JPS63253102A - Compound generating system - Google Patents

Compound generating system

Info

Publication number
JPS63253102A
JPS63253102A JP62084686A JP8468687A JPS63253102A JP S63253102 A JPS63253102 A JP S63253102A JP 62084686 A JP62084686 A JP 62084686A JP 8468687 A JP8468687 A JP 8468687A JP S63253102 A JPS63253102 A JP S63253102A
Authority
JP
Japan
Prior art keywords
heat
working fluid
power generation
energy
environmental
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62084686A
Other languages
Japanese (ja)
Inventor
Koichiro Matake
真武 幸一郎
Yoshio Shimada
島田 良夫
Toyoaki Komori
豊明 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62084686A priority Critical patent/JPS63253102A/en
Publication of JPS63253102A publication Critical patent/JPS63253102A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Abstract

PURPOSE:To improve utilization efficiency and save energy by recovering heat such as industrial waste heat, etc., by means of a heat pump system to accumu late the heat in a heat accumulating medium in a heat accumulating system, and converting the quantity of heat into electric power energy by means of a generating system. CONSTITUTION:Environmental heat such as industrial waste heat, etc., is recovered by an evaporator 5 in a heat pump system 1. A high temperature working fluid heated by the evaporator 5 is compressed by a compressor 7, heats a working fluid from a low temperature bath 13 through a condenser 9, and is accumulated in a high temperature bath 12. The heated high tempera ture working fluid circulates to the low temperature bath 13 through an evapora tor 22, heats and evaporates a working fluid in an organic Rankine cycle gener ating system 18, generates electricity through a turbine 23, and a generator 24. Then, the high temperature working fluid passes through a condenser 25, and is preheated by environmental heat through a preheater 20, and continues to circulate. The heat sources such as industrial waste heat, geothermal energy, etc., can therefore be efficiently utilized and energy can also be saved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、環境熱を主又は補助熱源とする、ヒートポン
プ装置、蓄熱装置及び発電装置が複合化された複合発電
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a combined power generation system that uses environmental heat as a main or auxiliary heat source and is a combination of a heat pump device, a heat storage device, and a power generation device.

従来の技術 近来、工業設備はもとより、例えば一般事業所や家庭用
向けの空調用設備等の急速な普及により最大電力需要は
増加し続けている一方で、負荷率は逆に低下を続けてい
る。これが、発電設備の利用率の低下あるいは新たな電
源開発が必要となる原因ともなっている。
Conventional technology In recent years, maximum power demand has continued to increase due to the rapid spread of not only industrial equipment but also air conditioning equipment for general businesses and homes, while the load factor has continued to decline. . This is causing a decline in the utilization rate of power generation facilities or the need to develop new power sources.

また、消費されている1次エネルギーのうち約半分は、
排熱の形で使われることなく環境に放出されている。こ
の排出されているエネルギーを有効に回収して利用する
ことは重要なことである。
Also, about half of the primary energy consumed is
It is released into the environment without being used in the form of waste heat. It is important to effectively recover and utilize this emitted energy.

そこで、これらの対策の一つとして、例えば、夜間の低
床な余剰電力を利用して、昼間の尖頭負荷(Peak 
Load)時に発@(放電)する装置が技術的に知られ
ている。
Therefore, as one of these measures, for example, by using low-floor surplus electricity at night, peak loads during the day can be reduced.
A device that generates a discharge at the time of loading is known in the art.

すなわち、この発電装置の大規模なものとしては揚水発
電、及び小規模なものとしては蓄電池がある。
That is, a large-scale power generation device is pumped storage power generation, and a small-scale power generation device is a storage battery.

これらを簡単に説明すると、萌者の揚水発電においては
、落差のある調整池間にポンプ兼用ができる水力タービ
ン発電機を設け、夜間に火力の余剰電力を利用して下部
調整池から上部調整池へ水を汲み上げておき、前述の如
く昼間の尖頭負荷時にこの水を下部調整池へ放出して発
電する装置である。
To briefly explain these, in Moeha's pumped storage power generation, a hydraulic turbine generator that can also be used as a pump is installed between regulating reservoirs with a difference in head, and surplus electricity from thermal power is used at night to transfer from the lower regulating reservoir to the upper regulating reservoir. This is a device that pumps up water and releases it to the lower regulating pond during peak load periods during the day to generate electricity.

一方、後者の蓄電池においては、夜間の余剰電力(エネ
ルギ)をその蓄電池内に化学的エネルギとして貯えてお
き、前者と同様に昼間の尖頭負荷時にこの化学的エネル
ギを可逆的に再び電気エルネギとして外に取出す装置で
ある。
On the other hand, in the latter storage battery, surplus power (energy) at night is stored as chemical energy within the storage battery, and like the former, this chemical energy is reversibly converted back into electrical energy during peak loads during the day. This is a device to take it out.

発明が解決しようとする問題点 以上述べた従来の発電装置は、しかし、次のような問題
点かあっに。
Problems to be Solved by the Invention The conventional power generating apparatus described above, however, has the following problems.

このような揚水発電や蓄電池の夜間電力の利用効率とし
ては、夜間に加えた電力のインプット(人力エネルギ)
に対して、昼間の取出し時のアウトプット(出力エネル
ギ)が、実際に生じる各損失によりどちらも約60〜7
0%程度となっているのが現状である。
The utilization efficiency of nighttime power from pumped storage power generation and storage batteries is based on the power input (human energy) added at night.
On the other hand, the output (output energy) during daytime extraction is about 60 to 7
Currently, it is around 0%.

しかして、揚水発電においては、落差及び水資源を得る
必要があるために、その設置点が非常に限定され、かっ
、一般的に電力の大需要地から離れている欠点があった
。しかも、殊に大容量化しなければ効率的にも経済的に
もメリットが出ないという欠点かあった。
However, pumped storage power generation has the disadvantage that the installation points are extremely limited due to the need to obtain a head and water resources, and are generally far from areas with large demand for electricity. Moreover, it had the disadvantage that unless the capacity was increased, there would be no benefits in terms of efficiency or economy.

一方、蓄電池においては、小容量で、かつ耐用年数ら短
ずぎるために、実用上、電力需要を常時賄うまでには至
っていないのが現状であり、しかも、コストが高いとい
う欠点があった。
On the other hand, storage batteries have a small capacity and a very short service life, so in practice they cannot meet the demand for electricity all the time, and they also have the disadvantage of being high in cost.

問題点を解決するための手段 本発明は、このような従来の問題点を解決するために、
複合発電装置において、産業排熱または地熱水の熱mを
回収し汲み上げるヒートポンプ装置と、このヒートポン
プ装置により温度レベルを上げた高温の蓄熱へ体を貯え
る蓄熱装置と、この蓄熱装置からの熱量を電力にエネル
ギ変換する発電装置とを具備したものである。
Means for Solving the Problems In order to solve these conventional problems, the present invention provides the following:
In a combined power generation system, there is a heat pump device that collects and pumps industrial waste heat or heat m of geothermal water, a heat storage device that stores the body in high-temperature heat storage whose temperature level is raised by the heat pump device, and a heat storage device that stores the heat amount from this heat storage device. It is equipped with a power generation device that converts energy into electric power.

作用 このような手段によれば、環境熱量からヒートポンプ装
置の運転により、その熱量を回収し汲み上げて蓄熱装置
に常時貯えておけるので、この蓄熱装置に接続している
発電装置に、その蓄熱量を適宜、供給して電力にエネル
ギ変換することができる。
Effect: According to such a means, by operating the heat pump device, the heat amount can be recovered from the environmental heat amount, pumped up, and constantly stored in the heat storage device, so that heat storage amount can be transferred to the power generation device connected to the heat storage device. Optionally, the energy can be converted into electrical power by supplying it.

実施例 以下、第1図及び第2図を参照して、本発明による又実
施例について詳述する。
EXAMPLES Hereinafter, examples according to the present invention will be described in detail with reference to FIGS. 1 and 2.

しかして、本発明によれば、第1図に示す第1の実施例
としては、環境熱潰すなわち例えば産業排熱や地熱(水
)等の適当な熱量を回収し汲み上げるヒートポンプ装置
lが設けられている。このヒートポンプ装置において、
2は環境熱(量)の取入口、3はその排出口、4は第1
加熱管、5は蒸発器、6は主配管、7はコンプレッサ、
8はモータ(?II動機)、9は凝縮器、IOは膨張弁
とされている。
According to the present invention, the first embodiment shown in FIG. 1 is equipped with a heat pump device l for recovering and pumping an appropriate amount of heat from environmental heat sinking, eg, industrial waste heat or geothermal heat (water). ing. In this heat pump device,
2 is the intake of environmental heat (amount), 3 is the outlet, 4 is the first
Heating pipe, 5 is an evaporator, 6 is a main pipe, 7 is a compressor,
8 is a motor (?II motor), 9 is a condenser, and IO is an expansion valve.

そして、ヒートポンプ装置1により温度レベルを上げる
高温の蓄熱体、例えば水やケミカル(液、ガス)等を貯
える蓄熱装置11が設けられている。
A heat storage device 11 is provided that stores a high-temperature heat storage body, such as water, chemicals (liquid, gas), etc., whose temperature level is raised by the heat pump device 1 .

この蓄熱装置において、12は高温槽、13は低温槽、
14は蓄熱体の第1移送管、15は低温ポンプ、16は
高温ポンプ及び17は蓄熱体の第2移送管とされている
In this heat storage device, 12 is a high temperature tank, 13 is a low temperature tank,
14 is a first transfer pipe for the heat storage body, 15 is a low temperature pump, 16 is a high temperature pump, and 17 is a second transfer pipe for the heat storage body.

更に、この蓄熱装置からの環境熱量を電力にエネルギ変
換する発電装置、すなわち第1実施例として有機ランキ
ンサイクル発電装置18が設けられている。この発電装
置と蓄熱装置11とは、第2移そして、発電装置18に
おいて、19はヒートポンプ装置l側の第1加熱管4の
途中に接続している第2加熱管、20は予熱器、21は
主配管、22は蒸発器、23は(有機媒体)タービン、
24は発電機、25は凝縮器、26は冷却水管、27は
冷却水取入口、28は排水口及び29は給液ポンプとさ
れている。
Further, a power generation device that converts the environmental heat from the heat storage device into electric power, that is, an organic Rankine cycle power generation device 18 as a first embodiment is provided. In the power generation device 18, 19 is a second heating pipe connected to the middle of the first heating pipe 4 on the heat pump device l side, 20 is a preheater, and 21 is the main pipe, 22 is the evaporator, 23 is the (organic medium) turbine,
24 is a generator, 25 is a condenser, 26 is a cooling water pipe, 27 is a cooling water intake, 28 is a drain port, and 29 is a liquid supply pump.

また、第2図に示す第2実施例としては、ヒートポンプ
装置1及び蓄熱装置11は前述の第1実施例で示したも
のと一部の構成機器及び配管を除いている。この発電装
置と蓄熱装置11とは第2移送管17の途中に設けたフ
ラッシュ装置31、すなわち第1フラツシヤ32、及び
第2フラツシヤ33を介して接続されている。
Furthermore, in the second embodiment shown in FIG. 2, the heat pump device 1 and the heat storage device 11 are the same as those shown in the first embodiment, except for some of the components and piping. This power generation device and the heat storage device 11 are connected via a flash device 31 provided in the middle of the second transfer pipe 17, that is, a first flasher 32 and a second flasher 33.

そして、前述の如く第1実施例と異なる点は、まず、ヒ
ートポンプ装置lにおいては、第1加熱管に接続されて
いた第2加熱管19が廃止されておリ、次に、蓄熱装置
11においては、高温槽12の上ンプ34に変更されて
いる。
As mentioned above, the difference from the first embodiment is that first, in the heat pump device l, the second heating pipe 19 connected to the first heating pipe is abolished, and second, in the heat storage device 11. has been changed to the upper pump 34 of the high temperature tank 12.

一方、フラッシュ装置31において、前記第1及び2フ
ラッシャ32.33間には主配管21が設けられており
、更に第2フラツシヤの下流側にはドレンポンプ34が
設けられている。
On the other hand, in the flash device 31, a main pipe 21 is provided between the first and second flashers 32, 33, and a drain pump 34 is further provided downstream of the second flasher.

また、タービン発電装置30において、35は(フラッ
ノユ蒸気)タービン、24は発電機、36は復水器、3
7は復水ポンプ、そして、26は冷却水管、27は冷却
水取入口及び28は排水口とされる。
Further, in the turbine generator 30, 35 is a (Furanoyu steam) turbine, 24 is a generator, 36 is a condenser, 3
7 is a condensate pump, 26 is a cooling water pipe, 27 is a cooling water intake port, and 28 is a drain port.

以上のような構成により、第1段階として、ヒートポン
プ装置lを夜間に駆動させることとなる。
With the above configuration, as a first step, the heat pump device 1 is driven at night.

まず、第1実施例(第1図参照)においては、熱源とし
て、環境熱(量)例えば産業排熱や地熱(水)等をガス
や液体のまま直接(又は、他の熱媒体を配管6を通過す
る作動流体例えば有機媒体等に熱回収させる。なお、熱
(倉を伝達し終えたガスや液体等の環境熱媒体は、第1
加熱管4の鼾排出口3を経て系外へ捨てている。
First, in the first embodiment (see Fig. 1), as a heat source, environmental heat (amount) such as industrial waste heat or geothermal heat (water) is used directly as a gas or liquid (or other heat medium is connected to a pipe 6). The heat is recovered by the working fluid, such as an organic medium, passing through the chamber.
The snore is discharged outside the system through the snore outlet 3 of the heating tube 4.

そこで、夜間における低床な余剰電力を受電して、モー
タ8を駆動することにより、このモータに直結したコン
プレッサ7にて、前述の如く蒸発器5内で高温高熱化し
た作動流体(蒸気)を圧縮する。このコンプレッサの圧
縮仕事により、作動流体を凝縮器9内に吐出させる一方
、凝縮器9内に接続する第1移送管14の途中に設けた
低温ポンプI5により、低温槽13に貯えていた蓄熱体
を通過させる。
Therefore, by receiving low floor surplus power at night and driving the motor 8, the compressor 7 directly connected to the motor pumps the working fluid (steam) which has become high temperature in the evaporator 5 as described above. Compress. The compression work of the compressor causes the working fluid to be discharged into the condenser 9, while the cryogenic pump I5 installed in the middle of the first transfer pipe 14 connected to the condenser 9 pumps the heat storage material stored in the cryogenic tank 13. pass.

このことにより、作動流体は、低温低熱の蓄熱体により
冷却されながら、その保有する熱量(環境熱)を放出す
ることとなる。そして、熱量を受は取り高温高熱化した
蓄熱体は、第1移送管14を通して、高温槽12内に貯
えられ、環境熱量を蓄熱する。
As a result, the working fluid releases its retained heat (environmental heat) while being cooled by the low-temperature, low-heat heat storage body. The heat storage body, which has received heat and has become high in temperature, is stored in the high temperature tank 12 through the first transfer pipe 14, and stores the environmental heat.

それから、熱量を伝達し終えた作動流体(液体)は、主
配管6を経て、膨張弁10にて、その圧力及び流量を適
当に下げた後、蒸発器5内に戻す。
Then, the working fluid (liquid) that has transferred the amount of heat passes through the main pipe 6 and returns to the evaporator 5 after appropriately lowering its pressure and flow rate at the expansion valve 10.

このようにヒートポンプ装置lは、環境熱を回収し汲み
上げて一つのサイクル(系統)を完結する。
In this way, the heat pump device 1 completes one cycle (system) by collecting and pumping environmental heat.

そして、昼間においては、このヒートポンプ装運転する
こととなる。
During the daytime, this heat pump will be operated.

この発電装置18は、主熱源として予熱器20側の第2
加熱管19を介して、第1加熱管4側の環境熱取入口2
から環境熱を取入れる。とともに、予熱器20内にて、
主配管21を通過する有機媒体にその環境熱を熱回収さ
せる。なお、熱量を伝達し終えた環境熱媒体は、第2加
熱管19を通り、第1加熱管4の排出口3を経て系外へ
捨てている。
This power generation device 18 has a second power generator on the side of the preheater 20 as a main heat source.
Through the heating pipe 19, the environmental heat intake port 2 on the first heating pipe 4 side
Takes in environmental heat from At the same time, in the preheater 20,
The organic medium passing through the main pipe 21 recovers the environmental heat. In addition, the environmental heat medium that has completed transferring the heat amount passes through the second heating pipe 19, passes through the discharge port 3 of the first heating pipe 4, and is discarded to the outside of the system.

更に、この予熱器20内で蒸発した有機媒体を蒸発器2
2に導入させる一方、この蒸発器に接続する第2移送管
17の途中に設けた高温ポンプ16により、高温槽12
に夜間のうちに貯えていた補助熱源としての蓄熱体を通
過させる。
Furthermore, the organic medium evaporated in the preheater 20 is transferred to the evaporator 2.
At the same time, the high temperature tank 12 is introduced into the high temperature tank 12 by the high temperature pump 16 installed in the middle of the second transfer pipe 17 connected to this evaporator.
A heat storage element that was stored during the night as an auxiliary heat source is passed through.

このことにより、有機媒体は高温高熱の蓄熱体により過
熱されながら、熱量(環境熱)を受は取ることとなる。
As a result, the organic medium receives and absorbs the amount of heat (environmental heat) while being superheated by the high-temperature heat storage body.

また、熱量を与えて低温低熱化I7た蓄熱体は、第2移
送管17を通して、低温槽→に戻す。
Further, the heat storage body that has been given a heat amount to be lowered in temperature and heat I7 is returned to the low temperature tank → through the second transfer pipe 17.

このような熱交換の後、有機媒体は、タービンS23内
に導入され、その膨張仕事により、このタービンに直結
した発電機24を駆動させて電力を起こさせることとな
る。
After such heat exchange, the organic medium is introduced into the turbine S23, and its expansion work drives a generator 24 directly connected to this turbine to generate electric power.

そして、この膨張仕事を終えて熱量を放出した有機媒体
は凝縮器25内に導入され、この凝縮器に接続する冷却
水管26の冷却水取入口27から取入れられた冷却水に
より、冷却されて液化する。なお、その冷却水は、冷却
水管26の排出口28を経て系外へ捨てている。
The organic medium that has completed this expansion work and released heat is introduced into the condenser 25, and is cooled and liquefied by the cooling water taken in from the cooling water intake port 27 of the cooling water pipe 26 connected to the condenser. do. Note that the cooling water is disposed of outside the system through the outlet 28 of the cooling water pipe 26.

この後、液化し低温低熱となった有機媒体は、給液ポン
プ29にて、その圧力及び流量を適当に高めた後、予熱
器20に戻して−サイクルの行程を終述の第1実施例と
同様に、夜間のうちにヒートボンプ装置lにより蓄熱装
置11の高温槽12に環境熱を蓄熱しておく。
After that, the organic medium that has been liquefied and has a low temperature and low heat is used to appropriately increase its pressure and flow rate using the liquid supply pump 29, and then is returned to the preheater 20. Similarly, environmental heat is stored in the high temperature tank 12 of the heat storage device 11 by the heat pump device 1 during the night.

そして、昼間においては、やはり、このヒートポンプ装
置を適宜、停止又は作動させておき、タービン発電装置
30をフラッシュ装置31を介して運転することとなる
During the daytime, the heat pump device is stopped or activated as appropriate, and the turbine power generation device 30 is operated via the flash device 31.

この発電装置30の場合には、第1実施例のような蓄熱
体から有機媒体への熱交換ではなく、主熱源として蓄熱
装置11で前述の如く貯えられた蓄熱体をそのまま使用
することとなる。
In the case of this power generation device 30, instead of exchanging heat from the heat storage body to the organic medium as in the first embodiment, the heat storage body stored in the heat storage device 11 as described above is used as the main heat source. .

々 すなわち、との蓄熱体は第1フラツシヤ32内に適当量
導入されるとともに、この第1フラツシヤ内で蒸発(フ
ラッシュ)させて、高温高熱の蒸気が取出され、主配管
21を介してタービン35内に導入され、その膨張仕事
により、このタービンに直結した発電機8を駆動させて
電力を起こさせることとなる。
In other words, an appropriate amount of the heat storage body is introduced into the first flasher 32, and is evaporated (flashed) in the first flasher, and high-temperature steam is taken out and sent to the turbine 35 via the main pipe 21. The expansion work drives the generator 8 directly connected to this turbine to generate electric power.

この場合、第1フラツシヤ32内では蓄熱体は全部蒸発
されず気相と液…の二相状態となっており、このうち器
内に残ったまだ高温高熱の蓄熱体は、続いて第2フラツ
シヤ33に導入され、更にフラッシュを緑返す。
In this case, the heat storage body in the first flasher 32 is not completely evaporated and is in a two-phase state of gas phase and liquid, and among these, the heat storage body that remains in the vessel and is still hot is transferred to the second flasher 32. Introduced in 33, it also returns the flash to green.

一方、タービン35内にて膨張仕事を終えて熱量を放出
した蓄熱体は復水器36内に導入され、この復水器に接
続する冷却水管26の冷却水取入口27から取入れられ
た冷却水により液化する。なお、その冷却水は、排出口
28を経て系外へ捨てている。
On the other hand, the heat storage body that has completed its expansion work in the turbine 35 and released heat is introduced into the condenser 36, and the cooling water taken in from the cooling water intake port 27 of the cooling water pipe 26 connected to this condenser is introduced into the condenser 36. It liquefies. Note that the cooling water is disposed of outside the system through a discharge port 28.

この後、液化し低温低熱となった蓄熱体は、復水ポンプ
37にて、その圧力及び流量を適当に高めた後、低温槽
13に戻す。と同時に、前記第2フラツシヤ33内の蓄
熱体は、その大部分は蒸発して、第1フラツシヤでの作
用と同じく、タービン35の今度は低圧側(途中)に導
入され、膨張過程で再熱させる。そして、それは、第1
フラツンヤ32側からのフラッシュ蒸気とともに膨張し
終えて、復水器36に導入させている。このような行程
を経ても、なお第2フラツシヤ33内に残った低温低熱
の蓄熱体、いいかえればドレンは、第2移送管17を介
して、ドレンポンプ34により低温槽13内に戻して、
−サイクルの行程を終了する。なお、低温槽13から高
温槽12に蓄熱体を再循環させるよう、循環ポンプ33
を使用することどなる。
Thereafter, the heat storage body, which has been liquefied and has become low temperature and low heat, is returned to the low temperature tank 13 after appropriately increasing its pressure and flow rate using the condensate pump 37. At the same time, most of the heat storage body in the second flasher 33 evaporates and is introduced into the low pressure side (midway) of the turbine 35, similar to the action in the first flasher, and is reheated during the expansion process. let And that is the first
After it has expanded together with the flash steam from the flattener 32 side, it is introduced into the condenser 36. Even after such a process, the low-temperature, low-heat heat storage body that remains in the second flasher 33, in other words, the drain, is returned to the low-temperature bath 13 by the drain pump 34 via the second transfer pipe 17.
- Finishing the journey of the cycle. Note that a circulation pump 33 is installed to recirculate the heat storage body from the low temperature tank 13 to the high temperature tank 12.
It's loud to use.

かくして、以上の第1及び第2実施例のような発電装置
を形成することができる。
In this way, it is possible to form power generation devices such as those of the first and second embodiments.

続いて、(夜間での)ヒートポンプ装置l運転時の駆動
電力と成績係数との関係について説明する。
Next, the relationship between the driving power and the coefficient of performance during operation of the heat pump device l (at night) will be explained.

このヒートポンプ装置運転の駆動電力すなわちコンプレ
ッサ7(の駆動)用モータ8への電力は結果的にポンプ
によって汲み上げられた産業排熱や地熱等の環境熱に入
熱として加わるため、従って汲み上げられる蓄熱債はヒ
ートポンプ装置1の成績係数(COPh)倍となる。つ
まり、ヒートポンプ装なって作動流体を圧縮する仕事の
ために利用(/!!1費)され、作動流体はその仕事に
相当する熱量を受けとってサイクルを形成する。従って
、凝縮器9でその作動流体が放出する凝縮熱は、蒸発器
5で回収した環境熱とコンプレッサ7で作動流体に加え
られた仕事量に相当する熱量(モータの消費電力で1 
kwh当たり860 kcalに換算した熱量)との和
であり、C0Phは通常、2.5〜4倍位の値となる。
The driving power for operating this heat pump device, that is, the power to the motor 8 for (driving) the compressor 7, is added as heat to the environmental heat such as industrial waste heat and geothermal heat pumped up by the pump, so the heat storage bond that is pumped up is is multiplied by the coefficient of performance (COPh) of the heat pump device 1. In other words, the heat pump is used for the work of compressing the working fluid, and the working fluid receives the amount of heat corresponding to the work to form a cycle. Therefore, the heat of condensation released by the working fluid in the condenser 9 is equal to the environmental heat recovered in the evaporator 5 and the amount of heat equivalent to the amount of work applied to the working fluid in the compressor 7.
(heat amount converted to 860 kcal per kwh), and C0Ph is usually about 2.5 to 4 times the value.

すなわち、IKNの夜間の電力を使用して2.5〜4K
W分の熱が得られることになり、省エネルギ及び経済性
の両方に有効な手段であることがわかる。
i.e. 2.5-4K using IKN night power
Since heat equivalent to W can be obtained, it can be seen that this is an effective means for both energy saving and economic efficiency.

以上のように、蓄熱装置11に十分貯えられた高温高圧
の蓄熱体を発電装置18又は30に適宜、供給すること
により、効率の良い有機ランキンサイクル発電(第1実
施例)又は(フラッシュ蒸気)タービン発電(第2実施
例)を夫々、行うことができる。
As described above, by appropriately supplying the high temperature and high pressure heat storage body sufficiently stored in the heat storage device 11 to the power generation device 18 or 30, efficient organic Rankine cycle power generation (first embodiment) or (flash steam) Turbine power generation (second embodiment) can be performed respectively.

これらの場合、少なくとも揚水発i!(図示せず)の利
用効率60〜70%程度は確実に確保できる。
In these cases, at least the pumped storage i! A utilization efficiency of about 60 to 70% (not shown) can be ensured.

ただし、前者の有機ランキンサイクル発電においては、
後音のタービン発電の主熱源がフラッシュ装置31から
の環境熱だけに比べて主熱源を予熱器20からの環境熱
とし、しかも補助熱源を蒸発器22からの蓄熱として同
時に供給することは述べるまでもない。従って、この発
電運転時にその環境熱を平行して連続的に利用すれば、
電力の取出し時のアウトプット(出力エネルギ)を更に
増加でき、利用効率は80〜90%となり、揚水発電を
超える値とすることができる。
However, in the former organic Rankine cycle power generation,
It goes without saying that the main heat source of the after-sound turbine power generation is the environmental heat from the preheater 20, compared to only the environmental heat from the flash device 31, and the auxiliary heat source is simultaneously supplied as heat storage from the evaporator 22. Nor. Therefore, if the environmental heat is continuously used in parallel during this power generation operation,
The output (output energy) when extracting electric power can be further increased, and the utilization efficiency can be 80 to 90%, which is a value that exceeds pumped storage power generation.

発明の効果 以上詳述したように本発明によれば、ヒートポンプ装置
と有機ランキンサイクル発電装置又は(フラッシュ蒸気
)タービン発電装置との複合により、どちらの発電装置
にしても、それらの設置点It” は産業排熱や地熱(水)等の熱源のある地点なりどこで
も良いため、よって現在実用化されている揚水発電より
も自由度が大きく、また、利用効率も十分に高めること
ができる。
Effects of the Invention As detailed above, according to the present invention, by combining a heat pump device and an organic Rankine cycle power generation device or a (flash steam) turbine power generation device, no matter which power generation device is used, the installation point It” This can be done at any location where there is a heat source such as industrial waste heat or geothermal heat (water), so it has a greater degree of freedom than pumped storage power generation currently in practical use, and can also sufficiently increase utilization efficiency.

更に、夜間の低床な電力をヒートポンプ装置の運転に有
効利用するため、省エネルギ及び経済性を向上させるこ
とができる。
Furthermore, since low power at night is effectively used to operate the heat pump device, energy saving and economical efficiency can be improved.

しかも、蓄熱装置に貯えられた高温高熱の環境熱量を主
熱源又は補助熱源として、いずれも効率的に取込むこと
ができることにより、よって昼間の尖頭負荷時における
発電運転を十分に賄うようにすることができる。そして
、昼夜間の電力負荷差を効果的に緩和し、平準化させる
ことができる。
In addition, the high-temperature environmental heat stored in the heat storage device can be efficiently taken in either as a main heat source or as an auxiliary heat source, thereby making it possible to sufficiently cover power generation operations during peak load times during the day. be able to. Then, the power load difference between day and night can be effectively alleviated and equalized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による複合発電装置の一例を示す系統図
、第2図はその他の例を示す系統図である。 1・・ヒートポンプ装置、11・・蓄熱装置、18・・
有機ランキンサイクル発電装置、30・・ (フラッシ
ュ蒸気)タービン発電装置、31・・フラッ(ほか1名
FIG. 1 is a system diagram showing an example of a combined power generator according to the present invention, and FIG. 2 is a system diagram showing another example. 1... Heat pump device, 11... Heat storage device, 18...
Organic Rankine cycle power generation device, 30... (flash steam) turbine power generation device, 31...Flash (and 1 other person)

Claims (1)

【特許請求の範囲】[Claims] 産業排熱または地熱水の熱量を回収し汲み上げるヒート
ポンプ装置と、このヒートポンプ装置により温度レベル
を上げた高温の蓄熱体を貯える蓄熱装置と、この蓄熱装
置からの熱量を電力にエネルギ変換する発電装置とを具
備してなる複合発電装置。
A heat pump device that recovers and pumps the heat of industrial waste heat or geothermal water, a heat storage device that stores a high-temperature heat storage body whose temperature level has been raised by the heat pump device, and a power generation device that converts the heat from this heat storage device into electricity. A combined power generation device comprising:
JP62084686A 1987-04-08 1987-04-08 Compound generating system Pending JPS63253102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62084686A JPS63253102A (en) 1987-04-08 1987-04-08 Compound generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62084686A JPS63253102A (en) 1987-04-08 1987-04-08 Compound generating system

Publications (1)

Publication Number Publication Date
JPS63253102A true JPS63253102A (en) 1988-10-20

Family

ID=13837563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62084686A Pending JPS63253102A (en) 1987-04-08 1987-04-08 Compound generating system

Country Status (1)

Country Link
JP (1) JPS63253102A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231866A (en) * 2006-03-02 2007-09-13 Fujita Corp Waste heat recovery system
JP2011231778A (en) * 2011-08-26 2011-11-17 Fujita Corp Waste heat recovery system
JP2012112369A (en) * 2010-11-19 2012-06-14 Atsuo Morikawa Heat pump power generator
JP2012523815A (en) * 2009-04-14 2012-10-04 アーベーベー・リサーチ・リミテッド Thermoelectric energy storage system having two heat storage tanks and method for storing thermoelectric energy
JP2012530207A (en) * 2009-06-18 2012-11-29 アーベーベー・リサーチ・リミテッド Thermoelectric energy storage system with intermediate storage tank and method for storing thermoelectric energy
JP2013507559A (en) * 2009-10-13 2013-03-04 アーベーベー・リサーチ・リミテッド Thermoelectric energy storage system with internal heat exchanger and method for storing thermoelectric energy
CN103195526A (en) * 2013-04-22 2013-07-10 重庆大学 Combined cooling power generation composite system based on supercritical organic Rankine cycle
JP2014023364A (en) * 2012-07-20 2014-02-03 Toshiba Corp Power generation system
US8656712B2 (en) 2007-10-03 2014-02-25 Isentropic Limited Energy storage
JP2014080975A (en) * 2012-10-17 2014-05-08 General Electric Co <Ge> Thermal energy storage
CN103925024A (en) * 2014-04-15 2014-07-16 南京航空航天大学 Water-power cogeneration system for recovering waste heat of concentrated seawater of desalination and method of system
WO2014171892A1 (en) * 2013-04-18 2014-10-23 Lien Chiow Tan Green engine
JP2014532138A (en) * 2011-09-29 2014-12-04 シーメンス アクティエンゲゼルシャフト Equipment for storing thermal energy
CN105637184A (en) * 2013-05-30 2016-06-01 通用电气公司 System and method of waste heat recovery
JP2016142272A (en) * 2015-02-04 2016-08-08 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH System for storing and discharging electric energy
CN105909330A (en) * 2016-04-14 2016-08-31 东南大学 Flue gas waste heat recovery and flue gas processing system based on organic Rankine cycle
CN106594704A (en) * 2016-09-30 2017-04-26 浙江科维节能技术股份有限公司 High efficiency intermittent diffused steam energy recovery system
US9915177B2 (en) 2012-04-30 2018-03-13 Energy Technologies Institute Llp Control of system with gas based cycle
JP2019078185A (en) * 2017-10-20 2019-05-23 松尾 栄人 Thermal storage type solar thermal power generation system
JP2019529766A (en) * 2016-08-15 2019-10-17 フューチャーベイ・リミテッド Thermodynamic cycle apparatus and thermodynamic cycle method
DE102020131706A1 (en) 2020-11-30 2022-06-02 Man Energy Solutions Se System and method for storing and delivering electrical energy with its storage as thermal energy
CN114777098A (en) * 2022-05-25 2022-07-22 西安热工研究院有限公司 Boiler system of thermal power plant and steam turbine power generation system with same

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231866A (en) * 2006-03-02 2007-09-13 Fujita Corp Waste heat recovery system
US8656712B2 (en) 2007-10-03 2014-02-25 Isentropic Limited Energy storage
US8826664B2 (en) 2007-10-03 2014-09-09 Isentropic Limited Energy storage
JP2012523815A (en) * 2009-04-14 2012-10-04 アーベーベー・リサーチ・リミテッド Thermoelectric energy storage system having two heat storage tanks and method for storing thermoelectric energy
JP2012530207A (en) * 2009-06-18 2012-11-29 アーベーベー・リサーチ・リミテッド Thermoelectric energy storage system with intermediate storage tank and method for storing thermoelectric energy
JP2013152073A (en) * 2009-06-18 2013-08-08 Abb Research Ltd Energy storage system with intermediate storage tank and method for storing energy
JP2013507559A (en) * 2009-10-13 2013-03-04 アーベーベー・リサーチ・リミテッド Thermoelectric energy storage system with internal heat exchanger and method for storing thermoelectric energy
JP2012112369A (en) * 2010-11-19 2012-06-14 Atsuo Morikawa Heat pump power generator
JP2011231778A (en) * 2011-08-26 2011-11-17 Fujita Corp Waste heat recovery system
JP2014532138A (en) * 2011-09-29 2014-12-04 シーメンス アクティエンゲゼルシャフト Equipment for storing thermal energy
US9915177B2 (en) 2012-04-30 2018-03-13 Energy Technologies Institute Llp Control of system with gas based cycle
JP2014023364A (en) * 2012-07-20 2014-02-03 Toshiba Corp Power generation system
US9382815B2 (en) 2012-07-20 2016-07-05 Kabushiki Kaisha Toshiba Power generating system
JP2014080975A (en) * 2012-10-17 2014-05-08 General Electric Co <Ge> Thermal energy storage
WO2014171892A1 (en) * 2013-04-18 2014-10-23 Lien Chiow Tan Green engine
CN103195526A (en) * 2013-04-22 2013-07-10 重庆大学 Combined cooling power generation composite system based on supercritical organic Rankine cycle
CN105637184A (en) * 2013-05-30 2016-06-01 通用电气公司 System and method of waste heat recovery
CN105637184B (en) * 2013-05-30 2018-09-21 通用电气公司 The system and method for Waste Heat Recovery
CN103925024A (en) * 2014-04-15 2014-07-16 南京航空航天大学 Water-power cogeneration system for recovering waste heat of concentrated seawater of desalination and method of system
CN105890221A (en) * 2015-02-04 2016-08-24 通用电器技术有限公司 Electrical energy storage and discharge system
JP2016142272A (en) * 2015-02-04 2016-08-08 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH System for storing and discharging electric energy
CN105909330A (en) * 2016-04-14 2016-08-31 东南大学 Flue gas waste heat recovery and flue gas processing system based on organic Rankine cycle
CN105909330B (en) * 2016-04-14 2018-06-19 东南大学 A kind of flue gas waste heat recovery and smoke processing system based on Organic Rankine Cycle
JP2019529766A (en) * 2016-08-15 2019-10-17 フューチャーベイ・リミテッド Thermodynamic cycle apparatus and thermodynamic cycle method
CN106594704A (en) * 2016-09-30 2017-04-26 浙江科维节能技术股份有限公司 High efficiency intermittent diffused steam energy recovery system
JP2019078185A (en) * 2017-10-20 2019-05-23 松尾 栄人 Thermal storage type solar thermal power generation system
DE102020131706A1 (en) 2020-11-30 2022-06-02 Man Energy Solutions Se System and method for storing and delivering electrical energy with its storage as thermal energy
CN114777098A (en) * 2022-05-25 2022-07-22 西安热工研究院有限公司 Boiler system of thermal power plant and steam turbine power generation system with same

Similar Documents

Publication Publication Date Title
JPS63253102A (en) Compound generating system
US8584463B2 (en) Thermoelectric energy storage system having two thermal baths and method for storing thermoelectric energy
US5685152A (en) Apparatus and method for converting thermal energy to mechanical energy
US20120222423A1 (en) Thermoelectric energy storage system having an internal heat exchanger and method for storing thermoelectric energy
CN112880451A (en) CO based on supplemental external energy2Gas-liquid phase change energy storage device and method
JPS63253101A (en) Compound generating system
CN101696642B (en) Heat and power cogeneration system using medium or low enthalpy energy source as heat source
CN114060111B (en) Liquid compressed air energy storage method and system for utilizing waste heat of circulating water of thermal power generating unit
CN112502925B (en) Transcritical carbon dioxide power generation system and method driven by solar energy and geothermal energy in combined mode
CN108731303A (en) Heat-pump-type replaces energy storage for power supply method and device
RU2273742C1 (en) Energy-accumulating plant
CN104481614A (en) Distributed energy supply system employing carbon dioxide as working medium
CN105986954B (en) A kind of power and refrigeration cogeneration system
JP2003329332A (en) Hot water supply system
CN111578537B (en) Combined energy source coupling energy supply and energy storage integrated device
CN204646526U (en) A kind of power and refrigeration cogeneration system
JPS598641B2 (en) heat cycle equipment
CN113531630A (en) Low-cost operation geothermal heating-energy storage integrated system and application
CN112502923A (en) Power generation and heating coupling system for comprehensive utilization of hot dry rock energy
CN115306507B (en) Mobile vehicle-mounted power supply system
JPH06129211A (en) Thermoelectric supply system
JPH0443802A (en) Exhaust heat recovery steam turbine type energy system
JPH0295757A (en) Energy supply system
CN218372360U (en) Blast furnace slag washing water waste heat utilization system
JP2004036573A (en) Electric power/cold heat feeding combined system