応材を内部に収容してなる反応器を備えると共に、
外部との間で、前記反応材における熱の授受が可能、且つ、前記反応器における水蒸気の授受が可能に構成されて、
請求項1〜5の何れか1項に記載の熱搬送システムの熱搬送ユニットとして構成されている熱搬送ユニット。 A portable heat transfer unit capable of storing heat and dissipating the stored heat,
While equipped with a reactor containing a reaction material that performs reversible dehydration reaction with endotherm and hydration reaction with heat generation inside,
It is possible to exchange heat with the reaction material with the outside, and to exchange water vapor in the reactor,
The heat transfer unit comprised as a heat transfer unit of the heat transfer system of any one of Claims 1-5.
前記熱搬送ユニットに、吸熱を伴う脱水反応と発熱を伴う水和反応とを可逆的に行う反応材を内部に収容してなる反応器を設け、
前記熱発生部に、前記反応材に熱を与える与熱手段と、前記反応器から水蒸気を吸引するガス吸引手段とを設け、
前記熱需要部に、前記反応材から熱を回収する熱回収手段と、前記反応器に水蒸気を供給する水蒸気供給手段とを設け、
前記熱発生部において、前記与熱手段を作動させて前記反応材に熱を与えながら前記吸引手段を作動させて前記反応器から水蒸気を吸引して、前記反応材に前記脱水反応をさせる蓄熱操作を実行した後に、
前記熱需要部において、前記熱回収手段を作動させて前記反応材から熱を回収しながら前記供給手段を作動させて前記反応器に水蒸気を供給して、前記反応材に前記水和反応をさせる放熱操作を実行する熱搬送方法。 Heat transport for transporting heat from the heat generation section to the heat demand section using a portable heat transport unit capable of storing heat from the heat generation section and dissipating the stored heat to the heat demand section A method,
The heat transfer unit is provided with a reactor containing therein a reaction material that reversibly performs a dehydration reaction with endotherm and a hydration reaction with heat generation,
The heat generating unit is provided with heating means for applying heat to the reaction material, and gas suction means for sucking water vapor from the reactor,
The heat demand section is provided with heat recovery means for recovering heat from the reaction material, and steam supply means for supplying steam to the reactor,
In the heat generating section, a heat storage operation for operating the suction means while operating the heating means to apply heat to the reaction material to suck water vapor from the reactor and causing the reaction material to perform the dehydration reaction. After running
In the heat demand section, the heat recovery means is operated to recover the heat from the reaction material, and the supply means is operated to supply water vapor to the reactor to cause the reaction material to perform the hydration reaction. A heat transfer method that performs heat dissipation operations.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012094969A JP2013221712A (en) | 2012-04-18 | 2012-04-18 | Heat transfer system, heat transfer unit, and heat transfer method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012094969A JP2013221712A (en) | 2012-04-18 | 2012-04-18 | Heat transfer system, heat transfer unit, and heat transfer method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013221712A true JP2013221712A (en) | 2013-10-28 |
Family
ID=49592803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012094969A Pending JP2013221712A (en) | 2012-04-18 | 2012-04-18 | Heat transfer system, heat transfer unit, and heat transfer method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013221712A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015105809A (en) * | 2013-12-02 | 2015-06-08 | 東京瓦斯株式会社 | Heat storage system, and heat storage and heat output method |
JP2016008744A (en) * | 2014-06-23 | 2016-01-18 | トヨタ自動車株式会社 | Heat transport system using chemical heat storage element repeating heat storage and heat radiation by reversible reaction |
JP2016118315A (en) * | 2014-12-19 | 2016-06-30 | 豊田通商株式会社 | Chemical heat storage reactor and heat transport system using the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5347056A (en) * | 1976-10-09 | 1978-04-27 | Ebara Corp | Heat conveyor |
JPS604794A (en) * | 1983-06-24 | 1985-01-11 | Ebara Corp | Transportation of heat |
JP2004003832A (en) * | 2002-04-19 | 2004-01-08 | Denso Corp | Chemical thermal storage device |
-
2012
- 2012-04-18 JP JP2012094969A patent/JP2013221712A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5347056A (en) * | 1976-10-09 | 1978-04-27 | Ebara Corp | Heat conveyor |
JPS604794A (en) * | 1983-06-24 | 1985-01-11 | Ebara Corp | Transportation of heat |
JP2004003832A (en) * | 2002-04-19 | 2004-01-08 | Denso Corp | Chemical thermal storage device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015105809A (en) * | 2013-12-02 | 2015-06-08 | 東京瓦斯株式会社 | Heat storage system, and heat storage and heat output method |
JP2016008744A (en) * | 2014-06-23 | 2016-01-18 | トヨタ自動車株式会社 | Heat transport system using chemical heat storage element repeating heat storage and heat radiation by reversible reaction |
JP2016118315A (en) * | 2014-12-19 | 2016-06-30 | 豊田通商株式会社 | Chemical heat storage reactor and heat transport system using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4776391B2 (en) | Waste heat utilization system | |
WO2009094897A1 (en) | Absorptive heat pump system and heating method | |
JP2011508866A (en) | Absorption heat pump system and method for improving energy quality of low temperature residual heat | |
JPH0791361A (en) | Device for electric generation by temperature difference | |
JP6446354B2 (en) | Hydrogen generator, hydrogen generation system, and fuel cell system | |
WO2014034354A1 (en) | Cooling water supply system and binary cycle power plant comprising same | |
JPS63253102A (en) | Compound generating system | |
JP2013221712A (en) | Heat transfer system, heat transfer unit, and heat transfer method | |
JP2022105292A (en) | System and method of recovering waste heat from electrolyte for generating power, by using organic rankine cycle | |
JP2004211979A (en) | Absorption refrigerating system | |
JP2011099640A (en) | Hybrid heat pump | |
JP5743490B2 (en) | Water treatment system and water treatment method | |
KR20120045468A (en) | Organic rankine cycle turbo generation system generating cooling air and hot water | |
JP6728559B2 (en) | Heat storage device, heat dissipation system and method of using the same | |
TW202340664A (en) | Energy usage system, and method for manufacturing carbon-containing material | |
JP2019158299A (en) | Steam generation system | |
JPH0260060A (en) | Fuel cell system with exhaust heat energy recovery unit | |
JP2007017035A (en) | System for effectively using energy | |
JP2010116911A (en) | Heat accumulator | |
JP2010169364A (en) | Thermosiphon type steam generator | |
JP2015105809A (en) | Heat storage system, and heat storage and heat output method | |
JP2008232464A (en) | Chemical heat pump and heat utilization system using the same | |
JP6666148B2 (en) | Electrical installation having a cooled fuel cell with an absorption heat engine | |
JP4622714B2 (en) | Energy efficient use system | |
JP2002174493A (en) | Cogeneration system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141212 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150902 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150908 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160119 |