JP2010116911A - Heat accumulator - Google Patents

Heat accumulator Download PDF

Info

Publication number
JP2010116911A
JP2010116911A JP2008292594A JP2008292594A JP2010116911A JP 2010116911 A JP2010116911 A JP 2010116911A JP 2008292594 A JP2008292594 A JP 2008292594A JP 2008292594 A JP2008292594 A JP 2008292594A JP 2010116911 A JP2010116911 A JP 2010116911A
Authority
JP
Japan
Prior art keywords
heat
heat storage
unit
transport
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008292594A
Other languages
Japanese (ja)
Other versions
JP4957707B2 (en
Inventor
Satoru Inoue
哲 井上
Hiroshi Saegusa
弘 三枝
Katsuya Komaki
克哉 小牧
Takuya Fuse
卓哉 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008292594A priority Critical patent/JP4957707B2/en
Publication of JP2010116911A publication Critical patent/JP2010116911A/en
Application granted granted Critical
Publication of JP4957707B2 publication Critical patent/JP4957707B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat accumulator which can reduce the thermal loss in the heat dissipation process in addition to the thermal loss in the heat accumulation process. <P>SOLUTION: The heat accumulator includes the heat accumulation section 10 provided in the exhaust passage 110 which discharges the exhaust of engine 100 outside, wherein the heat accumulation section accumulates heat making use of the heat of the exhaust; the heat transport section 30 which evaporates the heat transport medium which is enclosed the inside by the heat transfer from the exhaust or the heat accumulation section 10, wherein the heat transport section is provided in the exhaust passage 110 and thermally connected to the heat accumulation section 10; and the heat recovery section 40 which heats an object to be heated through heat exchange with the heat transport medium at the heat transport section 30, and condenses the heat transport medium and returns it back to the heat transport section 30, in which the heat recovery section 40 is disposed such that it surrounds the circumference of the heat accumulation section 10 and the heat transport section 30. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関の排気熱を用いて蓄熱する蓄熱装置に関する。   The present invention relates to a heat storage device that stores heat using exhaust heat of an internal combustion engine.

特許文献1には、エンジンの排気熱を用いて蓄熱する従来の蓄熱装置が開示されている。この蓄熱装置は、化学蓄熱剤が充填された反応器と、エンジンの排気熱によって内部を流通するブラインを加熱する高温熱供給熱交換器と、反応器内に設けられ、高温熱供給熱交換器で加熱されたブラインとの熱交換により化学蓄熱剤を加熱する高温側熱交換器とを有している。高温熱供給熱交換器と高温側熱交換器との間は、ブラインを流通させる熱交換器用パイプを介して接続されている。化学蓄熱剤は、高温熱供給熱交換器、ブライン及び高温側熱交換器を介して供給されるエンジンの排気熱によって吸熱反応を起こし、これにより蓄熱が行われるようになっている。
特開2008−111592号公報
Patent Document 1 discloses a conventional heat storage device that stores heat using exhaust heat of an engine. This heat storage device includes a reactor filled with a chemical heat storage agent, a high-temperature heat supply heat exchanger that heats brine that flows through the engine exhaust heat, and a high-temperature heat supply heat exchanger that is provided in the reactor. And a high temperature side heat exchanger that heats the chemical heat storage agent by heat exchange with the brine heated in step (b). The high temperature heat supply heat exchanger and the high temperature side heat exchanger are connected via a heat exchanger pipe through which brine flows. The chemical heat storage agent causes an endothermic reaction by the exhaust heat of the engine supplied through the high-temperature heat supply heat exchanger, the brine, and the high-temperature side heat exchanger, thereby storing heat.
JP 2008-111152 A

上記の蓄熱装置では、反応器が排気管から離れた位置に配置されているため、反応器内の化学蓄熱剤には、熱交換器用パイプ内を流通するブラインを媒体として排気熱が供給されるようになっている。したがって、熱交換器用パイプからの放熱によって、排気熱が化学蓄熱剤に供給されるまでの間に系外への放熱が生じるため、蓄熱過程での熱ロスが大きくなってしまうという問題がある。   In the above heat storage device, since the reactor is arranged at a position away from the exhaust pipe, exhaust heat is supplied to the chemical heat storage agent in the reactor by using the brine flowing through the heat exchanger pipe as a medium. It is like that. Therefore, the heat dissipation from the heat exchanger pipe causes the heat dissipation outside the system until the exhaust heat is supplied to the chemical heat storage agent, and there is a problem that the heat loss in the heat storage process increases.

この熱ロスを低減するために本願出願人は、特願2008−278747号(未公開技術)において、反応器を排気管内に設置した蓄熱装置を提案している。この蓄熱装置では、蓄熱過程において、反応器に対し熱媒体を介さずに排気熱を供給できるため、蓄熱過程での熱ロスを低減できる。しかしながら、この蓄熱装置においても、蓄熱した熱を放熱して加熱対象に移動させる放熱過程を考えると、反応器で発生した熱が全て熱回収部に伝わることはなく、系外に放熱されてしまうため熱ロスが生じてしまう。   In order to reduce this heat loss, the present applicant has proposed a heat storage device in which a reactor is installed in an exhaust pipe in Japanese Patent Application No. 2008-278747 (unpublished technology). In this heat storage device, exhaust heat can be supplied to the reactor without passing through a heat medium in the heat storage process, so heat loss in the heat storage process can be reduced. However, even in this heat storage device, when considering the heat dissipation process in which the stored heat is dissipated and moved to the object to be heated, all the heat generated in the reactor is not transmitted to the heat recovery unit and is dissipated outside the system. Therefore, heat loss will occur.

本発明の目的は、蓄熱過程の熱ロスに加えて、放熱過程の熱ロスを低減できる蓄熱装置を提供することにある。   The objective of this invention is providing the thermal storage apparatus which can reduce the thermal loss of a thermal radiation process in addition to the thermal loss of a thermal storage process.

本発明は上記目的を達成するために、以下の技術的手段を採用する。   In order to achieve the above object, the present invention employs the following technical means.

請求項1に記載の発明は、内燃機関(100)の排気を外部に排出する排気通路(110)に設けられ、排気の熱を用いて蓄熱する蓄熱部(10)と、排気通路(110)に設けられるとともに蓄熱部(10)に熱的に接続され、排気又は蓄熱部(10)からの伝熱により内部に封入された熱輸送媒体を蒸発させる熱輸送部(30)と、熱輸送部(30)で蒸発した熱輸送媒体との熱交換により加熱対象を加熱するとともに、熱輸送媒体を凝縮させて熱輸送部(30)に戻す熱回収部(40)とを有し、熱回収部(40)は、蓄熱部(10)及び熱輸送部(30)の周囲を囲むように配置されていることを特徴とする蓄熱装置である。   The invention according to claim 1 is provided in the exhaust passage (110) for discharging the exhaust of the internal combustion engine (100) to the outside, and a heat storage section (10) for storing heat using the heat of the exhaust, and the exhaust passage (110). A heat transport unit (30) that is thermally connected to the heat storage unit (10) and that evaporates the heat transport medium enclosed therein by heat transfer from the exhaust or the heat storage unit (10), and a heat transport unit A heat recovery part (40) for heating the object to be heated by heat exchange with the heat transport medium evaporated in (30) and condensing the heat transport medium and returning it to the heat transport part (30). (40) is a heat storage device characterized by being arranged so as to surround the heat storage unit (10) and the heat transport unit (30).

蓄熱部(10)の熱を熱輸送部(30)、熱輸送媒体及び熱回収部(40)を介して加熱対象に移動させる放熱過程においては、蓄熱部(10)及び熱輸送部(30)は外部よりも高温になり、特に蓄熱部(10)は最も高温になる。このため、蓄熱部(10)の熱は、熱輸送部(30)、熱輸送媒体及び熱回収部(40)を介して加熱対象に有効に伝えられる以外に、伝導や輻射によって蓄熱部(10)及び熱輸送部(30)から系外に放熱されてしまうことも考えられる。しかしながら、熱回収部(40)が蓄熱部(10)及び熱輸送部(30)の周囲を囲むように配置されていることによって、蓄熱部(10)及び熱輸送部(30)から放出される熱は、系外に放熱されずに熱回収部(40)に伝熱し、結果的には加熱対象の加熱に寄与することになる。したがって、蓄熱装置の放熱過程での熱ロスを低減することができる。   In the heat dissipation process of moving the heat of the heat storage unit (10) to the object to be heated through the heat transport unit (30), the heat transport medium and the heat recovery unit (40), the heat storage unit (10) and the heat transport unit (30). Becomes higher than the outside, and in particular, the heat storage section (10) has the highest temperature. For this reason, the heat of the heat storage unit (10) is effectively transmitted to the object to be heated through the heat transport unit (30), the heat transport medium, and the heat recovery unit (40), or by heat conduction (10). ) And the heat transport part (30) may be radiated to the outside of the system. However, when the heat recovery unit (40) is disposed so as to surround the heat storage unit (10) and the heat transport unit (30), the heat recovery unit (40) is released from the heat storage unit (10) and the heat transport unit (30). The heat is transferred to the heat recovery section (40) without being dissipated outside the system, and consequently contributes to the heating of the heating target. Therefore, heat loss in the heat dissipation process of the heat storage device can be reduced.

また、蓄熱部(10)が排気通路(110)に設けられているため、蓄熱過程において、蓄熱部(10)に対し熱媒体を介さずに排気熱を供給できる。したがって、蓄熱装置の蓄熱過程での熱ロスを低減することができる。   Moreover, since the heat storage part (10) is provided in the exhaust passage (110), exhaust heat can be supplied to the heat storage part (10) without a heat medium in the heat storage process. Therefore, heat loss in the heat storage process of the heat storage device can be reduced.

請求項2に記載の発明は、熱回収部(40)は、蓄熱部(10)及び熱輸送部(30)の全周を囲む筒状の形状を有していることを特徴としている。   The invention according to claim 2 is characterized in that the heat recovery part (40) has a cylindrical shape surrounding the entire circumference of the heat storage part (10) and the heat transport part (30).

これにより、蓄熱部(10)の全周から放出される熱を熱回収部(40)に伝熱させることができるため、蓄熱装置の放熱過程での熱ロスをさらに低減することができる。   Thereby, since the heat released from the entire circumference of the heat storage unit (10) can be transferred to the heat recovery unit (40), the heat loss in the heat dissipation process of the heat storage device can be further reduced.

請求項3に記載の発明は、蓄熱部(10)は、発熱/吸熱反応が可逆的に行われる化学蓄熱剤(11)が充填された構造を有しており、発熱/吸熱反応に用いられる反応媒体を収容し、蒸発した反応媒体を蓄熱部(10)に送るとともに、蓄熱部(10)から流入した反応媒体を凝縮させる蒸発凝縮部(50)をさらに有し、蒸発凝縮部(50)は、蓄熱部(10)及び熱輸送部(30)の周囲を熱回収部(40)と共同して囲むように配置されていることを特徴としている。   The invention according to claim 3 has a structure in which the heat storage section (10) is filled with a chemical heat storage agent (11) in which an exothermic / endothermic reaction is reversibly performed, and is used for an exothermic / endothermic reaction. The reaction medium is accommodated, and the evaporated reaction medium is sent to the heat storage section (10), and further includes an evaporation condensation section (50) for condensing the reaction medium flowing from the heat storage section (10), and the evaporation condensation section (50). Is characterized by being arranged so as to surround the heat storage section (10) and the heat transport section (30) together with the heat recovery section (40).

これにより、蓄熱装置を小型化できるため、蓄熱装置の車両への搭載性を向上できる。   Thereby, since a thermal storage apparatus can be reduced in size, the mounting property to the vehicle of a thermal storage apparatus can be improved.

請求項4に記載の発明は、蒸発凝縮部(50)及び蓄熱部(10)は、互いに熱的に接続されていることを特徴としている。   The invention according to claim 4 is characterized in that the evaporating and condensing part (50) and the heat storage part (10) are thermally connected to each other.

これにより、放熱過程において、蒸発凝縮部(50)内の反応媒体が蓄熱部(10)からの伝熱により加熱されて蒸発し易くなるため、蓄熱部(10)に反応媒体を速やかに供給でき、化学蓄熱剤(11)の発熱反応を促進することができる。   Thereby, in the heat dissipation process, the reaction medium in the evaporation condensing part (50) is easily heated and evaporated by heat transfer from the heat storage part (10), so that the reaction medium can be quickly supplied to the heat storage part (10). The exothermic reaction of the chemical heat storage agent (11) can be promoted.

請求項5に記載の発明は、蒸発凝縮部(50)と蓄熱部(10)との間の伝熱を促進する伝熱フィン(53)をさらに有することを特徴としている。   The invention according to claim 5 further includes heat transfer fins (53) that promote heat transfer between the evaporating and condensing part (50) and the heat storage part (10).

これにより、蓄熱部(10)から蒸発凝縮部(50)に積極的に伝熱させることができるため、蒸発凝縮部(50)内の反応媒体の温度上昇が促進されてさらに蒸発し易くなる。   Thereby, since heat can be actively transferred from the heat storage unit (10) to the evaporation condensing unit (50), the temperature increase of the reaction medium in the evaporation condensing unit (50) is promoted, and the evaporation becomes easier.

請求項6に記載の発明は、伝熱フィン(53)は、蒸発凝縮部(50)の下部側に設けられていることを特徴としている。   The invention according to claim 6 is characterized in that the heat transfer fin (53) is provided on the lower side of the evaporating and condensing part (50).

これにより、蓄熱部(10)から蒸発凝縮部(50)内の液状態の反応媒体に効果的に伝熱させることができる。   Thereby, heat can be effectively transferred from the heat storage section (10) to the liquid reaction medium in the evaporation condensation section (50).

請求項7に記載の発明は、蓄熱部(12)と熱輸送部(35)とが交互に積層配置されていることを特徴としている。   The invention according to claim 7 is characterized in that the heat storage section (12) and the heat transport section (35) are alternately stacked.

これにより、蓄熱部(12)と熱輸送部(35)との間の伝熱面積を増加させることができるため、蓄熱部(12)と熱輸送部(35)との間の熱移動を促進できる。   Thereby, since the heat transfer area between a heat storage part (12) and a heat transport part (35) can be increased, the heat transfer between a heat storage part (12) and a heat transport part (35) is accelerated | stimulated. it can.

なお、上記各手段の括弧内の符号は、後述する実施形態記載の具体的手段との対応関係の一例を示している。   In addition, the code | symbol in the bracket | parenthesis of each said means has shown an example of the corresponding relationship with the specific means as described in embodiment mentioned later.

(第1実施形態)
本発明の第1実施形態について図1及び図2を用いて説明する。図1は、本実施形態における蓄熱装置の構成を模式的に示している。図2は、本実施形態における蓄熱装置の熱輸送部近傍を排気流通方向に垂直に切断した断面構成を模式的に示している。図1及び図2に示すように、本実施形態の蓄熱装置1は、水冷式のエンジン(内燃機関)100と、エンジン100の排気を外部に排出する排気通路110とを備えた車両に搭載されている。
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 schematically shows the configuration of the heat storage device in the present embodiment. FIG. 2 schematically shows a cross-sectional configuration in which the vicinity of the heat transport portion of the heat storage device in the present embodiment is cut perpendicular to the exhaust circulation direction. As shown in FIGS. 1 and 2, the heat storage device 1 of this embodiment is mounted on a vehicle including a water-cooled engine (internal combustion engine) 100 and an exhaust passage 110 that exhausts the exhaust of the engine 100 to the outside. ing.

排気通路110の途中には、蓄熱装置1の蓄熱部10が設けられている。蓄熱部10は、排気通路110を流通する排気の熱を用いて蓄放熱を行うようになっている。蓄熱部10は、所定形状を有する例えばステンレス鋼製の容器体である。蓄熱部10の内部空間には粒子状の化学蓄熱剤11が充填されており、容器体外部を流れる排気との間で熱交換が行われるようになっている。化学蓄熱剤11としては、例えばCaOやMgO等の金属酸化物が用いられる。化学蓄熱剤11は、例えば水(水蒸気)を反応媒体として発熱/吸熱反応を可逆的に行うようになっている。化学蓄熱剤11にCaOを用い、反応媒体に水(水蒸気)を用いた場合の発熱/吸熱反応の化学反応式(1)、(2)を以下に示す。
CaO+HO→Ca(OH)+Q(発熱) ・・・(1)
Ca(OH)→CaO+HO−Q(吸熱) ・・・(2)
排気通路110の外側には、反応媒体を内部に収容する蒸発凝縮部20が設けられている。蒸発凝縮部20は、内部の反応媒体と外気との間で熱交換を行うようになっている。蒸発凝縮部20は、反応媒体配管21を介して蓄熱部10に接続されている。反応媒体配管21の一端部は、蓄熱部10内に挿入され、蓄熱部10の内部で開口している。反応媒体配管21の他端部は、蒸発凝縮部20内に挿入され、反応媒体の液面よりも上方で開口している。反応媒体配管21には、電動式のバルブ22が設けられている。バルブ22は、不図示の制御部により開閉制御されるようになっている。
In the middle of the exhaust passage 110, the heat storage unit 10 of the heat storage device 1 is provided. The heat storage unit 10 stores and radiates heat using the heat of the exhaust gas flowing through the exhaust passage 110. The heat storage unit 10 is a container body made of, for example, stainless steel having a predetermined shape. The internal space of the heat storage unit 10 is filled with particulate chemical heat storage agent 11 so that heat exchange is performed with the exhaust flowing outside the container body. As the chemical heat storage agent 11, for example, a metal oxide such as CaO or MgO is used. The chemical heat storage agent 11 performs reversible exothermic / endothermic reactions using, for example, water (water vapor) as a reaction medium. The chemical reaction formulas (1) and (2) of the exothermic / endothermic reaction when CaO is used as the chemical heat storage agent 11 and water (water vapor) is used as the reaction medium are shown below.
CaO + H 2 O → Ca ( OH) 2 + Q ( heat) (1)
Ca (OH) 2 → CaO + H 2 O-Q (endothermic) (2)
Outside the exhaust passage 110, there is provided an evaporating and condensing unit 20 that accommodates the reaction medium inside. The evaporative condensing unit 20 performs heat exchange between the internal reaction medium and the outside air. The evaporating and condensing unit 20 is connected to the heat storage unit 10 via a reaction medium pipe 21. One end of the reaction medium pipe 21 is inserted into the heat storage unit 10 and is open inside the heat storage unit 10. The other end of the reaction medium pipe 21 is inserted into the evaporating and condensing part 20 and is opened above the liquid level of the reaction medium. The reaction medium pipe 21 is provided with an electric valve 22. The valve 22 is controlled to be opened and closed by a control unit (not shown).

また、排気通路110の途中には、熱輸送部30が設けられている。熱輸送部30は、所定形状を有する例えばステンレス鋼製の容器体である。熱輸送部30の内部空間には所定の熱輸送媒体(例えば水)が封入されており、容器体外部を流れる排気との間で熱交換が行われるようになっている。熱輸送媒体としては、水以外にも、アルコール、フルオロカーボン又はクロロフルオロカーボン(フロン)等を用いることができる。熱輸送部30は、所定形状の伝熱面34を介して蓄熱部10に熱的に接続されている。熱輸送部30内部の熱輸送媒体は、排気からの伝熱又は蓄熱部10からの伝熱により加熱されて蒸発するようになっている。熱輸送部30は蓄熱部10と共に熱生成部を構成しており、本実施形態では、熱生成部は円柱状の形状を有している。   A heat transport unit 30 is provided in the middle of the exhaust passage 110. The heat transport unit 30 is a container body made of, for example, stainless steel having a predetermined shape. A predetermined heat transport medium (for example, water) is sealed in the internal space of the heat transport unit 30, and heat exchange is performed with the exhaust flowing outside the container body. As the heat transport medium, alcohol, fluorocarbon, chlorofluorocarbon (fluorocarbon), or the like can be used in addition to water. The heat transport unit 30 is thermally connected to the heat storage unit 10 via a heat transfer surface 34 having a predetermined shape. The heat transport medium inside the heat transport unit 30 is heated and evaporated by heat transfer from the exhaust or heat transfer from the heat storage unit 10. The heat transport unit 30 constitutes a heat generation unit together with the heat storage unit 10, and in the present embodiment, the heat generation unit has a cylindrical shape.

蓄熱部10及び熱輸送部30の周囲には、熱回収部40が配置されている。熱回収部40は、中空円筒状の内部空間を有する例えばステンレス鋼製の容器体であり、蓄熱部10及び熱輸送部30の外周面(側面)の全周を囲むように配置されている。熱回収部40は、例えば蓄熱部10及び熱輸送部30に対し熱的に接続されている。   A heat recovery unit 40 is disposed around the heat storage unit 10 and the heat transport unit 30. The heat recovery unit 40 is a container made of, for example, stainless steel having a hollow cylindrical internal space, and is arranged so as to surround the entire outer periphery (side surface) of the heat storage unit 10 and the heat transport unit 30. The heat recovery unit 40 is thermally connected to, for example, the heat storage unit 10 and the heat transport unit 30.

熱回収部40は、蒸気流路31を介して熱輸送部30の上端部と連通しているとともに、還流路32を介して熱輸送部30の下端部と連通している。これにより熱輸送部30及び熱回収部40は、ループ式のヒートパイプ装置を構成している。熱輸送部30及び熱回収部40の内部は、水以外の気体を排した略真空状態となるように維持されているため、圧力は水の温度に対応した飽和圧力となっている。   The heat recovery unit 40 communicates with the upper end portion of the heat transport unit 30 via the steam channel 31 and communicates with the lower end portion of the heat transport unit 30 via the reflux path 32. Thereby, the heat transport unit 30 and the heat recovery unit 40 constitute a loop heat pipe device. Since the inside of the heat transport unit 30 and the heat recovery unit 40 is maintained in a substantially vacuum state in which a gas other than water is exhausted, the pressure is a saturation pressure corresponding to the temperature of water.

還流路32には、電動式のバルブ33が設けられている。バルブ33は、制御部により開閉制御されるようになっている。   An electric valve 33 is provided in the reflux path 32. The valve 33 is controlled to be opened and closed by a control unit.

熱回収部40内部には、エンジン100の冷却水(加熱対象)を内部に流通させる熱回収熱交換器41が設けられている。熱回収熱交換器41は、熱回収部40内に比較的長い経路長で配設されており、熱回収部40内の熱輸送媒体との熱交換により冷却水を加熱するようになっている。   Inside the heat recovery unit 40, a heat recovery heat exchanger 41 is provided for circulating cooling water (heating target) of the engine 100 therein. The heat recovery heat exchanger 41 is disposed in the heat recovery unit 40 with a relatively long path length, and heats the cooling water by heat exchange with the heat transport medium in the heat recovery unit 40. .

図示していないが、蓄熱装置1の内部には、蓄熱部10及び熱輸送部30を貫いて形成され、排気通路110の一部を構成する配管が設けられている。配管内の排気の流路は、蓄熱部10及び熱輸送部30の各内部空間に対し空間的には隔離されているが、配管内を流れる排気と蓄熱部10及び熱輸送部30との間の伝熱は可能になっている。   Although not shown in the figure, inside the heat storage device 1, a pipe that is formed through the heat storage unit 10 and the heat transport unit 30 and constitutes a part of the exhaust passage 110 is provided. The flow path of the exhaust gas in the pipe is spatially isolated from the internal spaces of the heat storage unit 10 and the heat transport unit 30, but between the exhaust gas flowing in the pipe and the heat storage unit 10 and the heat transport unit 30. Heat transfer is possible.

次に、本実施形態における蓄熱装置の作動について説明する。   Next, the operation of the heat storage device in the present embodiment will be described.

まず、エンジン100の低温始動時等に行われる放熱過程について説明する。エンジン100が始動すると、制御部の制御によりバルブ22、33が開弁される。バルブ22が開弁されることにより、蒸発凝縮部20内の反応媒体(蒸気又は液)は、反応媒体配管21を通って蓄熱部10内に流入する。反応媒体が流入すると、蓄熱部10内では、化学反応式(1)に示した発熱反応(加水反応)が進行する。化学蓄熱剤11の発熱反応により蓄熱部10内で発生した熱は、主に伝熱面34を介して熱輸送部30に移動する。   First, a heat dissipation process performed when the engine 100 is started at a low temperature will be described. When the engine 100 is started, the valves 22 and 33 are opened under the control of the control unit. When the valve 22 is opened, the reaction medium (steam or liquid) in the evaporation condensing unit 20 flows into the heat storage unit 10 through the reaction medium piping 21. When the reaction medium flows in, the exothermic reaction (hydrolysis) shown in the chemical reaction formula (1) proceeds in the heat storage unit 10. The heat generated in the heat storage unit 10 due to the exothermic reaction of the chemical heat storage agent 11 moves to the heat transport unit 30 mainly via the heat transfer surface 34.

熱輸送部30内では、蓄熱部10からの伝熱により熱輸送媒体が加熱されて沸騰蒸発する。蒸発した熱輸送媒体は、蒸気流路31を介して熱回収部40に流入する。熱回収部40では、流入した熱輸送媒体と熱回収熱交換器41内を流通する冷却水との熱交換が行われ、冷却水が加熱されるとともに熱輸送媒体は凝縮する。凝縮した熱輸送媒体は、還流路32を通って熱輸送部30に戻る。このように、蓄熱部10で発生して熱輸送部30に伝熱した熱は、ヒートパイプ作用によって熱回収熱交換器41内の冷却水に移動する。これにより、冷却水の温度上昇が促進されるため、エンジン100の暖機や冷却水を用いた暖房の立ち上がりを早期に行うことができる。   In the heat transport unit 30, the heat transport medium is heated by the heat transfer from the heat storage unit 10, and evaporates at a boiling point. The evaporated heat transport medium flows into the heat recovery unit 40 via the steam flow path 31. In the heat recovery unit 40, heat exchange is performed between the heat transport medium that has flowed in and the cooling water flowing through the heat recovery heat exchanger 41, and the heat transport medium is condensed while the cooling water is heated. The condensed heat transport medium returns to the heat transport unit 30 through the reflux path 32. Thus, the heat generated in the heat storage unit 10 and transferred to the heat transport unit 30 moves to the cooling water in the heat recovery heat exchanger 41 by the heat pipe action. Thereby, since the temperature rise of a cooling water is accelerated | stimulated, the start-up of the heating using the warming-up of the engine 100 or a cooling water can be performed at an early stage.

本実施形態では、蓄熱部10からだけでなく排気からも熱輸送部30に対して伝熱するため、上記の放熱過程終了後においても通常の排気熱回収が行われる。熱輸送部30内では、排気からの伝熱により熱輸送媒体が加熱されて沸騰蒸発する。蒸発した熱輸送媒体は、蒸気流路31を介して熱回収部40に流入する。熱回収部40では、流入した熱輸送媒体と熱回収熱交換器41内を流通する冷却水との熱交換が行われる。これにより、冷却水が加熱されるとともに熱輸送媒体は凝縮する。凝縮した熱輸送媒体は、還流路32を通って熱輸送部30に戻る。このように、排気の熱は、ヒートパイプ作用によって熱回収熱交換器41内の冷却水に移動する。   In the present embodiment, heat is transferred not only from the heat storage unit 10 but also from the exhaust to the heat transport unit 30, so that normal exhaust heat recovery is performed even after the end of the heat dissipation process. In the heat transport section 30, the heat transport medium is heated and evaporated by boiling due to heat transfer from the exhaust. The evaporated heat transport medium flows into the heat recovery unit 40 via the steam flow path 31. In the heat recovery unit 40, heat exchange between the heat transport medium that has flowed in and the cooling water flowing through the heat recovery heat exchanger 41 is performed. Thereby, the cooling water is heated and the heat transport medium is condensed. The condensed heat transport medium returns to the heat transport unit 30 through the reflux path 32. Thus, the heat of the exhaust moves to the cooling water in the heat recovery heat exchanger 41 by the heat pipe action.

冷却水が十分に加熱されて所定の温度を超えると、制御部の制御によりバルブ33が閉弁される。これにより、熱回収部40内で凝縮した熱輸送媒体の熱輸送部30への還流が阻止され、排気熱の回収が停止する。   When the cooling water is sufficiently heated and exceeds a predetermined temperature, the valve 33 is closed under the control of the control unit. Thereby, the reflux of the heat transport medium condensed in the heat recovery unit 40 to the heat transport unit 30 is prevented, and the recovery of the exhaust heat is stopped.

次に、蓄熱過程について説明する。蓄熱過程は、上記の放熱過程終了後であって、排気温度が十分に高くなった定常走行時等に行われる。蓄熱過程では、バルブ22は開弁状態にある。蓄熱部10内では、化学蓄熱剤11が排気によって加熱され、化学反応式(2)に示した吸熱反応(脱水反応)が進行する。これにより、化学蓄熱剤11の再生(蓄熱)が行われる。脱水反応によって化学蓄熱剤11から放出された反応媒体(蒸気)は、反応媒体配管21を通って蒸発凝縮部20に流入する。蒸発凝縮部20に流入した反応媒体は、外気との熱交換により冷却されて凝縮し、液状態となって蒸発凝縮部20内に収容される。化学蓄熱剤11の再生が完了すると、制御部の制御によりバルブ22が閉弁される。これにより、蓄熱部10への反応媒体の流入が阻止されるため、蓄熱状態が維持される。   Next, the heat storage process will be described. The heat storage process is performed after the above-described heat release process, for example, during steady running when the exhaust gas temperature is sufficiently high. During the heat storage process, the valve 22 is in an open state. In the heat storage unit 10, the chemical heat storage agent 11 is heated by the exhaust, and the endothermic reaction (dehydration reaction) shown in the chemical reaction formula (2) proceeds. Thereby, regeneration (heat storage) of the chemical heat storage agent 11 is performed. The reaction medium (steam) released from the chemical heat storage agent 11 by the dehydration reaction flows into the evaporative condensation unit 20 through the reaction medium pipe 21. The reaction medium that has flowed into the evaporating and condensing unit 20 is cooled and condensed by heat exchange with the outside air, becomes a liquid state, and is accommodated in the evaporating and condensing unit 20. When the regeneration of the chemical heat storage agent 11 is completed, the valve 22 is closed under the control of the control unit. Thereby, since the inflow of the reaction medium to the thermal storage part 10 is blocked | prevented, a thermal storage state is maintained.

上記の放熱過程においては、蓄熱部10及び熱輸送部30は外部よりも高温になり、特に蓄熱部10は最も高温になる。このため、蓄熱部10で発生した熱は、熱輸送部30及び熱回収部40を介して冷却水に有効に伝えられる以外に、伝導や輻射によって系外へ放出されてしまうことも考えられる。ところが本実施形態では、蓄熱部10及び熱輸送部30は熱回収部40によって外周を囲まれているため、蓄熱部10及び熱輸送部30の外周部から放出される熱は、系外に放熱されずに熱回収部40に伝熱し、結果的には熱回収熱交換器41内の冷却水の加熱に寄与することになる。   In the above heat dissipation process, the heat storage unit 10 and the heat transport unit 30 have a higher temperature than the outside, and in particular, the heat storage unit 10 has the highest temperature. For this reason, in addition to being effectively transmitted to the cooling water through the heat transport unit 30 and the heat recovery unit 40, the heat generated in the heat storage unit 10 may be released outside the system by conduction or radiation. However, in the present embodiment, since the heat storage unit 10 and the heat transport unit 30 are surrounded by the heat recovery unit 40, the heat released from the outer periphery of the heat storage unit 10 and the heat transport unit 30 is dissipated outside the system. Instead, the heat is transferred to the heat recovery unit 40 and consequently contributes to the heating of the cooling water in the heat recovery heat exchanger 41.

例えば、蓄熱部10の外周部から放出された熱が熱輸送部30を介さずに熱回収部40に伝熱し、熱回収部40内に滞留している液状態の熱輸送媒体を蒸発させたとする。この場合であっても、熱回収部40内では、蒸発した熱輸送媒体と熱回収熱交換器41内の冷却水との熱交換が行われ、熱輸送媒体が凝縮するとともに冷却水が加熱される。すなわち、蓄熱部10の外周部から放出された熱は、結果的には熱回収熱交換器41内の冷却水に移動することになる。   For example, when the heat released from the outer periphery of the heat storage unit 10 is transferred to the heat recovery unit 40 without passing through the heat transfer unit 30, and the liquid heat transfer medium staying in the heat recovery unit 40 is evaporated. To do. Even in this case, in the heat recovery unit 40, heat exchange between the evaporated heat transport medium and the cooling water in the heat recovery heat exchanger 41 is performed, and the heat transport medium is condensed and the cooling water is heated. The That is, the heat released from the outer peripheral portion of the heat storage unit 10 eventually moves to the cooling water in the heat recovery heat exchanger 41.

したがって本実施形態によれば、蓄熱部10及び熱輸送部30の外周部から系外に放出され得る熱を回収できるため、蓄熱装置1の熱回収効率を向上できるとともに、放熱過程での熱ロスを低減することができる。   Therefore, according to the present embodiment, since heat that can be released from the outer periphery of the heat storage unit 10 and the heat transport unit 30 can be recovered, the heat recovery efficiency of the heat storage device 1 can be improved and heat loss in the heat dissipation process Can be reduced.

また本実施形態では、熱回収部40が、蓄熱部10及び熱輸送部30の全周を囲む筒状の形状を有しているため、蓄熱部10及び熱輸送部30の外周部から放出され得る熱のほとんどを回収できる。したがって、蓄熱装置1の熱回収効率をさらに向上でき、放熱過程での熱ロスをさらに低減することができる。   Moreover, in this embodiment, since the heat recovery unit 40 has a cylindrical shape that surrounds the entire circumference of the heat storage unit 10 and the heat transport unit 30, the heat recovery unit 40 is discharged from the outer periphery of the heat storage unit 10 and the heat transport unit 30. You can recover most of the heat you get. Therefore, the heat recovery efficiency of the heat storage device 1 can be further improved, and the heat loss in the heat dissipation process can be further reduced.

さらに本実施形態では、熱回収部40が熱輸送部30の外周部に隣接して配置されているため、蒸気流路31の流路長を短くできる。したがって、蒸気流路31での放熱ロスを低減できる効果も得られる。   Furthermore, in this embodiment, since the heat recovery part 40 is disposed adjacent to the outer peripheral part of the heat transport part 30, the flow path length of the steam flow path 31 can be shortened. Therefore, an effect of reducing heat dissipation loss in the steam flow path 31 can also be obtained.

また本実施形態では、蓄熱部10が排気通路110内に設けられているため、蓄熱過程において、蓄熱部10の化学蓄熱剤11に対し熱媒体を介さずに排気熱を供給できる。したがって、蓄熱過程での熱ロスを低減することができる。   Moreover, in this embodiment, since the heat storage part 10 is provided in the exhaust passage 110, exhaust heat can be supplied to the chemical heat storage agent 11 of the heat storage part 10 without a heat medium in the heat storage process. Therefore, heat loss in the heat storage process can be reduced.

(第2実施形態)
次に、本発明の第2実施形態について図3及び図4を用いて説明する。図3は、本実施形態における蓄熱装置2の構成を模式的に示している。図4は、本実施形態における蓄熱装置2の蒸発凝縮部50近傍を排気流通方向に垂直に切断した断面構成を模式的に示している。図3及び図4に示すように、本実施形態の蓄熱装置2は、第1実施形態の蓄熱装置1と比較して、蒸発凝縮部50が蓄熱部10及び熱輸送部30の周囲を熱回収部40と共同して囲むように配置されている点に特徴を有している。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 3 schematically shows the configuration of the heat storage device 2 in the present embodiment. FIG. 4 schematically shows a cross-sectional configuration in which the vicinity of the evaporating and condensing unit 50 of the heat storage device 2 in the present embodiment is cut perpendicularly to the exhaust circulation direction. As shown in FIGS. 3 and 4, in the heat storage device 2 of the present embodiment, the evaporative condensing unit 50 recovers heat around the heat storage unit 10 and the heat transport unit 30 compared to the heat storage device 1 of the first embodiment. It is characterized in that it is arranged so as to surround the portion 40 together.

蒸発凝縮部50は、円環状の内部空間を有する例えばステンレス鋼製の容器体であり、熱回収部40と共に筒状体を構成している。この筒状体は、蓄熱部10及び熱輸送部30の全周を囲むように配置されている。蒸発凝縮部50の内周側は、例えば蓄熱部10に対し熱的に接続されている。蒸発凝縮部50の主に外周側では、内部の反応媒体と外気との間で熱交換が行われる。蒸発凝縮部50の上部と蓄熱部10の上部との間は、反応媒体流路51を介して接続されている。反応媒体流路51には、制御部により開閉制御される電動式のバルブ52が設けられている。   The evaporating and condensing unit 50 is a container made of, for example, stainless steel having an annular inner space, and constitutes a cylindrical body together with the heat recovery unit 40. This cylindrical body is disposed so as to surround the entire circumference of the heat storage unit 10 and the heat transport unit 30. The inner peripheral side of the evaporating and condensing unit 50 is thermally connected to the heat storage unit 10, for example. Heat exchange is performed between the internal reaction medium and the outside air mainly on the outer peripheral side of the evaporating and condensing unit 50. The upper part of the evaporating and condensing part 50 and the upper part of the heat storage part 10 are connected via a reaction medium channel 51. The reaction medium flow path 51 is provided with an electric valve 52 that is controlled to be opened and closed by a control unit.

放熱過程において、蒸発凝縮部50内の液状態の反応媒体は、蓄熱部10からの伝熱により加熱され、蒸発が促進される。蒸発した反応媒体は、反応媒体流路51を通って蓄熱部10内に流入する。   During the heat dissipation process, the liquid reaction medium in the evaporating and condensing unit 50 is heated by heat transfer from the heat accumulating unit 10 to promote evaporation. The evaporated reaction medium flows into the heat storage unit 10 through the reaction medium channel 51.

また蓄熱過程において、化学蓄熱剤11から放出された反応媒体(蒸気)は、反応媒体流路51を通って蒸発凝縮部50の上部に流入する。流入した反応媒体は、蒸発凝縮部50の主に上部外周側で外気との熱交換により冷却されて凝縮し、液状態となって蒸発凝縮部20内に収容される。その他の蓄熱装置2の作動については、第1実施形態の蓄熱装置1と同様であるため説明を省略する。   Further, in the heat storage process, the reaction medium (steam) released from the chemical heat storage agent 11 flows into the upper part of the evaporation condensing unit 50 through the reaction medium flow path 51. The reaction medium that has flowed in is cooled and condensed by heat exchange with the outside air mainly on the upper outer peripheral side of the evaporative condensing unit 50, becomes liquid, and is accommodated in the evaporative condensing unit 20. About the operation | movement of the other heat storage apparatus 2, since it is the same as that of the heat storage apparatus 1 of 1st Embodiment, description is abbreviate | omitted.

本実施形態によれば、第1実施形態と同様の効果が得られるとともに、蒸発凝縮部50が蓄熱部10及び熱輸送部30の周囲を囲むように配置されているため、蓄熱装置2を小型化及び単純形状化でき、蓄熱装置2の車両への搭載性を向上できる。   According to the present embodiment, the same effects as those of the first embodiment can be obtained, and the evaporative condensing unit 50 is disposed so as to surround the heat storage unit 10 and the heat transport unit 30, so that the heat storage device 2 is reduced in size. And the shape of the heat storage device 2 can be improved.

また本実施形態では、蒸発凝縮部50が蓄熱部10に対し熱的に接続されている。このため、放熱過程において、蒸発凝縮部50内の液状態の反応媒体が蓄熱部10からの伝熱により加熱されて蒸発し易くなり、蓄熱部10に反応媒体を速やかに供給できる。   In the present embodiment, the evaporation condensing unit 50 is thermally connected to the heat storage unit 10. For this reason, in the heat dissipation process, the liquid state reaction medium in the evaporation condensing unit 50 is easily heated and evaporated by the heat transfer from the heat storage unit 10, and the reaction medium can be quickly supplied to the heat storage unit 10.

(第3実施形態)
次に、本発明の第3実施形態について図5を用いて説明する。図5は、本実施形態における蓄熱装置3の構成を模式的に示している。図5に示すように、本実施形態の蓄熱装置3は、第2実施形態の蓄熱装置2と比較して、蓄熱部10から蒸発凝縮部50に積極的に伝熱するための伝熱フィン53が設けられている点に特徴を有している。
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 5 schematically shows the configuration of the heat storage device 3 in the present embodiment. As shown in FIG. 5, the heat storage device 3 of the present embodiment has a heat transfer fin 53 for actively transferring heat from the heat storage unit 10 to the evaporation condensing unit 50 as compared with the heat storage device 2 of the second embodiment. It is characterized in that is provided.

伝熱フィン53は、蓄熱部10と蒸発凝縮部50との間の隔壁において、例えば蓄熱部10側及び蒸発凝縮部50側の双方に突出して形成されている。また伝熱フィン53は、蒸発凝縮部50の下部側(液側)に集中して設けられており、例えば、常温時における反応媒体の液面よりも下方のみに設けられている。   The heat transfer fins 53 are formed so as to protrude from both the heat storage unit 10 side and the evaporation condensation unit 50 side, for example, in the partition wall between the heat storage unit 10 and the evaporation condensation unit 50. The heat transfer fins 53 are concentrated on the lower side (liquid side) of the evaporating and condensing unit 50, and are provided only below the liquid level of the reaction medium at normal temperature, for example.

本実施形態によれば、放熱過程において、蒸発凝縮部50内の液状態の反応媒体に対し、蓄熱部10で生じる反応熱の一部を積極的に伝熱させることができる。このため、反応媒体の温度が低く反応性が低いときにも、反応熱の一部を補助熱源として反応媒体を加熱することができる。したがって、反応媒体が蒸発し易くなり、蓄熱部10に反応媒体を速やかに供給できるため、化学蓄熱剤11の発熱反応を促進することができる。   According to the present embodiment, part of the reaction heat generated in the heat storage unit 10 can be positively transferred to the liquid reaction medium in the evaporation condensing unit 50 in the heat dissipation process. For this reason, even when the temperature of the reaction medium is low and the reactivity is low, the reaction medium can be heated using a part of the reaction heat as an auxiliary heat source. Therefore, the reaction medium is easily evaporated, and the reaction medium can be quickly supplied to the heat storage unit 10, so that the exothermic reaction of the chemical heat storage agent 11 can be promoted.

また本実施形態では、伝熱フィン53が蒸発凝縮部50の下部側に集中して設けられているため、蓄熱部10から蒸発凝縮部50内の液状態の反応媒体に対し効果的に伝熱させることができる。   In the present embodiment, since the heat transfer fins 53 are concentrated on the lower side of the evaporating and condensing unit 50, heat transfer is effectively performed from the heat storage unit 10 to the liquid reaction medium in the evaporating and condensing unit 50. Can be made.

本実施形態は、反応媒体の気化熱として蓄熱部10から奪われる熱量よりも、気化した反応媒体と化学蓄熱剤11との反応によって蓄熱部10で生成される熱量の方が大きいときに有効である。このため、化学蓄熱剤11と反応媒体との反応熱が反応媒体の気化熱よりも大きいという条件を満たすことが望ましい。この条件は、化学蓄熱剤11としてCaOやMgO等の金属酸化物を用い、反応媒体として水を用いた場合には少なくとも満たされる。   This embodiment is effective when the amount of heat generated in the heat storage unit 10 by the reaction between the vaporized reaction medium and the chemical heat storage agent 11 is larger than the amount of heat taken from the heat storage unit 10 as the heat of vaporization of the reaction medium. is there. For this reason, it is desirable to satisfy the condition that the reaction heat between the chemical heat storage agent 11 and the reaction medium is larger than the heat of vaporization of the reaction medium. This condition is satisfied at least when a metal oxide such as CaO or MgO is used as the chemical heat storage agent 11 and water is used as the reaction medium.

(第4実施形態)
次に、本発明の第4実施形態について図6を用いて説明する。図6は、本実施形態における蓄熱装置4の構成を模式的に示している。図6に示すように、本実施形態の蓄熱装置4は、排気の流れ方向において蓄熱部12と熱輸送部35とが交互に積層配置されている点に特徴を有している。
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 6 schematically shows the configuration of the heat storage device 4 in the present embodiment. As shown in FIG. 6, the heat storage device 4 of the present embodiment is characterized in that the heat storage units 12 and the heat transport units 35 are alternately stacked in the exhaust flow direction.

各蓄熱部12は、それぞれ排気の流れ方向に略垂直な面内に広がる平板状の内部空間を備えた容器体である。各蓄熱部12の内部空間同士は、上方に設けられた連通部13を介して互いに連通している。蓄熱部12の内部空間には、粒子状の化学蓄熱剤11(図6では図示せず)が充填されている。また、各熱輸送部35は、互いに隣り合う蓄熱部12の間に、両蓄熱部12と伝熱可能に形成されている。熱輸送部35の内部空間同士は、上方に設けられた連通部36と下方に設けられた連通部37とを介して互いに連通している。蓄熱部12及び熱輸送部35は、積層型熱交換器のような構造を有している。   Each heat storage part 12 is a container body provided with a flat internal space that extends in a plane substantially perpendicular to the flow direction of exhaust gas. The internal spaces of the heat storage units 12 communicate with each other via a communication unit 13 provided above. The internal space of the heat storage unit 12 is filled with a particulate chemical heat storage agent 11 (not shown in FIG. 6). Moreover, each heat transport part 35 is formed between the two heat storage parts 12 between the heat storage parts 12 adjacent to each other. The internal spaces of the heat transporting part 35 communicate with each other via a communicating part 36 provided above and a communicating part 37 provided below. The heat storage unit 12 and the heat transport unit 35 have a structure like a stacked heat exchanger.

図示していないが、蓄熱装置4の内部には、全ての蓄熱部12及び熱輸送部35を貫いて形成され、排気通路110の一部を構成する配管が設けられている。配管内の排気の流路は、蓄熱部12及び熱輸送部35の各内部空間に対し空間的には隔離されているが、配管内を流れる排気と蓄熱部12及び熱輸送部35との間の伝熱は可能になっている。   Although not shown in the figure, inside the heat storage device 4, a pipe that is formed through all the heat storage units 12 and the heat transport unit 35 and constitutes a part of the exhaust passage 110 is provided. The flow path of the exhaust in the pipe is spatially isolated from the internal spaces of the heat storage unit 12 and the heat transport unit 35, but between the exhaust flowing in the pipe and the heat storage unit 12 and the heat transport unit 35. Heat transfer is possible.

本実施形態によれば、蓄熱部12と熱輸送部35との間の伝熱面積を増加させることができるため、蓄熱部12と熱輸送部35との間の熱移動を促進できる。   According to this embodiment, since the heat transfer area between the heat storage part 12 and the heat transport part 35 can be increased, the heat transfer between the heat storage part 12 and the heat transport part 35 can be promoted.

(その他の実施形態)
上記実施形態では、筒状の内部空間形状を有し、蓄熱部10及び熱輸送部30の外周面の全周を囲むように配置された熱回収部40を例に挙げたが、熱回収部40は断面C字状の内部空間形状を有し、蓄熱部10及び熱輸送部30の外周面の一部を囲むように配置してもよい。
(Other embodiments)
In the said embodiment, although the heat recovery part 40 which has a cylindrical internal space shape and was arrange | positioned so that the perimeter of the outer peripheral surface of the thermal storage part 10 and the heat transport part 30 might be enclosed was mentioned as an example, a heat recovery part 40 has an internal space shape with a C-shaped cross section, and may be disposed so as to surround a part of the outer peripheral surface of the heat storage unit 10 and the heat transport unit 30.

また上記実施形態では、蓄熱部10及び熱輸送部30が円柱状の形状を有する例を挙げたが、蓄熱部10及び熱輸送部30は角柱状等の他の形状を有していてもよい。   Moreover, although the heat storage part 10 and the heat transport part 30 gave the example which has a cylindrical shape in the said embodiment, the heat storage part 10 and the heat transport part 30 may have other shapes, such as prismatic shape. .

さらに上記実施形態では、金属酸化物が充填された蓄熱部10、12を備えた蓄熱装置を例に挙げたが、蓄熱装置は、排気熱を用いた蓄熱が可能であれば他の化学蓄熱剤が充填された蓄熱部を備えていてもよいし、顕熱蓄熱や潜熱蓄熱を利用する蓄熱部を備えていてもよい。   Furthermore, in the said embodiment, although the heat storage apparatus provided with the heat storage part 10 and 12 with which the metal oxide was filled was mentioned as an example, if the heat storage apparatus can store heat using exhaust heat, it will be another chemical heat storage agent. May be provided, or a heat storage part using sensible heat storage or latent heat storage may be provided.

また上記実施形態では、還流路32に電動式のバルブ33が設けられた例を挙げたが、バルブ33は、ヒートパイプ装置の内圧によって作動し、内圧上昇時に閉弁状態となって熱輸送媒体の還流を阻止するダイヤフラム式の内圧作動弁であってもよい。   In the above embodiment, an example in which an electric valve 33 is provided in the reflux path 32 has been described. However, the valve 33 is operated by the internal pressure of the heat pipe device, and is closed when the internal pressure is increased. It may be a diaphragm type internal pressure operation valve that prevents the recirculation of the gas.

さらに上記実施形態では、加熱対象としてエンジン100の冷却水を例に挙げたが、エンジンオイル、触媒又はエンジン100の吸気等を加熱対象としてもよい。   Furthermore, in the above-described embodiment, the cooling water of the engine 100 is taken as an example of the heating target.

また上記第4実施形態では、排気の流れ方向において蓄熱部12及び熱輸送部35が交互に積層された例を挙げたが、蓄熱部12及び熱輸送部35を排気流れ方向に略垂直な水平方向に積層してもよい。この場合、例えば蓄熱部12、熱輸送部35及び排気流路を交互に積層するようにすれば、蓄熱部12及び熱輸送部35を貫いて排気を流通させる配管を省略できるため、蓄熱装置の構成が簡略化する。   In the fourth embodiment, the heat storage unit 12 and the heat transport unit 35 are alternately stacked in the exhaust flow direction. However, the heat storage unit 12 and the heat transport unit 35 are arranged in a horizontal direction substantially perpendicular to the exhaust flow direction. You may laminate in the direction. In this case, for example, if the heat storage section 12, the heat transport section 35, and the exhaust flow path are alternately stacked, the piping through which the exhaust gas passes through the heat storage section 12 and the heat transport section 35 can be omitted. The configuration is simplified.

さらに上記実施形態では、水冷式のエンジン100を備えた車両に搭載された車両用蓄熱装置を例に挙げたが、本発明の蓄熱装置は、空冷式のエンジンを備えた車両や、あるいは車両以外にも適用可能である。   Furthermore, in the said embodiment, although the vehicle thermal storage apparatus mounted in the vehicle provided with the water cooling type engine 100 was mentioned as an example, the thermal storage apparatus of this invention is a vehicle provided with the air cooling type engine, or other than a vehicle It is also applicable to.

第1実施形態における蓄熱装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the thermal storage apparatus in 1st Embodiment. 第1実施形態における蓄熱装置の熱輸送部近傍を排気流通方向に垂直に切断した断面構成を模式的に示す図である。It is a figure which shows typically the cross-sectional structure which cut | disconnected the heat transport part vicinity of the thermal storage apparatus in 1st Embodiment perpendicularly | vertically to the exhaust distribution direction. 第2実施形態における蓄熱装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the heat storage apparatus in 2nd Embodiment. 第2実施形態における蓄熱装置の蒸発凝縮部近傍を排気流通方向に垂直に切断した断面構成を模式的に示す図である。It is a figure which shows typically the cross-sectional structure which cut | disconnected the evaporation condensation part vicinity of the thermal storage apparatus in 2nd Embodiment perpendicularly | vertically with respect to the exhaust distribution direction. 第3実施形態における蓄熱装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the heat storage apparatus in 3rd Embodiment. 第4実施形態における蓄熱装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the heat storage apparatus in 4th Embodiment.

符号の説明Explanation of symbols

1、2、3、4 蓄熱装置
10、12 蓄熱部
11 化学蓄熱剤
20、50 蒸発凝縮部
30、35 熱輸送部
31 蒸気流路
32 還流路
40 熱回収部
41 熱回収熱交換器
53 伝熱フィン
100 エンジン(内燃機関)
110 排気通路
1, 2, 3, 4 Heat storage device 10, 12 Heat storage unit 11 Chemical heat storage agent 20, 50 Evaporation condensing unit 30, 35 Heat transport unit 31 Steam channel 32 Recirculation channel 40 Heat recovery unit 41 Heat recovery heat exchanger 53 Heat transfer Fin 100 engine (internal combustion engine)
110 Exhaust passage

Claims (7)

内燃機関(100)の排気を外部に排出する排気通路(110)に設けられ、前記排気の熱を用いて蓄熱する蓄熱部(10)と、
前記排気通路(110)に設けられるとともに前記蓄熱部(10)に熱的に接続され、前記排気又は前記蓄熱部(10)からの伝熱により内部に封入された熱輸送媒体を蒸発させる熱輸送部(30)と、
前記熱輸送部(30)で蒸発した前記熱輸送媒体との熱交換により加熱対象を加熱するとともに、前記熱輸送媒体を凝縮させて前記熱輸送部(30)に戻す熱回収部(40)とを有し、
前記熱回収部(40)は、前記蓄熱部(10)及び前記熱輸送部(30)の周囲を囲むように配置されていることを特徴とする蓄熱装置。
A heat storage section (10) that is provided in an exhaust passage (110) that discharges the exhaust of the internal combustion engine (100) to the outside and stores heat using the heat of the exhaust;
Heat transport that is provided in the exhaust passage (110) and is thermally connected to the heat storage section (10) and evaporates a heat transport medium enclosed therein by heat transfer from the exhaust or the heat storage section (10). Part (30);
A heat recovery unit (40) for heating the object to be heated by heat exchange with the heat transport medium evaporated in the heat transport unit (30), and condensing the heat transport medium and returning it to the heat transport unit (30); Have
The said heat recovery part (40) is arrange | positioned so that the circumference | surroundings of the said heat storage part (10) and the said heat transport part (30) may be enclosed, The heat storage apparatus characterized by the above-mentioned.
前記熱回収部(40)は、前記蓄熱部(10)及び前記熱輸送部(30)の全周を囲む筒状の形状を有していることを特徴とする請求項1に記載の蓄熱装置。   The said heat recovery part (40) has a cylindrical shape surrounding the perimeter of the said heat storage part (10) and the said heat transport part (30), The heat storage apparatus of Claim 1 characterized by the above-mentioned. . 前記蓄熱部(10)は、発熱/吸熱反応が可逆的に行われる化学蓄熱剤(11)が充填された構造を有しており、
前記発熱/吸熱反応に用いられる反応媒体を収容し、蒸発した前記反応媒体を前記蓄熱部(10)に送るとともに、前記蓄熱部(10)から流入した前記反応媒体を凝縮させる蒸発凝縮部(50)をさらに有し、
前記蒸発凝縮部(50)は、前記蓄熱部(10)及び前記熱輸送部(30)の周囲を前記熱回収部(40)と共同して囲むように配置されていることを特徴とする請求項1又は2に記載の蓄熱装置。
The heat storage part (10) has a structure filled with a chemical heat storage agent (11) in which an exothermic / endothermic reaction is performed reversibly,
An evaporation condensing unit (50) that contains a reaction medium used for the exothermic / endothermic reaction, sends the evaporated reaction medium to the heat storage unit (10), and condenses the reaction medium flowing in from the heat storage unit (10). )
The said evaporative condensation part (50) is arrange | positioned so that the circumference | surroundings of the said thermal storage part (10) and the said heat transport part (30) may be enclosed together with the said heat recovery part (40). Item 3. A heat storage device according to item 1 or 2.
前記蒸発凝縮部(50)及び前記蓄熱部(10)は、互いに熱的に接続されていることを特徴とする請求項3に記載の蓄熱装置。   The heat storage device according to claim 3, wherein the evaporative condensing unit (50) and the heat storage unit (10) are thermally connected to each other. 前記蒸発凝縮部(50)と前記蓄熱部(10)との間の伝熱を促進する伝熱フィン(53)をさらに有することを特徴とする請求項4に記載の蓄熱装置。   The heat storage device according to claim 4, further comprising a heat transfer fin (53) that promotes heat transfer between the evaporative condensation unit (50) and the heat storage unit (10). 前記伝熱フィン(53)は、前記蒸発凝縮部(50)の下部側に設けられていることを特徴とする請求項5に記載の蓄熱装置。   The said heat-transfer fin (53) is provided in the lower part side of the said evaporative condensation part (50), The heat storage apparatus of Claim 5 characterized by the above-mentioned. 前記蓄熱部(12)と前記熱輸送部(35)とが交互に積層配置されていることを特徴とする請求項1乃至6のいずれか1項に記載の蓄熱装置。   The heat storage device according to any one of claims 1 to 6, wherein the heat storage unit (12) and the heat transport unit (35) are alternately stacked.
JP2008292594A 2008-11-14 2008-11-14 Heat storage device Active JP4957707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008292594A JP4957707B2 (en) 2008-11-14 2008-11-14 Heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008292594A JP4957707B2 (en) 2008-11-14 2008-11-14 Heat storage device

Publications (2)

Publication Number Publication Date
JP2010116911A true JP2010116911A (en) 2010-05-27
JP4957707B2 JP4957707B2 (en) 2012-06-20

Family

ID=42304720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008292594A Active JP4957707B2 (en) 2008-11-14 2008-11-14 Heat storage device

Country Status (1)

Country Link
JP (1) JP4957707B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012215324A (en) * 2011-03-31 2012-11-08 Toyota Central R&D Labs Inc Chemical heat accumulator
KR101316234B1 (en) 2011-09-29 2013-10-08 현대자동차주식회사 Rapid Heating Apparatus for Internal Combustion Engine and the Control Method thereof
JP2014105926A (en) * 2012-11-27 2014-06-09 Tokyo Gas Co Ltd Heat output method and heat output system
EP2525052A3 (en) * 2011-05-18 2014-06-18 Eberspächer Exhaust Technology GmbH & Co. KG Heat recovery unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175526A (en) * 1985-01-29 1986-08-07 Aisin Seiki Co Ltd Liquid helium level meter
JPS61178057A (en) * 1985-02-05 1986-08-09 Kobe Steel Ltd Robot apparatus for painting car body
JPS62123A (en) * 1985-03-18 1987-01-06 Nec Corp Pulse width conversion circuit
JPH01267346A (en) * 1988-04-15 1989-10-25 Mitsubishi Electric Corp Chemical heat accumulator for automobile
JPH0550841A (en) * 1991-08-16 1993-03-02 Ntc Kogyo Kk Heat accumulating method and device for instantaneously heating automobile cabin
JP2007127403A (en) * 2005-10-07 2007-05-24 Equos Research Co Ltd Vehicle waste heat utilization system and vehicle exhaust heat utilization method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175526A (en) * 1985-01-29 1986-08-07 Aisin Seiki Co Ltd Liquid helium level meter
JPS61178057A (en) * 1985-02-05 1986-08-09 Kobe Steel Ltd Robot apparatus for painting car body
JPS62123A (en) * 1985-03-18 1987-01-06 Nec Corp Pulse width conversion circuit
JPH01267346A (en) * 1988-04-15 1989-10-25 Mitsubishi Electric Corp Chemical heat accumulator for automobile
JPH0550841A (en) * 1991-08-16 1993-03-02 Ntc Kogyo Kk Heat accumulating method and device for instantaneously heating automobile cabin
JP2007127403A (en) * 2005-10-07 2007-05-24 Equos Research Co Ltd Vehicle waste heat utilization system and vehicle exhaust heat utilization method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012215324A (en) * 2011-03-31 2012-11-08 Toyota Central R&D Labs Inc Chemical heat accumulator
EP2525052A3 (en) * 2011-05-18 2014-06-18 Eberspächer Exhaust Technology GmbH & Co. KG Heat recovery unit
US9494055B2 (en) 2011-05-18 2016-11-15 Eberspaecher Exhaust Technology Gmbh & Co. Kg Exhaust heat utilisation device
KR101316234B1 (en) 2011-09-29 2013-10-08 현대자동차주식회사 Rapid Heating Apparatus for Internal Combustion Engine and the Control Method thereof
JP2014105926A (en) * 2012-11-27 2014-06-09 Tokyo Gas Co Ltd Heat output method and heat output system

Also Published As

Publication number Publication date
JP4957707B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP4375454B2 (en) Waste heat recovery device
JP5040891B2 (en) Vehicle heat storage device
JP5397327B2 (en) Chemical heat storage device
JP5576425B2 (en) Loop thermosyphon emergency cooling system
JP2007278623A (en) Exhaust heat recovery system
JP2003322457A (en) Dewfall preventing device of refrigerator
JP4957707B2 (en) Heat storage device
JP5531334B2 (en) Chemical heat pump container
JP4661839B2 (en) Exhaust heat recovery unit
JP2006313056A (en) Heat pipe, and exhaust heat recovery system using the same
JP5511494B2 (en) Chemical heat storage system for vehicles
JP2010249424A (en) Exhaust heat recovery device
JP2007332857A (en) Exhaust heat recovery equipment
JP2007134519A (en) Exhaust heat recovery utilization system
KR101374751B1 (en) Passive decay heat removal system using organoic fluid, method of driving heat removal system
JP2009074494A (en) Exhaust heat recovery device
JP5934052B2 (en) Rankine cycle system
JP4889528B2 (en) Chemical heat pump and heat utilization system using the same
JP2009250107A (en) Exhaust heat recovery system
JP2002071090A (en) Oil tank equipped with cooler for minimum flow
JP2008255945A (en) Warming up device for engine
JP3689761B2 (en) Cooling system
JP2009036103A (en) Exhaust heat recovery device
JP5668713B2 (en) Heat recovery equipment
JP2009058205A (en) Exhaust heat recovery device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4957707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250