KR20120045468A - Organic rankine cycle turbo generation system generating cooling air and hot water - Google Patents

Organic rankine cycle turbo generation system generating cooling air and hot water Download PDF

Info

Publication number
KR20120045468A
KR20120045468A KR1020100107022A KR20100107022A KR20120045468A KR 20120045468 A KR20120045468 A KR 20120045468A KR 1020100107022 A KR1020100107022 A KR 1020100107022A KR 20100107022 A KR20100107022 A KR 20100107022A KR 20120045468 A KR20120045468 A KR 20120045468A
Authority
KR
South Korea
Prior art keywords
heating water
condenser
refrigerant
heat
working fluid
Prior art date
Application number
KR1020100107022A
Other languages
Korean (ko)
Other versions
KR101208459B1 (en
Inventor
강석훈
정대헌
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020100107022A priority Critical patent/KR101208459B1/en
Publication of KR20120045468A publication Critical patent/KR20120045468A/en
Application granted granted Critical
Publication of KR101208459B1 publication Critical patent/KR101208459B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/08Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with working fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/02Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Abstract

PURPOSE: An ORC(organic rankine cycle)turbo power generation system for producing air-conditioning and heating water is provided to utilize high-temperature and high-pressure working fluids from a turbine for heating water by exchanging heat between the high-temperature and high-pressure working fluids and water. CONSTITUTION: An ORC(organic rankine cycle)turbo power generation system for producing air-conditioning and heating water comprises an evaporator(10), a turbine(20), a condenser(30), a condensation tank(40) and a pump(50). The evaporator changes a phase of working fluids to a gas by transferring heat to the working fluid. The turbine changes the heat energy of the working fluids into mechanical energy. The condenser condenses the working fluids of low temperature and low pressure exhausted from the turbine into liquid. The condensation tank stores the working fluids of the low pressure exhausted from the condenser. The pump supplies the saved working fluids in the condensation tank to the evaporator. The condenser comprises an inflow unit(31) and an outflow unit(33). The inflow unit and the outflow unit are respectively formed on one side and the other side. The refrigerants of an absorption refrigerator or the heating water are supplied to the inflow unit. The heat-exchanged hot heating water and the refrigerants of the absorption refrigerator are discharged from the outflow unit.

Description

냉방 및 난방용수를 생산하는 ORC 터보발전 시스템{Organic rankine cycle turbo generation system generating cooling air and hot water}Organic rankine cycle turbo generation system generating cooling air and hot water

본 발명은 ORC 터보발전 시스템에서 터빈을 작동시키고 배출되는 고온고압의 작동유체가 겨울철에는 물이 공급되도록 하고, 여름철에는 흡수식 냉동기와 열교환되면서 응축되도록 함으로써 겨울철에는 고온의 온수를 난방용수로 제공하고, 여름에는 차가운 공기를 냉방용으로 제공할 수 있는 냉방 및 난방용수를 생산하는 ORC 터보발전 시스템에 관한 것이다.
The present invention is to operate the turbine in the ORC turbo power system, the high-temperature high-pressure working fluid discharged in winter to supply water, in summer to condense by heat exchange with the absorption chiller to provide high temperature hot water as heating water in winter, summer The present invention relates to an ORC turbo power system that produces cooling and heating water that can provide cold air for cooling.

일반적으로, 유기랭킨사이클(ORC : Organic Rankine Cycle)은 유기매체를 작동유체로 사용하는 랭킨사이클(Rankin Cycle)로서 비교적 저온의 온도 범위 (60?200℃)의 열원을 회수하여 전기를 생산하는 시스템으로, 저온에서 고압의 기체를 생산하여 터빈을 구동하여야하는 ORC 시스템의 특성상 작동유체로는 비등점이 낮고, 증발압력이 높은 프레온 계열의 냉매를 사용한다.In general, ORC (Organic Rankine Cycle) is a Rankine cycle that uses organic media as a working fluid, a system that generates electricity by recovering heat sources in a relatively low temperature range (60 to 200 ° C). Due to the nature of the ORC system, which is required to produce high pressure gas at low temperature to drive a turbine, a freon-based refrigerant having a low boiling point and a high evaporation pressure is used as a working fluid.

유기랭킨사이클(ORC : Organic Rankine Cycle)은 증발기(10) 및 터빈(20), 응축기(30), 펌프(40)의 기본 요소로 구성되어 있다. 증발기(10)는 작동유체에 열을 전달하여 기체로 상변화시키는 역할을 하고, 터빈(20)은 작동유체의 열에너지를 기계적 에너지로 변환시키며, 응축기(30)는 터빈(20)에서 나온 저온저압의 작동유체를 액체로 상변화시켜주는 역할을 하고, 펌프(40)는 응축기(30)에서 나온 저압의 작동유체를 증발기(10)로 공급하는 역할을 한다. 랭킨 사이클 시스템의 출력은 터번에서 수행하는 일(work)과 같다.Organic Rankine Cycle (ORC) is composed of the basic elements of the evaporator 10 and the turbine 20, the condenser 30, the pump 40. The evaporator 10 serves to transfer the heat to the working fluid to phase change into a gas, the turbine 20 converts the thermal energy of the working fluid into mechanical energy, the condenser 30 is a low temperature low pressure from the turbine 20 It serves to change the working fluid of the liquid phase, the pump 40 serves to supply the low pressure working fluid from the condenser 30 to the evaporator (10). The output of the Rankine cycle system is the same as the work done in the turban.

그러나, 이러한 ORC 터보발전 시스템은 터빈(20)에서 배출된 고온고압의 작동유체를 응축기(30)에서 응축하기 위해서는 별도의 냉각 시스템 설치하고, 이를 구동시키기 위해 추가적으로 에너지를 소비하여야 하는 문제가 있다.
However, such an ORC turbo power generation system has a problem in that a separate cooling system is installed in order to condense the high temperature and high pressure working fluid discharged from the turbine 20 in the condenser 30, and additional energy is consumed to drive the same.

본 발명의 해결하고자 하는 과제는 ORC 터보발전 시스템에서 터빈을 작동시키고 배출되는 고온고압의 작동유체가 겨울철에는 물이 공급되도록 하고, 여름철에는 흡수식 냉동기와 열교환되면서 응축되도록 함으로써 겨울철에는 고온의 온수를 난방용수로 제공하고, 여름에는 차가운 공기를 냉방용으로 제공할 수 있는 냉방 및 난방용수를 생산하는 ORC 터보발전 시스템을 제공하는 데 있다.
The problem to be solved by the present invention is to operate the turbine in the ORC turbo power system, so that the high-temperature high-pressure working fluid discharged to supply water in winter, and condensed by heat exchange with the absorption chiller in the summer to heat hot water in winter It is to provide an ORC turbo power generation system that provides cooling and heating water that can be provided as water and in summer cool air for cooling.

본 발명에 따른 냉방 및 난방용수를 생산하는 ORC 터보발전 시스템은 작동유체에 열을 전달하여 기체로 상변화시키는 증발기(10)와; 작동유체의 열에너지를 기계적 에너지로 변환시키는 터빈(20)과; 터빈(20)에서 나온 저온저압의 작동유체를 액체로 응축시키는 응축기(30)와; 응축기에서 나온 저압의 작동유체를 저장하는 응축탱크(40)와; 응축탱크의 저장된 작동유체를 증발기로 공급하는 펌프(50)를 구비하되, 상기 응축기(30)는 일측에 형성되어 난방용 물 또는 흡수식 냉동기의 냉매가 공급되는 유입부(31)와, 타측에 형성되어 열교환된 고온의 난방용수의 흡수식 냉동기의 냉매가 배출되는 배출부(33)를 포함하며, 겨울철에 외부의 난방용 물과 열교환되고, 여름철 흡수식 냉동기와 열교환되는 것을 특징으로 한다.ORC turbo power generation system for producing cooling and heating water according to the present invention comprises an evaporator (10) for transferring the heat to the working fluid phase change into a gas; A turbine 20 for converting thermal energy of the working fluid into mechanical energy; A condenser 30 for condensing the low temperature low pressure working fluid from the turbine 20 into a liquid; A condensation tank 40 for storing a low pressure working fluid from the condenser; A pump 50 for supplying the stored working fluid of the condensation tank to the evaporator, wherein the condenser 30 is formed at one side and is formed at the inlet 31 to which the refrigerant of the heating water or the absorption chiller is supplied; It includes a discharge portion 33 for discharging the refrigerant of the heat-absorbing freezer of the high-temperature heating water, the heat exchanger and the heat-exchanging with the water absorption chiller in the summer.

바람직하게, 유입부(31)의 일측에서 외부의 난방용 물과 흡수식 냉동기(80)의 냉매를 계절별로 선택적으로 공급되도록 제1제어밸브(32)와, 배출부(33)의 일측에서 배출되는 겨울철에는 난방용수를 외부로 공급하고, 여름철에는 흡수식 냉동기(80)의 냉매를 다시 흡수식 냉동기로 공급하는 제2제어밸브(34)를 더 포함하는 것을 특징으로 한다.Preferably, the first control valve 32 and the winter discharged from one side of the discharge part 33 to selectively supply seasonally the external water for heating and the refrigerant of the absorption chiller 80 at one side of the inlet 31. It further comprises a second control valve 34 for supplying the heating water to the outside, and supplying the refrigerant of the absorption chiller 80 to the absorption chiller again in summer.

바람직하게, 상기 응축기(30)는 겨울철에 외부의 난방용 물과 열교환되는 제1응축부(35)와, 여름철 흡수식 냉동기와 열교환되는 제2응축부(36)로 이루어진 것을 특징으로 한다.
Preferably, the condenser 30 is characterized by consisting of a first condensation unit 35 for heat exchange with the water for heating in the winter, and a second condensation unit 36 for heat exchange with the absorption chiller in the summer.

본 발명에 따르면, 터빈을 작동시키고 배출되는 고온고압의 작동유체가 겨울철에는 물과 열교환시켜 난방용수로 활용할 수 있으며, 여름철에는 흡수식 냉동기와 열교환시켜 차가운 공기를 냉방용으로 생산할 수 있는 장점이 있다.
According to the present invention, the high-temperature, high-pressure working fluid discharged from the turbine can be used as heating water by heat-exchanging with water in winter, and in summer, it is possible to produce cold air for cooling by heat-exchanging with an absorption chiller.

도 1은 일반적인 ORC 터보발전 시스템의 개략도.
도 2는 본 발명의 일실시예에 따른 냉방 및 난방용수를 생산하는 ORC 터보발전 시스템의 개략도.
도 3은 본 발명의 다른실시예에 따른 냉방 및 난방용수를 생산하는 ORC 터보발전 시스템의 개략도.
도 4는 본 발명에 따른 흡수식 냉동기의 개략도.
1 is a schematic diagram of a typical ORC turbo power system.
Figure 2 is a schematic diagram of an ORC turbo power system for producing cooling and heating water according to an embodiment of the present invention.
Figure 3 is a schematic diagram of an ORC turbo power system for producing cooling and heating water according to another embodiment of the present invention.
4 is a schematic view of an absorption chiller according to the present invention;

이하, 첨부한 도면을 참조하여 본 발명에 따른 냉방 및 난방용수를 생산하는 ORC 터보발전 시스템을 자세히 살명한다.Hereinafter, an ORC turbo power generation system for producing cooling and heating water according to the present invention will be described in detail with reference to the accompanying drawings.

도시된 바와 같이, 본 발명의 ORC(유기랭킨사이클, Organic Rankine Cycle) 터보발전 시스템은 증발기(10), 터빈(20), 응축기(30), 응축탱크(40), 펌프(50), 예열기(50), 과열기(60)를 구비한다.As shown, ORC (Organic Rankine Cycle) turbo power generation system of the present invention is an evaporator 10, turbine 20, condenser 30, condensation tank 40, pump 50, preheater ( 50), and a superheater 60.

전술한 바와 같이, 증발기(10)는 작동유체에 열을 전달하여 기체로 상변화시키고, 터빈(20)은 작동유체의 열에너지를 기계적 에너지로 변환시킨다.As described above, the evaporator 10 transfers heat to the working fluid to phase change into a gas, and the turbine 20 converts the thermal energy of the working fluid into mechanical energy.

응축기(30)는 터빈(20)에서 나온 작동유체를 액체로 응축시켜 응축탱크(40)로 제공하며, 펌프(50)는 응축탱크(40)의 작동유체를 증발기(10)로 공급한다. The condenser 30 condenses the working fluid from the turbine 20 into a liquid and provides it to the condensation tank 40, and the pump 50 supplies the working fluid of the condensation tank 40 to the evaporator 10.

예열기(60)는 펌프(50)와 증발기(10) 사이에 위치하며 펌프(40)에서 공급된 작동유체를 제공받아 상기 증발기(10)에서 작동유체를 효과적으로 가열하도록 작동유체를 예열한다. 과열기(70)는 증발기(10)에서 증발한 작동유체의 온도를 필요한 온도까지 승온시킨다.The preheater 60 is located between the pump 50 and the evaporator 10 and receives the working fluid supplied from the pump 40 to preheat the working fluid to effectively heat the working fluid in the evaporator 10. The superheater 70 raises the temperature of the working fluid evaporated in the evaporator 10 to the required temperature.

한편, 응축기(30)는 겨울철에 외부의 난방용 물과 열교환되고, 여름철 흡수식 냉동기와 열교환된다. 응축기(30)의 일측에는 난방용 물 또는 흡수식 냉동기의 냉매가 공급되는 유입부(31)가 형성되고, 타측에는 열교환된 고온의 난방용수의 흡수식 냉동기의 냉매가 배출되는 배출부(33)가 형성된다. 유입부(31)의 일측에는 외부의 난방용 물과 흡수식 냉동기(80)의 냉매를 계절별로 선택적으로 공급되도록 제1제어밸브(32)가 형성된다. 배출부(33)의 일측에는 배출되는 겨울철에는 난방용수를 외부로 공급하고, 여름철에는 흡수식 냉동기(80)의 냉매를 다시 흡수식 냉동기로 공급하는 제2제어밸브(34)가 형성된다.On the other hand, the condenser 30 is heat exchanged with the external heating water in winter, heat exchanger with the summer absorption chiller. One side of the condenser 30 is formed with an inlet 31 for supplying the heating water or the refrigerant of the absorption chiller, and the other side is formed with an outlet 33 for discharging the refrigerant of the heat exchanger of the high temperature heating water. . The first control valve 32 is formed at one side of the inlet part 31 to selectively supply the external heating water and the refrigerant of the absorption chiller 80 according to seasons. One side of the discharge part 33 is provided with a second control valve 34 for supplying the heating water to the outside in the winter discharged, and in the summer to supply the refrigerant of the absorption-type refrigerator 80 to the absorption-type refrigerator again.

본 발명의 다른 실시예에 따른 응축기(30)는 겨울철에 외부의 난방용 물과 열교환되는 제1응축부(35)와 여름철 흡수식 냉동기와 열교환되는 제2응축부(36)가 형성된다.Condenser 30 according to another embodiment of the present invention is formed with a first condensation unit 35 for heat exchange with the external water for heating in winter and a second condensation unit 36 for heat exchange with the summer absorption chiller.

제1응축부(35)는 셀-튜브 열교환기, 판형 열교환기 등을 이용하여 증발기에서 배출되는 고온고압의 작동유체와 외부에서 유입된 낮은 온도의 물이 서로 열교환할 수 있도록 구성된다. 이에 따라 응축기로 공급된 고온고압의 작동유체는 외부에서 유입된 물과 열교환되면서 온도가 낮아지면서 응축탱크(40)로 공급되고, 외부의 물은 고온으로 배출되어 난방용으로 사용될 수 있다.The first condenser 35 is configured such that the high temperature and high pressure working fluid discharged from the evaporator and the low temperature water introduced from the outside may exchange heat with each other using a cell-tube heat exchanger or a plate heat exchanger. Accordingly, the high temperature and high pressure working fluid supplied to the condenser is supplied to the condensation tank 40 while the temperature is lowered while heat exchanged with water introduced from the outside, and the external water may be discharged at a high temperature and used for heating.

제2응축부(36)는 터빈에서 배출되는 고온고압의 작동유체와 흡수식 냉동기의 흡수액과 열교환되어 흡수식 냉동기(80)의 열원으로 사용된다. 이에 따라 제2응축부로 공급된 고온고압의 작동유체는 외부의 흡수식 냉동기(80)와 열교환되면서 온도가 낮아지면서 응축탱크(40)로 공급되고, 흡수식 냉동기(80)의 흡수액이 가열된다. 제2응축부(36)는 제1응축부와 동일한 열교환기를 사용할 수 있다.The second condenser 36 is used as a heat source of the absorption chiller 80 by heat-exchanging with the high temperature and high pressure working fluid discharged from the turbine and the absorption liquid of the absorption chiller. Accordingly, the high-temperature, high-pressure working fluid supplied to the second condensation part is supplied to the condensation tank 40 while the temperature is lowered while heat-exchanging with the external absorption chiller 80, and the absorption liquid of the absorption chiller 80 is heated. The second condenser 36 may use the same heat exchanger as the first condenser.

흡수식 냉동기(80)는 주지하는 바와 같이 기체의 액체에 대한 흡수성을 이용하는 것으로 통상 냉매를 응축기(30 또는 제2응축부(32))로 공급하여 증발시키는 재생부(81), 증발된 냉매를 응축하는 응축부(82), 냉매가 증발하면서 외부의 공기와 열교환하는 증발부(83) 및 열교환된 냉매가 다시 흡수되는 흡수부(84)로 구성되며 냉매로는 물이 사용되고 흡수액으로 리튬브로마이드(Litbium Bromide : LiBr) 또는 암모니아(NH3)가 사용된다. 이러한 냉방시에는 증발부(83)에서 냉매인 물과 외부공기가 열교환하여 차가운 공기를 냉방용으로 사용하게 된다.Absorption refrigeration unit 80 is to use the absorbency of the liquid to the gas, as is well known in the regeneration unit 81 to supply the refrigerant to the condenser (30 or the second condensing unit 32) and evaporate, the condensed evaporated refrigerant Condensation unit 82, the evaporator 83 for heat exchange with the outside air while the refrigerant evaporates, and the absorption unit 84 is absorbed by the heat-exchanged refrigerant again, the water is used as the refrigerant and lithium bromide (Litbium) Bromide: LiBr) or ammonia (NH 3 ) is used. In such cooling, the evaporator 83 exchanges water, which is a refrigerant, with external air, to use cold air for cooling.

흡수식 냉동기를 자세히 살펴보면, 흡수액이 흡수부(84) 상부의 트래이로부터 흡수부(84) 내의 냉각수 전열관위로 떨어지며 엘리미네이터 사이로 넘어온 수증기를 흡수하여 흡수부(84) 바닥에 모이게 된다. 모여진 흡수액은 응축기(30 또는 제2응축부(32))의 작동유체와 열교환되면서 가열되어 물이 증발하며 농도가 더 짙은 흡수액으로 만든 뒤 다시 흡수부(84)로 되돌아간다. 이와 같은 순환과정을 거쳐 흡수액이 다시 수증기를 흡수하여 같은 방식으로 계속 순환된다. Looking at the absorption chiller in detail, the absorbent liquid is dropped from the tray on the upper portion of the absorber 84 to the coolant heat transfer tube in the absorber 84 and absorbs the water vapor passed between the eliminator and collects at the bottom of the absorber 84. The collected absorbent liquid is heated while exchanging heat with the working fluid of the condenser 30 or the second condenser 32 to evaporate water to make the absorbent liquid having a higher concentration, and then return to the absorbent unit 84 again. Through this circulation process, the absorbent liquid absorbs water vapor again and continues to circulate in the same manner.

한편 냉매인 물의 순환은 증발부(83)에서 물이 가장 증발하기 쉬운 조건인 밀폐된 진공상태 즉 증발기 내부압력 약 6.5mmHg와 약 4℃ 온도를 유지시키면 증발하면서 냉각수의 증발잠열을 빼앗아감으로서 전열관내에서 흐르는 외부공기를 냉방에 필요한 저온의 냉방공기로 만들게 된다. 이때 증기형태가 된 수증기는 흡수액에 의해 강력하게 흡수되어져 재생부(81)까지 흡수액과 함께 섞여 운반된다. 재생부(81)에서 응축기(30 또는 제2응축부(32))의 작동유체와 열교환되면서 가열되어 수증기로 증발되어 엘리미네이터 사이로 넘어 응축부로 유입되어 냉각탑에서 냉각된 냉각수와 열교환되면서 물로 응축된다. 응축부의 냉매는 증발부(83)로 회수되어 다시 상기와 같은 순서로 재순환 되는 냉매 싸이클을 형성한다.
On the other hand, the circulation of water, which is a refrigerant, is transferred to the evaporator 83 in a closed vacuum state in which water is most likely to evaporate. The outside air flowing in the pipe is made into the low temperature cooling air required for cooling. At this time, the water vapor in the form of steam is strongly absorbed by the absorbent liquid, and is mixed with the absorbent liquid and transported to the regeneration unit 81. Heat is exchanged with the working fluid of the condenser 30 or the second condenser 32 in the regeneration unit 81 and is evaporated into water vapor, flows between the eliminators, flows into the condenser, and condenses into water as it heats with the cooling water cooled in the cooling tower. . The refrigerant in the condensation unit is recovered to the evaporation unit 83 to form a refrigerant cycle that is recycled in the above order.

이상, 본 발명의 실시예에 대해 설명하였다. 본 발명의 기술적 구성은 본 발명이 속하는 기술분야의 당업자가 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.
In the above, the Example of this invention was described. It will be understood by those skilled in the art that the technical configuration of the present invention can be implemented in other specific forms without changing the technical spirit or essential features.

10 : 증발기 20 : 터빈
30 : 응축기 31 : 유입부
32 : 제1제어밸브 33 : 배출부
34 : 제2제어밸브 35 : 제1응축부
36 : 제2응축부 40 : 응축탱크
50 : 펌프 60 : 예열기
70 : 과열기 80 : 흡수식 냉동기
10: evaporator 20: turbine
30 condenser 31 inlet
32: first control valve 33: discharge part
34: second control valve 35: first condensing unit
36: second condensing unit 40: condensation tank
50: pump 60: preheater
70: superheater 80: absorption chiller

Claims (5)

작동유체에 열을 전달하여 기체로 상변화시키는 증발기(10)와; 작동유체의 열에너지를 기계적 에너지로 변환시키는 터빈(20)과; 터빈(20)에서 나온 저온저압의 작동유체를 액체로 응축시키는 응축기(30)와; 응축기에서 나온 저압의 작동유체를 저장하는 응축탱크(40)와; 응축탱크의 저장된 작동유체를 증발기로 공급하는 펌프(50)를 구비하되,
응축기(30)는 일측에 형성되어 난방용 물 또는 흡수식 냉동기의 냉매가 공급되는 유입부(31)와, 타측에 형성되어 열교환된 고온의 난방용수의 흡수식 냉동기의 냉매가 배출되는 배출부(33)를 포함하며, 겨울철에 외부의 난방용 물과 열교환되고, 여름철 흡수식 냉동기와 열교환되는 것을 특징으로 하는 냉방 및 난방용수를 생산하는 ORC 터보발전 시스템.
An evaporator 10 which transfers heat to the working fluid and changes the phase into a gas; A turbine 20 for converting thermal energy of the working fluid into mechanical energy; A condenser 30 for condensing the low temperature low pressure working fluid from the turbine 20 into a liquid; A condensation tank 40 for storing a low pressure working fluid from the condenser; A pump 50 for supplying the stored working fluid of the condensation tank to the evaporator,
The condenser 30 is formed on one side and the inlet portion 31 for supplying the heating water or the refrigerant of the absorption chiller and the discharge portion 33 is formed on the other side and the refrigerant of the absorption chiller of the high temperature heating water is heat exchanged. It includes, in the winter heat exchanged with the water for heating outside, ORC turbo power generation system for producing cooling and heating water, characterized in that the heat exchanger in the summer absorption chiller.
청구항 1에 있어서, 유입부(31)의 일측에서 외부의 난방용 물과 흡수식 냉동기(80)의 냉매를 계절별로 선택적으로 공급되도록 제1제어밸브(32)와, 배출부(33)의 일측에서 배출되는 겨울철에는 난방용수를 외부로 공급하고, 여름철에는 흡수식 냉동기(80)의 냉매를 다시 흡수식 냉동기로 공급하는 제2제어밸브(34)를 더 포함하는 것을 특징으로 하는 냉방 및 난방용수를 생산하는 ORC 터보발전 시스템.The first control valve 32 and the discharge part 33 are discharged from one side of the inlet part 31 so as to selectively supply the external heating water and the refrigerant of the absorption refrigerator 80 according to seasons. ORC to produce the cooling and heating water, characterized in that it further comprises a second control valve 34 for supplying the heating water to the outside in the winter, and supplying the refrigerant of the absorption chiller 80 to the absorption chiller again in the summer. Turbo power system. 청구항 1에 있어서, 상기 응축기(30)는 겨울철에 외부의 난방용 물과 열교환되는 제1응축부(35)와, 여름철 흡수식 냉동기와 열교환되는 제2응축부(36)로 이루어진 것을 특징으로 하는 냉방 및 난방용수를 생산하는 ORC 터보발전 시스템.The air conditioner according to claim 1, wherein the condenser 30 comprises a first condensation part 35 which exchanges heat with external heating water in winter, and a second condensation part 36 which exchanges heat with an absorption chiller in summer. ORC turbo power system that produces heating water. 청구항 1에 있어서, 상기 흡수식 냉동기는 냉매를 작동유체가 유입되는 응축기(30 또는 제2응축부(32))로 공급하여 증발시키는 재생부(81)와, 증발된 냉매를 응축하는 응축부(82)와, 냉매가 증발하면서 외부의 공기와 열교환하는 증발부(83) 및 열교환된 냉매가 다시 흡수되는 흡수부(84)로 이루어진 것을 특징으로 하는 냉방 및 난방용수를 생산하는 ORC 터보발전 시스템.The method of claim 1, wherein the absorption chiller is supplied to the condenser 30 or the second condenser 32, the refrigerant flows into the regeneration unit 81 for evaporation, and the condensation unit 82 for condensing the evaporated refrigerant And an evaporator 83 for exchanging heat with the outside air while the refrigerant evaporates, and an absorber 84 for absorbing the exchanged refrigerant again. 청구항 4에 있어서, 상기 흡수식 냉동기의 흡수액은 리튬브로마이드(Litbium Bromide : LiBr) 또는 암모니아(NH3) 인 것을 특징으로 하는 냉방 및 난방용수를 생산하는 ORC 터보발전 시스템.The ORC turbo power generation system of claim 4, wherein the absorption liquid of the absorption refrigerator is lithium bromide (LiBr) or ammonia (NH 3 ).
KR1020100107022A 2010-10-29 2010-10-29 Organic rankine cycle turbo generation system generating cooling air and hot water KR101208459B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100107022A KR101208459B1 (en) 2010-10-29 2010-10-29 Organic rankine cycle turbo generation system generating cooling air and hot water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100107022A KR101208459B1 (en) 2010-10-29 2010-10-29 Organic rankine cycle turbo generation system generating cooling air and hot water

Publications (2)

Publication Number Publication Date
KR20120045468A true KR20120045468A (en) 2012-05-09
KR101208459B1 KR101208459B1 (en) 2012-12-05

Family

ID=46264925

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100107022A KR101208459B1 (en) 2010-10-29 2010-10-29 Organic rankine cycle turbo generation system generating cooling air and hot water

Country Status (1)

Country Link
KR (1) KR101208459B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015058399A1 (en) * 2013-10-21 2015-04-30 上海交通大学 Passive low temperature heat energy organic matter working medium electricity generation method
US10060302B2 (en) 2013-10-21 2018-08-28 Shanghai Jiaotong University Passive low temperature heat sources organic working fluid power generation method
KR20200002573A (en) * 2018-06-29 2020-01-08 주식회사 티에스테크 A Large-scale Unused Heat Source Optimum System

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101606783B1 (en) 2014-10-23 2016-03-28 한국에너지기술연구원 Heat driven cooling system
KR102239453B1 (en) * 2019-12-19 2021-04-14 한국지역난방공사 Organic rankine cycle generating system with thermal storage tank

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4546788B2 (en) * 2004-08-25 2010-09-15 サンデン株式会社 Rankine system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015058399A1 (en) * 2013-10-21 2015-04-30 上海交通大学 Passive low temperature heat energy organic matter working medium electricity generation method
US10060302B2 (en) 2013-10-21 2018-08-28 Shanghai Jiaotong University Passive low temperature heat sources organic working fluid power generation method
KR20200002573A (en) * 2018-06-29 2020-01-08 주식회사 티에스테크 A Large-scale Unused Heat Source Optimum System

Also Published As

Publication number Publication date
KR101208459B1 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
CN1303378C (en) Combined circulating device capable of realizing absorption type cycle and organic matter Rankine cycle
CN201705400U (en) Power plant cooling system adopting waste heat refrigeration form to increase cooling efficiency
KR20120047795A (en) Rankine cycle integrated with absorption chiller
CN101509716A (en) Electric power plant cooling system for enhancing cooling efficiency by utilizing residual heat refrigeration manner
WO2009089694A1 (en) A falling-film evaporation-cooling absorption refrigeration unit
JP2011112272A (en) Method and device for heating and cooling
KR101208459B1 (en) Organic rankine cycle turbo generation system generating cooling air and hot water
CN102032706A (en) Absorbing type refrigerator
JP2011089722A (en) Method and device for refrigeration/air conditioning
CN106482384B (en) Superposition type solution and serial double-effect lithium bromide absorption type refrigeration heat pump unit
KR101397621B1 (en) System for increasing energy efficiency of gas power plant
CN102322705A (en) Circulating device combining diffusing absorption-type refrigeration and vapor compression refrigeration
CN105972858A (en) System and method for supplying energy and storing energy by utilizing waste heat of air compressor
KR200445537Y1 (en) Hybrid Absoption Cooling System
KR101481010B1 (en) Ocean thermal energy conversion system and operation method thereof
KR20120110403A (en) Hiting system using heat of condensation
KR101210968B1 (en) Hybrid absorption type air conditioning system
US20120324925A1 (en) Triple-effect vapor absorption refrigeration system
KR101336788B1 (en) A cooling system of the organic rankine cycle
KR101218547B1 (en) Composion refrigerator
CN102809144A (en) Device and method for using two-stage jet absorption heat pump to improve thermal cycle efficiency
CN105066502A (en) Direct burning absorption refrigeration method and device for recovering phase change heat
KR101699905B1 (en) Absorption chiller system having fuel cell
KR100814615B1 (en) Cogeneration system using compression type cycle and absorption type cycle
JP2007322028A (en) Absorption type refrigerating system

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161107

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171107

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180918

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190909

Year of fee payment: 8