JP2007332857A - Exhaust heat recovery equipment - Google Patents

Exhaust heat recovery equipment Download PDF

Info

Publication number
JP2007332857A
JP2007332857A JP2006165527A JP2006165527A JP2007332857A JP 2007332857 A JP2007332857 A JP 2007332857A JP 2006165527 A JP2006165527 A JP 2006165527A JP 2006165527 A JP2006165527 A JP 2006165527A JP 2007332857 A JP2007332857 A JP 2007332857A
Authority
JP
Japan
Prior art keywords
heat
casing
working fluid
evaporation
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006165527A
Other languages
Japanese (ja)
Inventor
Masashi Miyagawa
雅志 宮川
Kenshiro Muramatsu
憲志郎 村松
Yasutoshi Yamanaka
保利 山中
Kimikazu Obara
公和 小原
Seiji Inoue
誠司 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006165527A priority Critical patent/JP2007332857A/en
Publication of JP2007332857A publication Critical patent/JP2007332857A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities

Abstract

<P>PROBLEM TO BE SOLVED: To provide exhaust heat recovery equipment with a simplified structure capable of relieving thermal stress. <P>SOLUTION: The exhaust heat recovery equipment includes an evaporation section 1 disposed in a first casing 100 through which exhaust gas discharged from an engine flows so as to exchange heat between the exhaust gas and a working fluid filled in the evaporation section 1, and a condensation section 2 disposed in a second casing 200 through which cooling water of the engine flows so as to exchange heat between the working fluid and the cooling water. The first casing 100 and the second casing 200 are arranged adjacently to each other. The evaporation section 1 and the condensation section 2 are connected to each other in a communicatable manner so that the working fluid circulates through the evaporation section 1 and the condensation section 2. Heat transfer fins 8 that partially make contact with the first casing 100 and the second casing 200 are provided between the two casings 100 and 200. As a result, heat can be transferred between the first casing 100 and the second casing 200 via the heat transfer fins 8. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車等の車両に用いられる排気熱回収器に関する。   The present invention relates to an exhaust heat recovery device used for a vehicle such as an automobile.

近年、ヒートパイプの原理を利用して車両のエンジンの排気系から排気ガスの排気熱を回収して、この排気熱を暖機促進等に利用する技術が知られている。   2. Description of the Related Art In recent years, a technology is known in which exhaust heat of exhaust gas is recovered from an exhaust system of a vehicle engine using the principle of a heat pipe, and this exhaust heat is used for promoting warm-up.

このような排気熱回収器は、エンジンの排気管内にヒートパイプの蒸発部を配設するとともに、エンジンの冷却水経路内にヒートパイプの凝縮部を配設し、排気ガスの排気熱によって冷却水を加熱している(例えば、特許文献1参照)。   In such an exhaust heat recovery device, a heat pipe evaporating part is arranged in the exhaust pipe of the engine, and a heat pipe condensing part is arranged in the engine cooling water path so that the cooling water is cooled by the exhaust heat of the exhaust gas. Is heated (see, for example, Patent Document 1).

また、ヒートパイプの原理を利用した熱交換器として、ループ型ヒートパイプ式熱交換器が提案されている(例えば、特許文献2参照)。これは、閉ループを形成する密閉された循環経路と、循環経路内に封入され、蒸発および凝縮可能な作動流体と、循環経路に配設され、外部からの入熱により作動流体を蒸発させる蒸発部と、循環経路の蒸発部より高い位置に配設され、蒸発部で蒸発した作動流体と外部からの被伝熱流体との間で熱交換を行う凝縮部とを有するものである。
特開昭62−268722号公報 特開平4−45393号公報
Further, as a heat exchanger using the heat pipe principle, a loop heat pipe type heat exchanger has been proposed (see, for example, Patent Document 2). This includes a closed circulation path that forms a closed loop, a working fluid enclosed in the circulation path that can be evaporated and condensed, and an evaporation unit that is disposed in the circulation path and evaporates the working fluid by heat input from the outside. And a condensing part that is disposed at a position higher than the evaporation part of the circulation path and exchanges heat between the working fluid evaporated in the evaporation part and the heat transfer fluid from the outside.
Japanese Patent Laid-Open No. 62-268722 JP-A-4-45393

車両への搭載性に有利な、簡素でコンパクトな構造の排気熱回収器を提供しようとする場合、蒸発部と凝縮部を一体に構成する事が望ましい。一例を示すと、図6に示すような、熱交換部である蒸発部J1と凝縮部J2を水平方向に隣接して配置し、蒸発部J1および凝縮部J2のヒートパイプJ3の鉛直方向両端部をそれぞれ連通させるヘッダ(連通部)J5を持つような構成が考えられる。   In order to provide an exhaust heat recovery device having a simple and compact structure that is advantageous for mounting on a vehicle, it is desirable that the evaporation unit and the condensing unit are configured integrally. As an example, as shown in FIG. 6, the evaporation section J1 and the condensation section J2 that are heat exchange sections are disposed adjacent to each other in the horizontal direction, and both ends in the vertical direction of the heat pipe J3 of the evaporation section J1 and the condensation section J2. A configuration having a header (communication portion) J5 for communicating with each other is conceivable.

しかしながら、このような排気熱回収器において、排気ガスが流通するために高温になりやすい蒸発部と、エンジンの冷却水が流通するために比較的低温になりやすい凝縮部との間に温度差が生じるため、熱膨張差により蒸発部と凝縮部とを連結する連結部に熱応力が生じるという問題がある。   However, in such an exhaust heat recovery device, there is a temperature difference between an evaporation section that tends to be hot because exhaust gas flows and a condensation section that tends to be relatively cold because engine coolant flows. Therefore, there is a problem that thermal stress is generated in the connecting portion that connects the evaporation portion and the condensing portion due to a difference in thermal expansion.

ところで、排気熱回収器は、例えば冬季の始動時等には、排気熱を回収することで早期に冷却水温度を上昇させることができるため、燃費や暖房性能を向上させることができる。一方、夏季のエンジン高負荷時等には、オーバーヒートを回避するために排気熱の回収を停止する必要がある。このため、排気熱回収器に、作動流体の循環を停止させる弁機構を設けることが望ましい。   By the way, the exhaust heat recovery device can raise the cooling water temperature at an early stage by recovering the exhaust heat at the start of winter, for example, so that the fuel consumption and the heating performance can be improved. On the other hand, when the engine is heavily loaded in summer, it is necessary to stop the recovery of exhaust heat in order to avoid overheating. For this reason, it is desirable to provide the exhaust heat recovery device with a valve mechanism that stops the circulation of the working fluid.

このような弁機構を備える排気熱回収器において、弁機構が閉じ、作動流体の還流が停止すると、作動流体は凝縮部に貯留されて排気熱回収が行われないので、蒸発部の温度は排気ガス温度と同じ位(300〜800℃)になる。このため、蒸発部と凝縮部(110℃以下)に多大な温度差が生じるので、熱膨張差により蒸発部と凝縮部とを連結する連結部に大きな熱応力が生じる。したがって、特に弁機構を備える排気熱回収器において、蒸発部と凝縮部の温度差に基づく熱応力が大きな問題となる。   In the exhaust heat recovery device having such a valve mechanism, when the valve mechanism is closed and the reflux of the working fluid is stopped, the working fluid is stored in the condensing unit and exhaust heat recovery is not performed. It becomes as much as the gas temperature (300 to 800 ° C.). For this reason, since a large temperature difference arises in an evaporation part and a condensation part (110 degrees C or less), a big thermal stress arises in the connection part which connects an evaporation part and a condensation part by a thermal expansion difference. Therefore, particularly in an exhaust heat recovery device having a valve mechanism, thermal stress based on the temperature difference between the evaporation section and the condensation section becomes a serious problem.

これに対し、蒸発部と凝縮部とを連結する連結部に、ベローズのような弾性変形可能な部材を用いることが考えられるが、構造が複雑になるため、製造コストが増加してしまうという問題がある。   On the other hand, it is conceivable to use an elastically deformable member such as a bellows for the connecting part that connects the evaporation part and the condensing part. However, the structure becomes complicated and the manufacturing cost increases. There is.

本発明は、上記点に鑑み、簡易な構造で熱応力を緩和することができる排気熱回収器を提供することを目的とする。   In view of the above points, an object of the present invention is to provide an exhaust heat recovery device that can relieve thermal stress with a simple structure.

上記目的を達成するため、本発明では、エンジンから排出された排気ガスが流通する第1の筐体(100)内に配置され、排気ガスと内部に封入された作動流体との間で熱交換を行う第1の熱交換部(1)と、エンジンの冷却水が流通する第2の筐体(200)内に配置され、作動流体と冷却水との間で熱交換を行う第2の熱交換部(2)とを備え、第1の筐体(100)と第2の筐体(200)は、隣接するように配置されており、第1の熱交換部(1)と第2の熱交換部(2)は連通状態に接続され、作動流体が第1の熱交換部(1)と第2の熱交換部(2)を循環するように構成されており、第1の筐体(100)と第2の筐体(200)との間には、2つの筐体(100、200)それぞれを部分的に接触させる伝熱部材(8)が配設されており、伝熱部材(8)を介して第1の筐体(100)と第2の筐体(200)とが熱伝達可能となっていることを第1の特徴としている。   In order to achieve the above object, according to the present invention, heat is exchanged between the exhaust gas and the working fluid enclosed in the first casing (100) through which the exhaust gas discharged from the engine flows. The first heat exchanging part (1) for performing the heat and the second heat (200) disposed in the second casing (200) through which the engine coolant flows, and exchanging heat between the working fluid and the coolant. The first casing (100) and the second casing (200) are arranged so as to be adjacent to each other, and the first heat exchanging section (1) and the second casing (2) are provided. The heat exchanging part (2) is connected in a communicating state, and is configured such that the working fluid circulates through the first heat exchanging part (1) and the second heat exchanging part (2). Between the (100) and the second casing (200), there is a heat transfer member (8) that partially contacts each of the two casings (100, 200). It is, and the first feature that it is the first casing via the heat transfer member (8) and (100) and second housing (200) are heat transferable.

これにより、排気ガスが流通するために高温になりやすい第1の筐体(100)と、エンジンの冷却水が流通するために比較的低温になりやすい第2の筐体(200)との間の温度差を低減することができる。このため、熱膨張差により連結部(6)に大きな熱応力が生じることを抑制できる。このとき、連結部(6)をベローズのような弾性構造にする必要がないため、簡易な構造で熱応力を緩和することが可能となる。   As a result, between the first casing (100) that tends to become high temperature because exhaust gas flows and the second casing (200) that tends to become relatively low temperature because cooling water of the engine flows. The temperature difference can be reduced. For this reason, it can suppress that a big thermal stress arises in a connection part (6) by a thermal expansion difference. At this time, since it is not necessary to make the connecting portion (6) an elastic structure such as a bellows, it is possible to relieve thermal stress with a simple structure.

また、本発明では、伝熱部材(8)は、第1の筐体(100)と第2の筐体(200)の配置方向において複数に分割されており、分割された伝熱部材(8)間には、隣り合う伝熱部材(8)と熱伝達可能な伝熱中継部材(80)が配設されていることを第2の特徴としている。   Moreover, in this invention, the heat-transfer member (8) is divided | segmented into plurality in the arrangement direction of the 1st housing | casing (100) and the 2nd housing | casing (200), and divided | segmented heat-transfer member (8) ) Between the adjacent heat transfer members (8) and the heat transfer relay member (80) capable of transferring heat is a second feature.

これにより、伝熱中継部材(80)の板面において温度分布を均一とすることができるため、第1の筐体(100)および第2の筐体(200)間の熱伝達を、2つの筐体(100、200)の配置方向と直交する面全域において均一にすることが可能となる。   Thereby, since the temperature distribution can be made uniform on the plate surface of the heat transfer relay member (80), heat transfer between the first casing (100) and the second casing (200) can be performed in two ways. It becomes possible to make uniform in the whole surface orthogonal to the arrangement direction of the housings (100, 200).

また、第1の筐体(100)と第2の筐体(200)との温度差が大きすぎると、1つの伝熱部材(8)では2つの筐体(100、200)間の温度差を吸収しきれない場合がある。このとき、伝熱部材(8)を多段階に分割することで、大きな温度差を吸収することが可能となる。   Further, if the temperature difference between the first casing (100) and the second casing (200) is too large, the temperature difference between the two casings (100, 200) in one heat transfer member (8). May not be absorbed. At this time, a large temperature difference can be absorbed by dividing the heat transfer member (8) into multiple stages.

また、上記第1および第2の特徴において、作動流体を、蒸発および凝縮可能な流体とし、第1の熱交換部に、排気ガスと内部に封入された作動流体との間で熱交換を行い、作動流体を蒸発させる蒸発部(1)を設け、第2の熱交換部に、蒸発部(1)で蒸発した作動流体と冷却水との間で熱交換を行い、作動流体を凝縮させる凝縮部(2)を設け、蒸発部(1)で蒸発して凝縮部(2)に流出した作動流体が、凝縮部(2)で凝縮して蒸発部(1)に還流するように構成してもよい。   In the first and second features, the working fluid is a fluid that can be evaporated and condensed, and heat exchange is performed between the exhaust gas and the working fluid enclosed therein in the first heat exchange section. The evaporation section (1) for evaporating the working fluid is provided, and the second heat exchange section performs heat exchange between the working fluid evaporated in the evaporation section (1) and the cooling water to condense the working fluid. (2) is provided, and the working fluid evaporated in the evaporator (1) and flowing out to the condenser (2) is condensed in the condenser (2) and returned to the evaporator (1). Also good.

また、蒸発部(1)に蒸発側ヒートパイプ(3a)を設け、凝縮部(2)に凝縮側ヒートパイプ(3b)を設け、蒸発側ヒートパイプ(3a)から凝縮側ヒートパイプ(3b)に流れる作動流体が通過する第1の連結部(61)と、凝縮側ヒートパイプ(3b)から蒸発側ヒートパイプ(3a)に流れる作動流体が通過する第2の連結部(62)と、凝縮側ヒートパイプ(3b)から蒸発側ヒートパイプ(3a)への作動流体の流れを制御する還流制御手段(7)とを設けてもよい。   Further, the evaporation part (1) is provided with an evaporation side heat pipe (3a), the condensation part (2) is provided with a condensation side heat pipe (3b), and the evaporation side heat pipe (3a) is connected to the condensation side heat pipe (3b). A first connection part (61) through which the flowing working fluid passes, a second connection part (62) through which the working fluid flowing from the condensation side heat pipe (3b) to the evaporation side heat pipe (3a) passes, and a condensation side A reflux control means (7) for controlling the flow of the working fluid from the heat pipe (3b) to the evaporation side heat pipe (3a) may be provided.

このとき、還流制御手段(7)により作動流体の還流を停止させると、蒸発部(1)の温度は排気ガス温度と同程度の高温となり、蒸発部(1)と凝縮部(2)に大きな温度差が生じるので、特に効果がある。   At this time, when the recirculation of the working fluid is stopped by the recirculation control means (7), the temperature of the evaporation section (1) becomes as high as the exhaust gas temperature, which is large in the evaporation section (1) and the condensing section (2). This is particularly effective because of the temperature difference.

また、内部に前記作動流体が封入されるヒートパイプ(3c)を設け、ヒートパイプ(3c)を、第1の筐体(100)と第2の筐体(200)をまたがるように配置し、ヒートパイプ(3c)の長手方向の一端側を蒸発部(1)として構成し、他端側を凝縮部(2)として構成してもよい。   Also, a heat pipe (3c) in which the working fluid is enclosed is provided, and the heat pipe (3c) is disposed so as to straddle the first casing (100) and the second casing (200), One end side in the longitudinal direction of the heat pipe (3c) may be configured as the evaporation section (1), and the other end side may be configured as the condensation section (2).

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

(第1実施形態)
以下、本発明の第1実施形態について図1に基づいて説明する。本実施形態の排気熱回収器は、車両のエンジンの排気系から排気ガスの排気熱を回収して、この排気熱を暖機促進等に利用するものである。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIG. The exhaust heat recovery device of the present embodiment recovers exhaust heat of exhaust gas from an exhaust system of a vehicle engine and uses this exhaust heat for promoting warm-up.

図1は、本第1実施形態に係る排気熱回収器を示す断面図である。図1に示すように、本実施形態の排気熱回収器は、蒸発部1と凝縮部2とを備えている。   FIG. 1 is a cross-sectional view showing an exhaust heat recovery device according to the first embodiment. As shown in FIG. 1, the exhaust heat recovery device of the present embodiment includes an evaporation unit 1 and a condensing unit 2.

蒸発部1は、図示しないエンジンの排気筒内に配置される第1の筐体100内に設けられている。また、蒸発部1は、排気ガスと後述する作動流体との間で熱交換を行い、作動流体を蒸発させるようになっている。   The evaporation unit 1 is provided in a first housing 100 that is disposed in an exhaust pipe of an engine (not shown). Further, the evaporating unit 1 performs heat exchange between the exhaust gas and a working fluid described later to evaporate the working fluid.

凝縮部2は、排気筒の外部に設けられており、図示しないエンジンの冷却水経路内に配置される第2の筐体200内に設けられている。また、凝縮部2は、蒸発部1で蒸発した伝熱流体とエンジン冷却水との間で熱交換を行い、作動流体を凝縮させるようになっている。第2の筐体200には、エンジンの冷却水出口側に接続される冷却水流入口201と、エンジンの冷却水入口側に接続される冷却水流出口202とが設けられている。   The condensing unit 2 is provided outside the exhaust pipe, and is provided in a second casing 200 that is disposed in a cooling water path of an engine (not shown). Further, the condensing unit 2 performs heat exchange between the heat transfer fluid evaporated in the evaporating unit 1 and the engine coolant to condense the working fluid. The second casing 200 is provided with a cooling water inlet 201 connected to the cooling water outlet side of the engine and a cooling water outlet 202 connected to the cooling water inlet side of the engine.

第1の筐体100と第2の筐体200は、隣接するように配置されている。また、第1の筐体100と第2の筐体200の間には、クリアランスが設けられている。   The first casing 100 and the second casing 200 are arranged so as to be adjacent to each other. A clearance is provided between the first casing 100 and the second casing 200.

次に、蒸発部1の構成について説明する。   Next, the configuration of the evaporation unit 1 will be described.

蒸発部1は、複数本の蒸発側ヒートパイプ3aと、蒸発側ヒートパイプ3aの外表面に接合されたコルゲートフィン4aとを有している。蒸発側ヒートパイプ3aは、排気ガスの流通方向(紙面垂直方向)が長径方向と一致するように扁平状に形成されているとともに、その長手方向が鉛直方向に一致するように複数本平行に配置されている。   The evaporation unit 1 includes a plurality of evaporation side heat pipes 3a and corrugated fins 4a joined to the outer surface of the evaporation side heat pipe 3a. The evaporation side heat pipes 3a are formed in a flat shape so that the exhaust gas flow direction (perpendicular to the plane of the drawing) coincides with the major axis direction, and a plurality of the evaporative heat pipes 3a are arranged in parallel so that the longitudinal direction thereof coincides with the vertical direction. Has been.

蒸発部1において、蒸発側ヒートパイプ3a長手方向両端部には、蒸発側ヒートパイプ3a積層方向に延びて、全ての蒸発側ヒートパイプ3aと連通する蒸発側ヘッダ5aがそれぞれ設けられている。二つの蒸発側ヘッダ5aのうち、排気熱回収器の鉛直方向上端側に配置される蒸発側ヘッダ5aを第1の蒸発側ヘッダ51aといい、鉛直方向下端側に配置される蒸発側ヘッダ5aを第2の蒸発側ヘッダ52aという。   In the evaporating unit 1, evaporating side heat pipes 3a are provided with evaporating side headers 5a that extend in the evaporating side heat pipe 3a stacking direction and communicate with all of the evaporating side heat pipes 3a at both ends in the longitudinal direction. Of the two evaporation side headers 5a, the evaporation side header 5a disposed on the upper end side in the vertical direction of the exhaust heat recovery unit is referred to as a first evaporation side header 51a, and the evaporation side header 5a disposed on the lower end side in the vertical direction. This is referred to as a second evaporation side header 52a.

次に、凝縮部2の構成について説明する。   Next, the configuration of the condensing unit 2 will be described.

凝縮部2は、複数本の凝縮側ヒートパイプ3bを有している。凝縮側ヒートパイプ3bは、エンジン冷却水の流通方向(紙面垂直方向)が長径方向と一致するように扁平状に形成されているとともに、その長手方向が鉛直方向に一致するように複数本平行に配置されている。   The condensing unit 2 has a plurality of condensing side heat pipes 3b. Condensation-side heat pipes 3b are formed in a flat shape so that the flow direction (perpendicular to the plane of the drawing) of the engine cooling water coincides with the major axis direction, and a plurality of the condensing side heat pipes 3b are arranged in parallel so that the longitudinal direction thereof coincides with the vertical direction. Has been placed.

凝縮部2において、凝縮側ヒートパイプ3b長手方向両端部には、凝縮側ヒートパイプ3b積層方向に延びて、全ての凝縮側ヒートパイプ3bと連通する凝縮側ヘッダ5bがそれぞれ設けられている。二つの凝縮側ヘッダ5bのうち、排気熱回収器の鉛直方向上端側に配置される凝縮側ヘッダ5bを第1の凝縮側ヘッダ51bといい、鉛直方向下端側に配置される凝縮側ヘッダ5bを第2の凝縮側ヘッダ52bという。   In the condensing unit 2, condensing side heat pipes 3b are provided with condensing side headers 5b that extend in the stacking direction of the condensing side heat pipes 3b and communicate with all the condensing side heat pipes 3b at both ends in the longitudinal direction. Of the two condensing side headers 5b, the condensing side header 5b disposed on the upper end side in the vertical direction of the exhaust heat recovery device is referred to as a first condensing side header 51b, and the condensing side header 5b disposed on the lower end side in the vertical direction. This is referred to as a second condensing side header 52b.

蒸発側ヘッダ5aと凝縮側ヘッダ5bは、筒状の連結部6を介して連通状態に接続されている。そして、蒸発側、凝縮側ヒートパイプ3a、3b、蒸発側、凝縮側ヘッダ5a、5bおよび連結部6によって閉ループが形成されており、これらの内部に水やアルコール等の蒸発・凝縮可能な作動流体が封入されている。ここで、二つの連結部6のうち、鉛直方向上方側に配置され、第1の蒸発側ヘッダ51aと第1の凝縮側ヘッダ51bとを接続するものを蒸気側連結部(第1の連結部)61といい、鉛直方向下方側に配置され、第2の蒸発側ヘッダ52aと第2の凝縮側ヘッダ52bとを接続するものを還流側連結部(第2の連結部)62という。   The evaporating side header 5a and the condensing side header 5b are connected in a communicating state via a cylindrical connecting portion 6. A closed loop is formed by the evaporation side, the condensation side heat pipes 3a and 3b, the evaporation side, the condensation side headers 5a and 5b, and the connecting portion 6, and a working fluid capable of evaporating and condensing water, alcohol, etc. Is enclosed. Here, of the two connecting portions 6, the one that is disposed on the upper side in the vertical direction and connects the first evaporation side header 51 a and the first condensing side header 51 b is a steam side connecting portion (first connecting portion). ) 61, which is arranged on the lower side in the vertical direction and connects the second evaporation side header 52 a and the second condensing side header 52 b is referred to as a reflux side connection portion (second connection portion) 62.

また、第2の還流側ヘッダ62b内には、弁機構7が配設されている。弁機構7は、凝縮側ヒートパイプ3bと、還流側連結部62とを接続する流路を形成するとともに、蒸発側ヒートパイプ3aの内圧(作動流体の圧力)に応じて流路を開閉するダイアフラム式の開閉手段となっている。具体的には、弁機構7は、通常の開弁状態から、所定の冷却水温において内圧が上昇して第1の所定圧力を超えると閉弁し、逆に内圧が低下して、第1の所定圧力より低い第2の所定圧力を下回ると、再び開弁するように構成されている。なお、弁機構7が、本発明の還流制御手段に相当している。   A valve mechanism 7 is disposed in the second reflux side header 62b. The valve mechanism 7 forms a flow path that connects the condensation side heat pipe 3b and the reflux side connecting portion 62, and opens and closes the flow path according to the internal pressure of the evaporation side heat pipe 3a (pressure of the working fluid). It is an expression opening and closing means. Specifically, the valve mechanism 7 is closed when the internal pressure rises at a predetermined cooling water temperature from a normal valve opening state and exceeds the first predetermined pressure, and conversely, the internal pressure decreases and the first pressure decreases. When the pressure falls below a second predetermined pressure lower than the predetermined pressure, the valve is opened again. The valve mechanism 7 corresponds to the reflux control means of the present invention.

また、第1の筐体100と第2の筐体200との間には、二つの筐体100、200と部分的に接触する伝熱フィン(伝熱部材)8が設けられている。伝熱フィン8は、板状の平板部8aおよび隣り合う平板部8aを所定距離離して位置づける頂部8bを有するように形成されている。平板部8aと頂部8bとの間には、ほぼ直角の曲げ部が設けられている。また、頂部8bは、筐体100、200に接合されている。このため、伝熱フィン8は2つの筐体100、200と部分的に接合されており、2つの筐体100、200は伝熱フィン8を介して熱伝達可能となっている。   In addition, heat transfer fins (heat transfer members) 8 that partially contact the two casings 100 and 200 are provided between the first casing 100 and the second casing 200. The heat transfer fin 8 is formed to have a plate-like flat plate portion 8a and a top portion 8b that positions the adjacent flat plate portions 8a at a predetermined distance apart. Between the flat plate portion 8a and the top portion 8b, a bent portion having a substantially right angle is provided. The top 8b is joined to the casings 100 and 200. For this reason, the heat transfer fins 8 are partially joined to the two cases 100 and 200, and the two cases 100 and 200 can transfer heat via the heat transfer fins 8.

以上説明したように、第1の筐体100と第2の筐体200との間に、二つの筐体100、200と部分的に接合する伝熱フィン8を設けることで、排気ガスが流通するために高温になりやすい第1の筐体100と、エンジンの冷却水が流通するために比較的低温になりやすい第2の筐体200との間の温度差を低減することができる。このため、熱膨張差により連結部6に大きな熱応力が生じることを抑制できる。このとき、連結部6をベローズのような弾性構造にする必要がないため、簡易な構造で熱応力を緩和することが可能となる。   As described above, by providing the heat transfer fins 8 that are partially joined to the two casings 100 and 200 between the first casing 100 and the second casing 200, the exhaust gas flows. Therefore, the temperature difference between the first casing 100 that tends to become high temperature and the second casing 200 that tends to become relatively low temperature because the coolant of the engine flows can be reduced. For this reason, it can suppress that a big thermal stress arises in the connection part 6 by a thermal expansion difference. At this time, since it is not necessary to make the connecting portion 6 an elastic structure such as a bellows, it is possible to relax the thermal stress with a simple structure.

(第2実施形態)
次に、本発明の第2実施形態について図2および図3に基づいて説明する。上記第1実施形態と同様の部分については同一の符号を付して説明を省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. The same parts as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

図2は、本第2実施形態に係る排気熱回収器を示す断面図である。図2に示すように、本実施形態では、伝熱フィン8が第1の筐体100および第2の筐体200の配置方向(本実施形態では、ヒートパイプ3a、3b積層方向)において2つに分割されている。ここで、分割された2つの伝熱フィン8のうち、蒸発部1側に配設されるものを第1の伝熱フィン81といい、凝縮部2側に配設されるものを第2の伝熱フィン82という。   FIG. 2 is a cross-sectional view showing an exhaust heat recovery device according to the second embodiment. As shown in FIG. 2, in this embodiment, two heat transfer fins 8 are provided in the arrangement direction of the first casing 100 and the second casing 200 (in this embodiment, the heat pipes 3a and 3b are stacked). It is divided into Here, of the two divided heat transfer fins 8, the one disposed on the evaporation unit 1 side is referred to as a first heat transfer fin 81, and the one disposed on the condensation unit 2 side is the second heat transfer fin 8. This is referred to as a heat transfer fin 82.

図3は、図2の要部拡大図である。図3に示すように、2つの伝熱フィン81、82は、それぞれ板状の平板部81a、82aおよび隣り合う平板部81a、82aを所定距離離して位置づける頂部81b、82bを有するように形成されている。また、平板部81a、82aと頂部81b、82bとの間には、ほぼ直角の曲げ部がそれぞれ設けられている。   FIG. 3 is an enlarged view of a main part of FIG. As shown in FIG. 3, the two heat transfer fins 81 and 82 are formed to have plate-like flat plate portions 81a and 82a and top portions 81b and 82b that position adjacent flat plate portions 81a and 82a at a predetermined distance, respectively. ing. Further, between the flat plate portions 81a and 82a and the top portions 81b and 82b, bent portions having substantially right angles are respectively provided.

第1の伝熱フィン81と第2の伝熱フィン82の間には、板状の伝熱板(伝熱中継部材)80が配設されている。伝熱板80は、2つの伝熱フィン81、82の頂部81b、82bと接合されている。すなわち、伝熱板80は、2つの伝熱フィン81、82と部分的に接合されており、2つの伝熱フィン81、82と熱伝達可能になっている。   A plate-shaped heat transfer plate (heat transfer relay member) 80 is disposed between the first heat transfer fins 81 and the second heat transfer fins 82. The heat transfer plate 80 is joined to the top portions 81 b and 82 b of the two heat transfer fins 81 and 82. That is, the heat transfer plate 80 is partially joined to the two heat transfer fins 81 and 82 so as to be able to transfer heat to the two heat transfer fins 81 and 82.

また、2つの伝熱フィン81、82のフィンピッチは、互いに異なっている。すなわち、2つの伝熱フィン81、82の伝熱板80との接合率がそれぞれ異なっている。なお、フィンピッチとは、伝熱フィン81、82における隣り合う頂部81b、82b間の距離のことをいう。   The fin pitches of the two heat transfer fins 81 and 82 are different from each other. That is, the joining rates of the two heat transfer fins 81 and 82 with the heat transfer plate 80 are different. The fin pitch refers to the distance between the adjacent top portions 81b and 82b of the heat transfer fins 81 and 82.

これにより、伝熱板80の板面において温度分布を均一とすることができるため、第1の筐体100および第2の筐体200間の熱伝達を、2つの筐体100、200の配置方向と直交する面(本実施形態では、ヒートパイプ3a、3b積層方向に直交する面)全域において均一にすることが可能となる。   Thereby, since the temperature distribution can be made uniform on the plate surface of the heat transfer plate 80, heat transfer between the first casing 100 and the second casing 200 can be performed by arranging the two casings 100 and 200. It is possible to make uniform across the entire surface perpendicular to the direction (in the present embodiment, the surface perpendicular to the heat pipe 3a, 3b stacking direction).

また、伝熱フィン8を2つに分割することで、第1の筐体100と第2の筐体200との温度差が1つの伝熱フィン8では吸収できないくらい大きい場合でも、2つの筐体100、200間の温度差を吸収することができるため、熱応力を緩和することが可能となる。   Further, by dividing the heat transfer fin 8 into two, even if the temperature difference between the first casing 100 and the second casing 200 is so large that the single heat transfer fin 8 cannot absorb the two casings, Since the temperature difference between the bodies 100 and 200 can be absorbed, thermal stress can be relaxed.

また、伝熱フィン8の分割段数や、分割された伝熱フィン8のフィンピッチ、すなわち伝熱フィン8と伝熱板80との接合率を変更することで、熱伝達量の調節をすることができる。   Further, the amount of heat transfer can be adjusted by changing the number of divided stages of the heat transfer fins 8 and the fin pitch of the divided heat transfer fins 8, that is, the joining ratio between the heat transfer fins 8 and the heat transfer plate 80. Can do.

(第3実施形態)
次に、本発明の第3実施形態について図4に基づいて説明する。上記第1実施形態と同様の部分については同一の符号を付して説明を省略する。
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG. The same parts as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

図4は、本第3実施形態に係る排気熱回収器を示す断面図である。図4に示すように、本実施形態では、長手方向が鉛直方向と一致するように複数本平行に配置された中空棒状のヒートパイプ3cを有している。ヒートパイプ3cの外表面には、プレートフィン4cが接合されている。そして、ヒートパイプ3cの鉛直方向下方部は、エンジンから排出された排気ガスが流通する第1の筐体100内に配置されており、蒸発部1を構成している。また、ヒートパイプ3cの鉛直方向上方部は、冷却水が流通する第2の筐体200内に配置されており、凝縮部2を構成している。   FIG. 4 is a cross-sectional view showing an exhaust heat recovery device according to the third embodiment. As shown in FIG. 4, in this embodiment, it has the hollow rod-shaped heat pipe 3c arrange | positioned in parallel so that a longitudinal direction may correspond with a perpendicular direction. Plate fins 4c are joined to the outer surface of the heat pipe 3c. The lower part in the vertical direction of the heat pipe 3c is disposed in the first housing 100 through which the exhaust gas discharged from the engine flows, and constitutes the evaporation unit 1. Further, the upper part in the vertical direction of the heat pipe 3 c is disposed in the second casing 200 through which the cooling water flows, and constitutes the condensing unit 2.

また、第1の筐体100と第2の筐体200との間には、二つの筐体100、200と部分的に接触する伝熱フィン(伝熱部材)8が設けられている。伝熱フィン8は、板状の平板部8aおよび隣り合う平板部8aを所定距離離して位置づける頂部8bを有するように形成されている。平板部8aと頂部8bとの間には、ほぼ直角の曲げ部が設けられている。また、頂部8bは、筐体100、200に接合されている。このため、伝熱フィン8は2つの筐体100、200と部分的に接合されており、2つの筐体100、200は伝熱フィン8を介して熱伝達可能となっている。   In addition, heat transfer fins (heat transfer members) 8 that partially contact the two casings 100 and 200 are provided between the first casing 100 and the second casing 200. The heat transfer fin 8 is formed to have a plate-like flat plate portion 8a and a top portion 8b that positions the adjacent flat plate portions 8a at a predetermined distance apart. Between the flat plate portion 8a and the top portion 8b, a bent portion having a substantially right angle is provided. The top 8b is joined to the casings 100 and 200. For this reason, the heat transfer fins 8 are partially joined to the two cases 100 and 200, and the two cases 100 and 200 can transfer heat via the heat transfer fins 8.

本実施形態のようなヒートパイプ3cは、作動流体蒸気と液相の作動流体の流れ方向が常に反対であるため相互に干渉が生じる。そして、蒸発部1と凝縮部2との温度差が増加すると、作動流体蒸気と液相の作動流体の流量流速は共に増加し、液相の作動流体が蒸気流によって吹き上げられて飛散するようになり、凝縮部2に還流する作動流体が減少し、ついにはドライアウトする。このとき、蒸発部1は排気ガスの熱によりただ加熱されるのみとなるため、蒸発部1の温度が排気ガスと同程度まで上昇する。そして、蒸発部と凝縮部に多大な温度差が生じ、熱膨張差により蒸発部と凝縮部とを連結する連結部に大きな熱応力が生じる。   In the heat pipe 3c as in the present embodiment, the flow directions of the working fluid vapor and the liquid working fluid are always opposite to each other, so that interference occurs between them. When the temperature difference between the evaporation unit 1 and the condensing unit 2 increases, the flow rates of the working fluid vapor and the liquid working fluid both increase, so that the liquid working fluid is blown up and scattered by the vapor flow. As a result, the working fluid flowing back to the condensing unit 2 decreases, and finally it is dried out. At this time, since the evaporation unit 1 is only heated by the heat of the exhaust gas, the temperature of the evaporation unit 1 rises to the same level as the exhaust gas. And a great temperature difference arises in an evaporation part and a condensation part, and a big thermal stress arises in the connection part which connects an evaporation part and a condensation part by a thermal expansion difference.

これに対し、本実施形態のように、第1の筐体100と第2の筐体200との間に、二つの筐体100、200と部分的に接合する伝熱フィン8を設けることで、第1の筐体100と第2の筐体200との間の温度差を低減することができる。このため、熱膨張差により連結部6に大きな熱応力が生じることを抑制できる。このとき、連結部6をベローズのような弾性構造にする必要がないため、簡易な構造で熱応力を緩和することが可能となる。   On the other hand, by providing the heat transfer fins 8 partially joined to the two casings 100 and 200 between the first casing 100 and the second casing 200 as in the present embodiment. The temperature difference between the first casing 100 and the second casing 200 can be reduced. For this reason, it can suppress that a big thermal stress arises in the connection part 6 by a thermal expansion difference. At this time, since it is not necessary to make the connecting portion 6 an elastic structure such as a bellows, it is possible to relax the thermal stress with a simple structure.

(他の実施形態)
なお、上記各実施形態では、ヒートパイプ方式を用いているが、これに限らず、例えば、図5に示すような冷媒をポンプ50によって循環させる方式を用いてもよい。具体的には、排気ガスが流通する第1の筐体100内に配置される吸熱部(第1の熱交換部)10と、冷却水が流通する第2の筐体200内に配置される放熱部(第2の熱交換部)20とを閉ループ状流路内に配設し、ポンプ50によって冷媒(例えば、シリコンオイル)を閉ループ状流路内に循環させてもよい。このとき、吸熱部10および放熱部20は、冷媒が通過するチューブ3d、3eをそれぞれ有している。
(Other embodiments)
In addition, in each said embodiment, although the heat pipe system is used, it is not restricted to this, For example, you may use the system which circulates a refrigerant | coolant as shown in FIG. Specifically, the heat absorption part (first heat exchanging part) 10 disposed in the first housing 100 through which the exhaust gas flows and the second housing 200 through which cooling water flows are disposed. The heat dissipating part (second heat exchanging part) 20 may be disposed in the closed loop flow path, and the refrigerant (for example, silicon oil) may be circulated in the closed loop flow path by the pump 50. At this time, the heat absorption part 10 and the heat radiation part 20 have tubes 3d and 3e through which the refrigerant passes, respectively.

また、上記各実施形態では、伝熱部材として、板状の平板部8a(81a、82a)および隣り合う平板部8a(81a、82a)を所定距離離して位置づける頂部8bを有するとともに、平板部8a(81a、82a)と頂部8b(81b、82b)との間にほぼ直角の曲げ部が設けられた伝熱フィン8(81、82)を用いたが、これに限らず、波状のコルゲートフィンを用いてもよい。また、伝熱部材は、例えば両端部が2つの筐体100、200にそれぞれ接合される棒状等、2つの筐体100、200とそれぞれ熱的に接触可能な形状であれば任意の形状にすることができる。   Moreover, in each said embodiment, while having the top part 8b which positions the plate-shaped flat plate part 8a (81a, 82a) and the adjacent flat plate part 8a (81a, 82a) a predetermined distance apart as a heat-transfer member, flat plate part 8a (81a, 82a) and the top 8b (81b, 82b) are used heat transfer fins 8 (81, 82) provided with a substantially right-angled bent portion, but not limited to this, wavy corrugated fins It may be used. In addition, the heat transfer member may have any shape as long as it has a shape that can be thermally contacted with the two casings 100 and 200, such as a rod shape whose both ends are joined to the two casings 100 and 200, respectively. be able to.

また、上記第2実施形態では、伝熱フィン2を2つに分割したが、これに限らず、3つ以上に分割してもよい。   Moreover, in the said 2nd Embodiment, although the heat-transfer fin 2 was divided | segmented into two, you may divide | segment not only to this but to three or more.

また、上記第2実施形態では、第1の伝熱フィン81のフィンピッチを、第2の伝熱フィン82より大きくしたが、これに限らず、第2の伝熱フィン82と同一としてもよいし、第2の伝熱フィン81より小さくしてもよい。   In the second embodiment, the fin pitch of the first heat transfer fins 81 is larger than that of the second heat transfer fins 82. However, the present invention is not limited to this and may be the same as the second heat transfer fins 82. However, it may be smaller than the second heat transfer fins 81.

第1実施形態に係る排気熱回収器を示す断面図である。It is sectional drawing which shows the exhaust heat recovery device which concerns on 1st Embodiment. 第2実施形態に係る排気熱回収器を示す断面図である。It is sectional drawing which shows the exhaust heat recovery device which concerns on 2nd Embodiment. 図2の要部拡大図であるIt is a principal part enlarged view of FIG. 第2実施形態に係る排気熱回収器を示す断面図である。It is sectional drawing which shows the exhaust heat recovery device which concerns on 2nd Embodiment. 他の実施形態に係る排気熱回収器を示す断面図である。It is sectional drawing which shows the exhaust heat recovery device which concerns on other embodiment. 従来の排気熱回収器を示す断面図である。It is sectional drawing which shows the conventional exhaust heat recovery device.

符号の説明Explanation of symbols

1…蒸発部(第1の熱交換部)、2…凝縮部(第2の熱交換部)、3a〜3c…ヒートパイプ、7…弁機構(還流制御手段)、8…伝熱フィン(伝熱部材)、61…蒸気側連結部(第1の連結部)、62…還流側連結部(第2の連結部)、80…伝熱板(伝熱中継部材)、100…第1の筐体、200…第2の筐体。   DESCRIPTION OF SYMBOLS 1 ... Evaporation part (1st heat exchange part), 2 ... Condensing part (2nd heat exchange part), 3a-3c ... Heat pipe, 7 ... Valve mechanism (reflux control means), 8 ... Heat transfer fin (Transfer) Heat member), 61... Steam side connecting portion (first connecting portion), 62 .. reflux side connecting portion (second connecting portion), 80... Heat transfer plate (heat transfer relay member), 100. Body, 200 ... second housing.

Claims (5)

エンジンから排出された排気ガスが流通する第1の筐体(100)内に配置され、前記排気ガスと内部に封入された作動流体との間で熱交換を行う第1の熱交換部(1)と、
前記エンジンの冷却水が流通する第2の筐体(200)内に配置され、前記作動流体と前記冷却水との間で熱交換を行う第2の熱交換部(2)とを備え、
前記第1の筐体(100)と前記第2の筐体(200)は、隣接するように配置されており、
前記第1の熱交換部(1)と前記第2の熱交換部(2)は連通状態に接続され、前記作動流体が前記第1の熱交換部(1)と前記第2の熱交換部(2)を循環するように構成されており、
前記第1の筐体(100)と前記第2の筐体(200)との間には、前記2つの筐体(100、200)それぞれを部分的に接触させる伝熱部材(8)が配設されており、前記伝熱部材(8)を介して前記第1の筐体(100)と前記第2の筐体(200)とが熱伝達可能となっていることを特徴とする排気熱回収器。
A first heat exchanging portion (1) that is arranged in a first casing (100) through which exhaust gas discharged from the engine flows and exchanges heat between the exhaust gas and the working fluid sealed inside. )When,
A second heat exchanging part (2) arranged in a second casing (200) through which the cooling water of the engine flows and exchanging heat between the working fluid and the cooling water;
The first casing (100) and the second casing (200) are disposed adjacent to each other,
The first heat exchange part (1) and the second heat exchange part (2) are connected in communication, and the working fluid is connected to the first heat exchange part (1) and the second heat exchange part. (2) is configured to circulate,
Between the first casing (100) and the second casing (200), there is a heat transfer member (8) that partially contacts each of the two casings (100, 200). Exhaust heat characterized in that heat transfer is possible between the first casing (100) and the second casing (200) via the heat transfer member (8). Collector.
前記伝熱部材(8)は、前記第1の筐体(100)と前記第2の筐体(200)の配置方向において複数に分割されており、
分割された前記伝熱部材(8)間には、隣り合う前記伝熱部材(8)と熱伝達可能な伝熱中継部材(80)が、前記第1の筐体(100)と前記第2の筐体(200)における互いに対向する部位に対応して配設されていることを特徴とする請求項1に記載の排気熱回収器。
The heat transfer member (8) is divided into a plurality in the arrangement direction of the first casing (100) and the second casing (200),
Between the divided heat transfer members (8), the heat transfer relay member (80) capable of transferring heat with the adjacent heat transfer member (8) includes the first casing (100) and the second heat transfer member (8). 2. The exhaust heat recovery device according to claim 1, wherein the exhaust heat recovery device is disposed to correspond to mutually facing portions of the casing (200).
前記作動流体は、蒸発および凝縮可能な流体であり、
前記第1の熱交換部は、前記排気ガスと内部に封入された前記作動流体との間で熱交換を行い、前記作動流体を蒸発させる蒸発部(1)を有しており、
前記第2の熱交換部は、前記蒸発部(1)で蒸発した前記作動流体と前記冷却水との間で熱交換を行い、前記作動流体を凝縮させる凝縮部(2)を有しており、
前記蒸発部(1)で蒸発して前記凝縮部(2)に流出した前記作動流体が、前記凝縮部(2)で凝縮して前記蒸発部(1)に還流するように構成されていることを特徴とする請求項1または2に記載の排気熱回収器。
The working fluid is a fluid that can be evaporated and condensed;
The first heat exchanging unit includes an evaporation unit (1) for exchanging heat between the exhaust gas and the working fluid enclosed therein, and evaporating the working fluid.
The second heat exchanging unit has a condensing unit (2) for exchanging heat between the working fluid evaporated in the evaporating unit (1) and the cooling water to condense the working fluid. ,
The working fluid evaporated by the evaporation section (1) and flowing out to the condensation section (2) is condensed by the condensation section (2) and recirculated to the evaporation section (1). The exhaust heat recovery device according to claim 1 or 2.
前記蒸発部(1)は、蒸発側ヒートパイプ(3a)を有しており、前記凝縮部(2)は、凝縮側ヒートパイプ(3b)を有しており、
前記蒸発側ヒートパイプ(3a)から前記凝縮側ヒートパイプ(3b)に流れる前記作動流体が通過する第1の連結部(61)と、
前記凝縮側ヒートパイプ(3b)から前記蒸発側ヒートパイプ(3a)に流れる前記作動流体が通過する第2の連結部(62)と、
前記凝縮側ヒートパイプ(3b)から前記蒸発側ヒートパイプ(3a)への前記作動流体の流れを制御する還流制御手段(7)とを備えることを特徴とする請求項3に記載の排気熱回収器。
The evaporation section (1) has an evaporation side heat pipe (3a), the condensation section (2) has a condensation side heat pipe (3b),
A first connecting portion (61) through which the working fluid flowing from the evaporation side heat pipe (3a) to the condensation side heat pipe (3b) passes;
A second connecting portion (62) through which the working fluid flowing from the condensation side heat pipe (3b) to the evaporation side heat pipe (3a) passes;
The exhaust heat recovery according to claim 3, further comprising a reflux control means (7) for controlling a flow of the working fluid from the condensation side heat pipe (3b) to the evaporation side heat pipe (3a). vessel.
内部に前記作動流体が封入されるヒートパイプ(3c)を備え、
前記ヒートパイプ(3c)は、前記第1の筐体(100)と前記第2の筐体(200)をまたがるように配置されており、
前記ヒートパイプ(3c)の長手方向の一端側が、前記蒸発部(1)として構成され、他端側が前記凝縮部(2)として構成されていることを特徴とする請求項3に記載の排気熱回収器。
A heat pipe (3c) in which the working fluid is sealed;
The heat pipe (3c) is disposed so as to straddle the first casing (100) and the second casing (200),
The exhaust heat according to claim 3, wherein one end side in the longitudinal direction of the heat pipe (3c) is configured as the evaporation section (1) and the other end side is configured as the condensing section (2). Collector.
JP2006165527A 2006-06-15 2006-06-15 Exhaust heat recovery equipment Withdrawn JP2007332857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006165527A JP2007332857A (en) 2006-06-15 2006-06-15 Exhaust heat recovery equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006165527A JP2007332857A (en) 2006-06-15 2006-06-15 Exhaust heat recovery equipment

Publications (1)

Publication Number Publication Date
JP2007332857A true JP2007332857A (en) 2007-12-27

Family

ID=38932562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006165527A Withdrawn JP2007332857A (en) 2006-06-15 2006-06-15 Exhaust heat recovery equipment

Country Status (1)

Country Link
JP (1) JP2007332857A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222253A (en) * 2008-03-13 2009-10-01 Toyota Motor Corp Exhaust gas heat recovery unit
DE102009029320A1 (en) 2008-10-09 2010-04-29 Denso Corporation, Kariya-City Heat exchanging system controlling apparatus for vehicle, has bypass channel bypassing exhaust gas heat recovery device, and switching valves switching circulation path to one of exhaust gas heat recovery device and bypass channel
EP2246539A2 (en) 2009-04-23 2010-11-03 NGK Insulators, Ltd. Ceramics heat exchanger and production method thereof
US8170779B2 (en) 2008-08-07 2012-05-01 Denso Corporation Abnormality diagnosis device for exhaust heat recovery equipment
JP2014048038A (en) * 2012-09-04 2014-03-17 Hino Motors Ltd Heat exchanger
US9458792B2 (en) 2012-08-07 2016-10-04 Denso Corporation Exhaust heat recovery device
JP2020046101A (en) * 2018-09-18 2020-03-26 株式会社デンソー Heat exchanger

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222253A (en) * 2008-03-13 2009-10-01 Toyota Motor Corp Exhaust gas heat recovery unit
US8170779B2 (en) 2008-08-07 2012-05-01 Denso Corporation Abnormality diagnosis device for exhaust heat recovery equipment
DE102009029320A1 (en) 2008-10-09 2010-04-29 Denso Corporation, Kariya-City Heat exchanging system controlling apparatus for vehicle, has bypass channel bypassing exhaust gas heat recovery device, and switching valves switching circulation path to one of exhaust gas heat recovery device and bypass channel
EP2246539A2 (en) 2009-04-23 2010-11-03 NGK Insulators, Ltd. Ceramics heat exchanger and production method thereof
US9458792B2 (en) 2012-08-07 2016-10-04 Denso Corporation Exhaust heat recovery device
JP2014048038A (en) * 2012-09-04 2014-03-17 Hino Motors Ltd Heat exchanger
JP2020046101A (en) * 2018-09-18 2020-03-26 株式会社デンソー Heat exchanger
JP7081417B2 (en) 2018-09-18 2022-06-07 株式会社デンソー Heat exchanger

Similar Documents

Publication Publication Date Title
US7946112B2 (en) Exhaust heat recovery device
JP2006284144A (en) Exhaust heat recovery device
JP2007332857A (en) Exhaust heat recovery equipment
JP2007278623A (en) Exhaust heat recovery system
JP2008039373A (en) Exhaust heat recovery device
US20070137851A1 (en) Waste heat collecting apparatus
JP2008195105A (en) Exhaust gas heat recovery system
WO2007086418A1 (en) Cooling apparatus of liquid
JP2009024648A (en) Exhaust heat recovery device
KR20060061365A (en) Loop type thermo siphon, stirling cooling chamber, and cooling appartus
JP4661839B2 (en) Exhaust heat recovery unit
JP2008076040A (en) Heat exchanger
JP2008057820A (en) Heat exchanger
JP2010249424A (en) Exhaust heat recovery device
JP2007024423A (en) Exhaust heat recovery device
JP5934052B2 (en) Rankine cycle system
JP4627254B2 (en) Heat pipe equipment
JP2002071090A (en) Oil tank equipped with cooler for minimum flow
JP4957707B2 (en) Heat storage device
US20090000285A1 (en) Exhaust heat recovery device
US20080196401A1 (en) Exhaust heat recovery apparatus
JP4737219B2 (en) Exhaust heat recovery system
JP2009062915A (en) Exhaust heat recovery unit
JP2008303728A (en) Exhaust heat recovery apparatus
CN101307736B (en) Two stage hot pipe EGR cooler

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090901