JPS6356367A - Method and device for adaptive control for resistance welding - Google Patents

Method and device for adaptive control for resistance welding

Info

Publication number
JPS6356367A
JPS6356367A JP19824586A JP19824586A JPS6356367A JP S6356367 A JPS6356367 A JP S6356367A JP 19824586 A JP19824586 A JP 19824586A JP 19824586 A JP19824586 A JP 19824586A JP S6356367 A JPS6356367 A JP S6356367A
Authority
JP
Japan
Prior art keywords
resistance
welding
time
value
maximum value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19824586A
Other languages
Japanese (ja)
Inventor
Toshio Kimura
俊男 木村
Masahiro Kato
正弘 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Dengensha Toa Co Ltd
Original Assignee
Mazda Motor Corp
Dengensha Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Dengensha Manufacturing Co Ltd filed Critical Mazda Motor Corp
Priority to JP19824586A priority Critical patent/JPS6356367A/en
Publication of JPS6356367A publication Critical patent/JPS6356367A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Welding (AREA)

Abstract

PURPOSE:To perform the satisfactory resistance welding in a prescribed time at all times even if a welding condition is different by detecting the time of the welding resistance maximum value between electrode tips after electrification is started and integrating the quantity of decrease of the resistance extending to the prescribed time after that to control a welding current. CONSTITUTION:The resistance between the electrode tips 1 after the electrification is started is reduced by the fitting of the pressing surface and the resistance is increased by the rise of the temperature after that. Next, an electrification area is increased by the generation of a nugget and the resistance is decreased gradually. When this resistance maximum value is R2, a point of time T2 is detected by a peak detection circuit 4 and the quantity S2 of integration of the resistance decrease till the prescribed time DELTAT by a timer is calculated by an integration circuit 9 and transmitted to a welding current control circuit 8 as the correct setting quantity. The control circuit 8 gives instructions on a correction current value DELTAI to a welding current regulator 3 to finish the welding after the lapse of the prescribed time. Accordingly, the satisfactory resistance welding is performed in the prescribed time at all times regardless of changes of welding materials, a surface condition and the number of laminations.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、溶接通電時間中の電極チップ間の抵抗また
は電圧の推移に基づいて溶接条件を変化さゼる方式の抵
抗溶接用適応制御の方法と装置に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides an adaptive control system for resistance welding that changes welding conditions based on changes in resistance or voltage between electrode tips during welding current application time. METHODS AND APPARATUS.

(従来の技術) よく知られているように、一般的な薄鋼板のスポット溶
接などの重ね抵抗溶接においては、ワーク(被溶接物)
を挾む加圧通電用の電極チップ間の抵抗は、通電経過時
間とともに第1図(A)に示ずようなパターンで変化す
る。
(Prior art) As is well known, in lap resistance welding such as general spot welding of thin steel plates, the workpiece (object to be welded)
The resistance between the electrode tips for pressurizing and energizing the electrode changes with the elapsed energization time in a pattern as shown in FIG. 1(A).

溶接電流を通電開始したごく初期においては、電極チッ
プ先端やワーク間などに存在する異物などが原因である
大きな接触抵抗が激減するのに伴って、チップ間抵抗は
急速に減少する。しかし通電によるワークの温度上pが
すぐ起ぎ、それによってチップ間抵抗は増加へと変化づ
る。ここで極小値R1を生じる。
At the very beginning when the welding current starts to be applied, the contact resistance between the tips rapidly decreases as the large contact resistance caused by foreign matter existing at the tip of the electrode tip or between the workpieces decreases drastically. However, P immediately occurs due to the temperature of the workpiece due to energization, and as a result, the inter-chip resistance changes to increase. Here, a local minimum value R1 is generated.

ワークの温度が十分高くなると、ワーク間に溶接ナゲツ
トが生成し始める。イウすると溶接電流の流通経路の断
面積が拡大するため、チップ間抵抗は増加から減少へと
変化する。ここで極大l1iIR2が生じる。
When the temperature of the workpieces becomes high enough, weld nuggets begin to form between the workpieces. When this happens, the cross-sectional area of the welding current flow path expands, so the inter-chip resistance changes from increasing to decreasing. Here, a maximum l1iIR2 occurs.

以上のチップ間抵抗の変化と溶接ノゲットの成長度合い
との相関性についての研究が従来から盛んになされてい
る。特に、上記極大値]【2を生じた以降の抵抗の減少
の仕方が溶接ナゲツトの成長の仕方とよく対応している
ことが見出されている。
Research has been actively conducted on the correlation between the above-mentioned change in inter-chip resistance and the degree of growth of weld nogets. In particular, it has been found that the manner in which the resistance decreases after the above-mentioned maximum value [2] is produced corresponds well to the manner in which weld nuggets grow.

これらの研究成果に基づいて、例えば特開昭58−19
6185号公報や、特開昭60−118393号公報な
どに記載されているような抵抗溶接の制御技術が開発さ
れた。これらは、電極チップ間抵抗が極大値を示してか
らの減少変化が、なめ設定しである変化パターン内に収
まるように溶接電流を変化させている。
Based on these research results, for example,
Resistance welding control techniques such as those described in Japanese Patent Application Laid-open No. 6185 and Japanese Patent Application Laid-Open No. 118393/1988 have been developed. In these methods, the welding current is changed so that the decrease in the inter-electrode tip resistance after it reaches its maximum value falls within a set change pattern.

(発明が解決しようとする問題点) ワーク金属の種類、厚み2表面のメッキの有無。(Problem that the invention attempts to solve) Type of workpiece metal, thickness 2. presence or absence of plating on the surface.

重ね合せ枚数といった溶接対象の条件(ワーク条件ど称
する)が同じであっても、ワーク相互の馴染み具合や、
ワーク表面の汚れの程度、あるいは電極ブップ先端の消
耗度合いなどの実施状況の違いににっで、得られる溶接
品質および溶接時間が変わってくる。
Even if the conditions of the objects to be welded (referred to as work conditions), such as the number of stacked pieces, are the same, the degree of familiarity between the work pieces,
The welding quality and welding time that can be obtained will vary depending on the implementation conditions, such as the degree of contamination on the workpiece surface or the degree of wear on the tip of the electrode.

従来の制御技術Cは、上記のような実施状況の変動幅が
あまり大きくなければ、はぼ一定の時間内でほぼ一定の
溶接品質が得られる。しかし実施状況の変動幅が大きい
と、極端に溶接時間が長くなったり、意図どおりの溶接
品質が得られなかったりする。つまり従来の制御技術は
、ワーク条件や実施状況に対づる許容変動幅が非常に狭
いものであった。
Conventional control technology C can provide approximately constant welding quality within a fairly constant period of time as long as the range of variation in implementation conditions as described above is not too large. However, if there is a large variation in the execution status, the welding time may become extremely long or the welding quality as intended may not be obtained. In other words, conventional control technology has a very narrow allowable range of variation depending on work conditions and implementation conditions.

この発明は上述した従来の問題点に鑑みなされたもので
、その[1的は、個々のワークの馴染み具合や表面の汚
れなどといった実施状況が相当大きく変動しても、はぼ
同じ時間内で最適な溶接品質を(!することができるJ
:うにした適応幅の大ぎな抵抗溶接用適応制御の方法と
装置を提供づることで一3= ある。
This invention was made in view of the above-mentioned conventional problems, and the first is that even if the implementation conditions such as the familiarity of each workpiece or the dirt on the surface vary considerably, the process can be performed within approximately the same amount of time. Optimum welding quality (!
13= By providing a method and apparatus for adaptive control for resistance welding that has a wide range of applicability.

(問題点を解決するための手段) そこでこの発明では、ある溶接条件で通電を開始した後
、電極チップ間の抵抗(または電圧)の変化を監視し、
その値が極大値を示ずタイミングを捕えるとともに、そ
の後の一定時間の上記値の減少変化を定量的に分析し、
その分析結果に基づいて上記一定時間経過後の溶接条f
1を決定する制御方法とした。
(Means for solving the problem) Therefore, in the present invention, after starting energization under certain welding conditions, changes in resistance (or voltage) between electrode tips are monitored,
In addition to capturing the timing when the value does not show a maximum value, quantitatively analyze the decreasing change in the above value over a certain period of time,
Based on the analysis results, welding strip f after the above-mentioned certain period of time has elapsed.
The control method was to determine 1.

この制御方法を実施するだめの装置と【ノて、通電開始
後の電極チップ間の抵抗(または電圧)の変化を監視し
てその値が極大値を示JタイミングT2を検出するピー
ク検出手段と、このタイミングT2がら所定時間Δ丁だ
番プ動作し、上記抵抗(または電圧)の上記極大値から
の減少分を積分する積分手段と、この積分手段によって
求められた積分値に対応した溶接条件情報を発生づる特
性設定手段と、J−記タイミングT2がら」−記峙間Δ
T経過した後に上記特性設定手段の出力に従って溶接条
件を変化させる制御手段とを設()た。
A device for carrying out this control method; and a peak detection means for monitoring the change in resistance (or voltage) between the electrode tips after the start of energization and detecting the J timing T2 when the value shows the maximum value. , an integrating means that performs a Δ-difference operation for a predetermined period of time from this timing T2 and integrates a decrease in the resistance (or voltage) from the maximum value, and welding conditions corresponding to the integral value obtained by this integrating means. Characteristic setting means for generating information and J-recording timing T2'-recording interval Δ
A control means for changing the welding conditions according to the output of the characteristic setting means after T has elapsed is provided.

(作 用) 上記電極チップ間抵抗が極大値R2を示して減少し始め
る期間は、溶接ナゲツトの急速成長期と呼ばれる。この
期間でのチップ間抵抗の減少の度合いは、ナグッ]・の
成長、拡大に関する各種の外部要因(ワーク条件や実施
状況など)に対応している。例えば電極チップ先端径が
摩耗によって拡大したり、ワーク板厚が厚くなったり、
ワーク表面に亜鉛メッキ層があったり、ワークの馴染み
が悪かったり、表面が著しく汚れていたりする場合、溶
接ナゲツトは成長、拡大しにくくなり、抵抗の減少も緩
かになってくる。この傾向は上記積分値が小さくなる傾
向である。
(Function) The period in which the inter-electrode tip resistance reaches the maximum value R2 and begins to decrease is called the period of rapid growth of weld nuggets. The degree of decrease in interchip resistance during this period corresponds to various external factors (work conditions, implementation status, etc.) related to the growth and expansion of Naguchi. For example, if the tip diameter of the electrode tip expands due to wear, or if the thickness of the workpiece plate increases,
If there is a galvanized layer on the workpiece surface, if the workpiece does not fit well, or if the surface is extremely dirty, weld nuggets will be difficult to grow and expand, and the resistance will decrease more slowly. This tendency is that the above-mentioned integral value becomes smaller.

この発明では、チップ間抵抗がタイミングT2で極大値
R2を示した後、一定時間Δ丁の上記値の減少変化を定
量的に分析し、その分析結果に基づいて、時間Δ丁を経
過した後の溶接条件を決定することで、ナゲツトの成長
、拡大の条件に合わせた溶接条件を与え、はぼ一定時間
内でほぼ一定の溶接品質を得ることかできる。
In this invention, after the interchip resistance shows the local maximum value R2 at timing T2, the decrease change in the above value of Δt for a certain period of time is quantitatively analyzed, and based on the analysis result, after the time Δt has elapsed, By determining the welding conditions, it is possible to provide welding conditions that match the growth and expansion conditions of the nuggets, and to obtain approximately constant welding quality within a approximately constant time.

(実施例) 第2図はこの発明の一実施例ににる制御装置の構成を示
している。溶接電流調節器3は溶接電流制御回路8によ
って制御され、通電開始時には電極チップ1間に所定の
試験電流11を流す。電極チップ1間の電圧は抵抗算出
回路2に入ノ〕され、この電圧と溶接電流とからチップ
間抵抗R×が算出される。
(Embodiment) FIG. 2 shows the configuration of a control device according to an embodiment of the present invention. The welding current regulator 3 is controlled by a welding current control circuit 8, and causes a predetermined test current 11 to flow between the electrode tips 1 at the start of energization. The voltage between the electrode tips 1 is input to a resistance calculation circuit 2, and the inter-tip resistance Rx is calculated from this voltage and the welding current.

ピーク検出回路4は通電開始後のチップ間抵抗R×の変
化を監視しており、まずRXが急激に減少してから増加
に転する極小値R1を検出する。
The peak detection circuit 4 monitors the change in the interchip resistance Rx after the start of energization, and first detects a minimum value R1 where RX suddenly decreases and then increases.

極小値R1を検出したタイミングT1で、検出回路4は
積分回路5を起動するとともに、検出した極小値R1を
積分回路5に与える。
At timing T1 when the local minimum value R1 is detected, the detection circuit 4 activates the integrating circuit 5 and provides the detected local minimum value R1 to the integrating circuit 5.

積分回路5は、時点T1で起動された後、チップ間抵抗
RXの極小値R1からの増加分(1−なりもRX−R1
)を積分する。
After the integrator circuit 5 is activated at time T1, the integrator circuit 5 calculates the increase (1- or even RX-R1) from the minimum value R1 of the inter-chip resistance RX.
) is integrated.

ピーク検出回路4はその後、チップ間抵抗R×が増加か
ら減少に転する極大値R2を検出する。
The peak detection circuit 4 then detects a local maximum value R2 at which the inter-chip resistance Rx changes from increasing to decreasing.

時点T2で極大値R2を検出したならば、検出回路4は
積分回路5の積分動作を停止させる。これを受番ノで積
分回路5は時点1からI2までの積分結果S1を出力す
る。
When the local maximum value R2 is detected at time T2, the detection circuit 4 stops the integrating operation of the integrating circuit 5. Upon receiving this number, the integrating circuit 5 outputs the integration result S1 from time point 1 to time point I2.

上記積分値S1はレベル弁別回路6に入力され、その大
きさににつで何段階かにクラス分【プされる。
The above-mentioned integral value S1 is inputted to a level discrimination circuit 6, and divided into several classes depending on its magnitude.

そのレベル弁別結果は基本制御量設定回路7の入力とな
る。
The level discrimination result becomes an input to the basic control amount setting circuit 7.

基本制御量設定回路7はメモリーからなり、何段階かに
クラス分けした積分値S1に対し、それぞれ時点I2以
降の最適な溶接電流値を設定したものである。これのデ
ータ設定は、様々なワーク条f1や実施条件について実
際にチップ間抵抗の変化を測定し、その結果から求めた
適切なデータに従っ−Cいる。
The basic control amount setting circuit 7 is composed of a memory, and sets the optimum welding current value after time I2 for each integral value S1 divided into several classes. This data setting is based on appropriate data obtained from actual measurements of changes in interchip resistance for various workpiece lines f1 and implementation conditions.

時点T2で積分値S1が算出され、それに基づいて基本
制御量設定回路7から溶接電流制御回路8に対して溶接
電流の指令値■2が印加される。
At time T2, an integral value S1 is calculated, and based on it, a welding current command value 2 is applied from the basic control amount setting circuit 7 to the welding current control circuit 8.

この時の溶接電流指令値I2が基本制御量である。The welding current command value I2 at this time is the basic control amount.

制御回路8はこれに応答して溶接電流調節器3を制御し
、チップ間に流す溶接電流を試験電流■1から指令され
た電流値■2に切り換える。
In response, the control circuit 8 controls the welding current regulator 3 to switch the welding current flowing between the chips from the test current (1) to the commanded current value (2).

この制御によって、時点T2以酵、すなわちナゲツトが
生成し、それが成長、拡大していく期間の溶接電流I2
が決定される。この値12は、時点T2までで観測され
たワーク条件やその他の実施状況にほぼ見合った値にな
っている。
By this control, the welding current I2 during fermentation after time T2, that is, the period when nuggets are generated, grows and expands.
is determined. This value 12 is a value that is approximately commensurate with the work conditions and other implementation conditions observed up to time T2.

以上が本実施例における前段の制御機能である。The above is the first-stage control function in this embodiment.

本発明の要旨とするところは、次に述べる制御機能であ
る。
The gist of the present invention is the control function described below.

ピーク検出回路4は、極大値R2を検出した時点T2で
、もう1つの積分回路9を起動するどともにこれに極大
値R2を与える。積分回路9は、起動されてから一定時
間へTだけ、チップ間抵抗R×の極大値R2からの減少
分(R2−Rx)を積分する。なお積分時間ΔTはタイ
マにより任意に設定することができる。
At time T2 when the peak detection circuit 4 detects the local maximum value R2, it activates another integrating circuit 9 and gives the local maximum value R2 to it. The integration circuit 9 integrates the decrease (R2-Rx) of the inter-chip resistance Rx from the maximum value R2 for a certain period of time T after being activated. Note that the integration time ΔT can be arbitrarily set using a timer.

時点T2から時間へ−「たけ経過覆ると、積分回路9の
積分動作が停止し、積分結束S2が出力される。
When the time elapses from time T2 to time, the integrating operation of the integrating circuit 9 stops and an integral signal S2 is output.

上記積分値S2はレベル弁別回路10に入力され、その
大きさによって複数段階にクラス分けされる。そのレベ
ル弁別結果は補正m設定回路11の入力となる。補正量
設定回路11は基本制御量設定回路7と同様な方式で、
レベル弁別された積分(iFj S 2に対して溶接電
流の補」量(または補正率)を定めである。
The integral value S2 is input to the level discrimination circuit 10, and is classified into a plurality of levels according to its magnitude. The level discrimination result becomes an input to the correction m setting circuit 11. The correction amount setting circuit 11 has the same method as the basic control amount setting circuit 7,
The amount of compensation (or correction factor) for the welding current is determined for the level-discriminated integral (iFj S2).

時点丁2+八Tにおいて、補正量設定回路11から積分
値S2に対応した補正量が出力され、溶接電流制御回路
8に人力される。この補正指示に応答して制御回路8は
溶接電流調節器3を制御し、溶接電流値をI2から適当
な補正量ΔIだけ増減させる。そして通電開始後一定詩
間を経たならば。
At time point 2+8T, the correction amount corresponding to the integral value S2 is output from the correction amount setting circuit 11, and is manually input to the welding current control circuit 8. In response to this correction instruction, control circuit 8 controls welding current regulator 3 to increase or decrease the welding current value from I2 by an appropriate correction amount ΔI. And if a certain period of time passes after the power is turned on.

制御回路8は溶接電流調節器3を制御して通電を停止す
る。
The control circuit 8 controls the welding current regulator 3 to stop energization.

以上説明した時点T2での基本制御量の設定と、時+ニ
ーj 1−2+Δ王での補正とにより、通電停止時点で
ほぼ設定したとおりの大きさの溶接ナゲツトを得ること
ができる。これは前述したワーク条件が基本的に大ぎく
変動しても達成でき、また電極チップの摩耗やワーク間
の大きな異物などに対しても有効に機能し、様々な条件
変動および実施状況の変動に対しても、はぼ一定時間で
ほぼ一定品質の溶接が行なえる。
By setting the basic control amount at time T2 and making corrections at time + knee j1-2 + ΔK as described above, it is possible to obtain a welding nugget of approximately the set size at the time when the current supply is stopped. This can be achieved even if the work conditions described above basically fluctuate greatly, and it also works effectively against wear of the electrode tip and large foreign particles between the workpieces, and can be achieved even when the work conditions fluctuate widely. However, it is possible to perform welding with almost constant quality in a constant amount of time.

なお以上の実施例においては、制御づる溶接条件として
は溶接電流値のみであったが、本発明は勿論これに限定
されない。溶接電流値のほか、溶接電流波形や電極チッ
プの加圧力などの溶接条件を本発明の方式で制御しても
よい。
In the above embodiments, only the welding current value was controlled as the welding condition, but the present invention is of course not limited to this. In addition to the welding current value, welding conditions such as the welding current waveform and the pressure applied to the electrode tip may be controlled by the method of the present invention.

(発明の効果) 以上詳細に説明したように、この発明に係る抵抗溶接用
適応制御の方法と装置にあっては、溶接ナゲツトの急成
長用でチップ間抵抗の減少変化を測定し、その結果によ
りそれ以降の溶接条件を制御するようにしたので、ワー
ク金属の秤類、板V。
(Effects of the Invention) As explained in detail above, in the method and apparatus for adaptive control for resistance welding according to the present invention, the decreasing change in inter-chip resistance is measured for rapid growth of weld nuggets, and the resulting Since the welding conditions from then on are controlled by

重ね合せ枚数2表面のメッキの有無といったワーク条件
や、ワーク相互間の馴染み具合、異物の有無9表面の汚
れの程度、電極チップの先端径といった溶接実施状況が
相当大ぎな幅で変動しても、この発明の適応制御は有効
に働き、はぼ一定の時間内でほぼ一定品質の抵抗溶接を
行なうことができる。
Even if the welding conditions such as the number of stacked sheets2, the presence or absence of plating on the surface, the degree of familiarity between the workpieces, the presence or absence of foreign matter9, the degree of contamination on the surface, and the diameter of the tip of the electrode tip, welding conditions can vary considerably. The adaptive control of the present invention works effectively, and resistance welding of substantially constant quality can be performed within a substantially constant time.

【図面の簡単な説明】 第1図(A)はチップ間抵抗の時間変化を示ずグラフ、
同図(B)は本発明による溶接電流の時間変化を示すグ
ラフ、第2図は本発明の一実施例による制御装置の構成
を示すブロック図である。 1・・・・・・・・・電極チップ  2・・・・・・・
・・抵抗値算出回路3・・・・・・・・・溶接電流調節
器 4・・・・・・・・・ピーク検出回路 5.9・・・積分回路
[Brief explanation of the drawings] Figure 1 (A) is a graph showing the change in interchip resistance over time.
FIG. 2B is a graph showing a change in welding current over time according to the present invention, and FIG. 2 is a block diagram showing the configuration of a control device according to an embodiment of the present invention. 1... Electrode tip 2...
...Resistance value calculation circuit 3...Welding current regulator 4...Peak detection circuit 5.9...Integrator circuit

Claims (2)

【特許請求の範囲】[Claims] (1)ある溶接条件で通電を開始した後、電極チップ間
の抵抗(または電圧)の変化を監視し、その値が極大値
を示すタイミングを捕えるとともにその後の一定時間の
上記値の減少変化を定量的に分析し、その分析結果に基
づいて上記一定時間経過後の溶接条件を決定することを
特徴とする抵抗溶接用適応制御方法。
(1) After starting energization under certain welding conditions, monitor the change in resistance (or voltage) between the electrode tips, capture the timing when the value shows the maximum value, and check the decrease in the above value for a certain period of time thereafter. An adaptive control method for resistance welding, characterized in that the welding conditions are determined after the predetermined period of time has elapsed based on the quantitative analysis results.
(2)通電開始後の電極チップ間の抵抗(または電圧)
の変化を監視してその値が極大値を示すタイミングT2
を検出するピーク検出手段と、このタイミングT2から
所定時間ΔTだけ動作し、上記抵抗(または電圧)の上
記極大値からの減少分を積分する積分手段と、この積分
手段によって求められた積分値に対応した溶接条件情報
を発生する特性設定手段と、上記タイミングT2から上
記時間ΔTを経過した後に上記特性設定手段の出力に従
つて溶接条件を変化させる制御手段とを備えた抵抗溶接
用適応制御装置。
(2) Resistance (or voltage) between electrode tips after energization starts
Timing T2 when a change in is monitored and the value shows a maximum value
a peak detecting means for detecting the peak detecting means; an integrating means that operates for a predetermined time ΔT from this timing T2 and integrates the decrease in the resistance (or voltage) from the maximum value; and an integral value obtained by the integrating means. An adaptive control device for resistance welding, comprising a characteristic setting means for generating corresponding welding condition information, and a control means for changing the welding conditions according to the output of the characteristic setting means after the time ΔT has elapsed from the timing T2. .
JP19824586A 1986-08-26 1986-08-26 Method and device for adaptive control for resistance welding Pending JPS6356367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19824586A JPS6356367A (en) 1986-08-26 1986-08-26 Method and device for adaptive control for resistance welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19824586A JPS6356367A (en) 1986-08-26 1986-08-26 Method and device for adaptive control for resistance welding

Publications (1)

Publication Number Publication Date
JPS6356367A true JPS6356367A (en) 1988-03-10

Family

ID=16387919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19824586A Pending JPS6356367A (en) 1986-08-26 1986-08-26 Method and device for adaptive control for resistance welding

Country Status (1)

Country Link
JP (1) JPS6356367A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07171685A (en) * 1992-05-01 1995-07-11 Na Detsukusu:Kk Welding controller
JP2010060412A (en) * 2008-09-03 2010-03-18 Honda Motor Co Ltd Method of evaluation of contact area ratio of electrode tip, method of evaluation of internal resistance of workpiece, method of evaluation of attenuation rate of ultrasonic wave and method of determining inclination state of elctrode tip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07171685A (en) * 1992-05-01 1995-07-11 Na Detsukusu:Kk Welding controller
JP2010060412A (en) * 2008-09-03 2010-03-18 Honda Motor Co Ltd Method of evaluation of contact area ratio of electrode tip, method of evaluation of internal resistance of workpiece, method of evaluation of attenuation rate of ultrasonic wave and method of determining inclination state of elctrode tip

Similar Documents

Publication Publication Date Title
EP1044753B1 (en) Control apparatus for resistance welding machine
US7655880B2 (en) Method for monitoring a resistance welding process and device therefor
US4521665A (en) Method and system for determining weld quality in resistance welding
US4254466A (en) Power factor monitoring and control system for resistance welding
JPH1133743A (en) Resistance welding system using accumulated heating value per unit cubage as index
US4746051A (en) Ultrasonic welding control
JP2004510583A (en) Spot welding apparatus and method for detecting welding conditions in real time
US4678887A (en) Method and apparatus for resistance welding
US4289951A (en) Power factor monitoring and control system for resistance welding with line disturbance immunity
JPS6356367A (en) Method and device for adaptive control for resistance welding
US4387289A (en) Control system for resistance welding
JPS6356368A (en) Method and device for adaptive control for resistance welding
JPS63180384A (en) Inter-tip power control type control system for resistance welding
JP3588874B2 (en) Resistance welding control method
KR960705651A (en) METHOD OF MONITORING A WELDING MACHINE, USE OF THE SAID METHOD TO REGULATE THE WELDING MACHINE AND A DEVICE FOR CARRYING OUT THE SAID METHOD)
JPH11285848A (en) Resistance spot welding method
JPH01241385A (en) Electrification control method for resistance welding machine
JP4262050B2 (en) Resistance welding control method
KR20010038882A (en) Apparatus for compensating rewelding state of resistance spot welder
JP2010069507A (en) Resistance welding control method
JP3136866B2 (en) Method and apparatus for monitoring quality of resistance welding electrode
JPS6161909B2 (en)
JPS6120673A (en) Resistance welding method
JPS594982A (en) Method and device for controlling electric current for resistance welding
JPS58112673A (en) Resistance welding control method