JPS6120673A - Resistance welding method - Google Patents

Resistance welding method

Info

Publication number
JPS6120673A
JPS6120673A JP14174984A JP14174984A JPS6120673A JP S6120673 A JPS6120673 A JP S6120673A JP 14174984 A JP14174984 A JP 14174984A JP 14174984 A JP14174984 A JP 14174984A JP S6120673 A JPS6120673 A JP S6120673A
Authority
JP
Japan
Prior art keywords
welding
resistance
electrodes
variation
changing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14174984A
Other languages
Japanese (ja)
Inventor
Yoshio Okabe
義雄 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dengensha Toa Co Ltd
Original Assignee
Dengensha Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dengensha Manufacturing Co Ltd filed Critical Dengensha Manufacturing Co Ltd
Priority to JP14174984A priority Critical patent/JPS6120673A/en
Publication of JPS6120673A publication Critical patent/JPS6120673A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating

Abstract

PURPOSE:To stablize uniformly a welding quality by changing the pressurizing force according to the ideal program on the changing relation between the resistance values among electrodes of various sorts of welding materials and the electrode pressurizing force in a resistance welding and by operating the welding with detecting the progress of the resistance between electrodes with high accuracy. CONSTITUTION:The changing relation of the variation in the resistance values among electrodes of resistance welding of various sorts of welding materials and the electrode pressurizing forces is programmed. With performing a resistance welding according to the program for the variation in electrode pressurizing forces which sharply shows the progress of the resistance values among electrodes thereof, the highest ranked resistance value is detected with high accuracy and the welding is finished after the prescribed hours. With forming a good welding nugget irrespective of the property of the welding material the welding quality is stabilized uniformly. The variation in the pressurizing forces thereof can be simply realized by an electricity and air pressure proportional transducing valve and microcomputor technique.

Description

【発明の詳細な説明】 本発明は溶接中の電S間電圧を検出して溶接電流または
通電時間、あるいはその両方を制御して溶接品質を保証
する抵抗溶接法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a resistance welding method in which welding quality is guaranteed by detecting the voltage between electric currents during welding and controlling the welding current, the current application time, or both.

従来から溶接中の電極間抵抗の推移が溶接部のナゲツト
の生長と良い相関関係にあることが広(認められており
、このことを利用して溶接品質を保証する適応制御方法
が種々提案され、実用に供されている。
It has long been widely accepted that the transition of interelectrode resistance during welding has a good correlation with the growth of nuggets in the weld zone, and various adaptive control methods have been proposed to utilize this fact to ensure welding quality. , has been put into practical use.

第1図は一般的な単相交流溶接において、表面処理を施
さない裸鋼板の電極間抵抗の推移の代表例を示したもの
である。第1図aは通電開始直後の不安定領域で、この
間の電極間抵抗の挙動は被溶接材のあたり具合や表面の
汚損状況等に依存する。この表面接触抵抗は通電開始後
1〜2サイクルで消滅し、電極間抵抗は急速に低下する
。次に第1図すでは溶接部の温度上昇による被溶接材の
固有抵抗の上昇と溶接部の軟化、圧潰による通電路面積
の拡大が同時に進行する。この間は固有抵抗の上昇によ
る溶接部抵抗の上昇の方が通電路面積の拡大による抵抗
値低下を上廻るので結果として電極間抵抗は上昇し、こ
の過程の終了付近で極大値となる。この間はナゲツトの
生成開始および成長初期にあたる。第1図Cのように通
電路面積はナゲツトの成長とともに拡大を続けるが、固
有抵抗は飽和値に達してほぼ一定となるので電極間抵抗
は低下する。
FIG. 1 shows a typical example of the change in interelectrode resistance of a bare steel plate without surface treatment in general single-phase AC welding. FIG. 1a shows an unstable region immediately after the start of energization, and the behavior of the interelectrode resistance during this period depends on the degree of contact with the material to be welded, the state of surface contamination, etc. This surface contact resistance disappears in 1 to 2 cycles after the start of current supply, and the interelectrode resistance rapidly decreases. Next, in FIG. 1, an increase in the specific resistance of the material to be welded due to a rise in the temperature of the weld zone, a softening of the weld zone, and an expansion of the energized path area due to crushing progress simultaneously. During this period, the increase in weld resistance due to the increase in specific resistance exceeds the decrease in resistance due to the expansion of the current carrying path area, and as a result, the interelectrode resistance increases and reaches a maximum value near the end of this process. During this period, nuggets begin to form and grow. As shown in FIG. 1C, the current carrying path area continues to expand as the nugget grows, but the resistivity reaches a saturation value and becomes approximately constant, so the interelectrode resistance decreases.

従来の適応制御法では上記の事実を踏まえて、電極間抵
抗の極太点からの下降量あるいはその積分値がナゲツト
径と深い相関関係にあるとの観点に立ち、あらかじめ設
定された所定の電流値を以て通電を行い、溶接中の電極
間電圧を時々刻々検出し、これを電流値で除することに
より電極間抵抗の推移を求め、この極大点からの下降量
あるいはその積分値が適正ナゲツト値に対応する値にな
った時点で通電を遮断することにより溶接品質を保証し
ていた。
In the conventional adaptive control method, based on the above fact, a predetermined current value is set in advance based on the viewpoint that the amount of decrease of the interelectrode resistance from the thickest point or its integral value has a deep correlation with the nugget diameter. The voltage between the electrodes is detected moment by moment during welding, and the transition of the resistance between the electrodes is determined by dividing this by the current value. Welding quality was guaranteed by cutting off the current when the corresponding value was reached.

ところが上記のような適応制御法は表面処理を施さない
裸鋼板に対しては有効であるが、近年需要が高まってき
た亜鉛メッキ鋼板やシンクロメタルなど表面処理鋼板の
溶接においては、その表面の付着物が電極間抵抗の挙動
に大きな影響を与え、一般的にはその変位量を狭めてし
まう結果、検出量の精度が低下し、ひいては溶接品質の
低下を招来するという不具合があった。
However, although the adaptive control method described above is effective for bare steel sheets without surface treatment, it is difficult to weld surface-treated steel sheets such as galvanized steel sheets and synchrometal sheets, which have been in increasing demand in recent years. The kimono has a large effect on the behavior of the interelectrode resistance, and generally narrows the amount of displacement, resulting in a decrease in the accuracy of the detected amount and, in turn, a deterioration in welding quality.

一例として合金化亜鉛メッキ鋼板の電極間抵抗の推移の
代表例を第2図に示す。第2図aの初期不安定領域では
表層の亜鉛の電気抵抗が鉄より低いため電極間抵抗は裸
鋼板の場合よりやや低めとなる。続く第2図すのナゲツ
ト生成開始および成長初期にあっては第3図の如く溶接
部周辺の亜鉛が溶融し、被溶接材の間隙に充填され通電
路面積を拡げてしまうため電極間抵抗の上昇を鈍らせ、
また極大値自身も低いものとなる。最後に第2図Cのナ
ゲツト成長過程においてはもともと溶融亜鉛によって通
電路面積が拡げられてしまっているのでナゲツト径が拡
大してもそれによる電極間抵抗の低下は裸鋼板の場合は
ど顕著でない。従って極太点の発生が明瞭でないことと
、電極間抵抗の低下率が緩慢であることにより、この下
降量あるいはその積分値を精度よく検出することは極め
て困難であった。
As an example, FIG. 2 shows a typical example of the change in interelectrode resistance of an alloyed galvanized steel sheet. In the initial unstable region shown in FIG. 2a, the electrical resistance of surface zinc is lower than that of iron, so the interelectrode resistance is slightly lower than that of a bare steel plate. At the beginning of nugget formation and early growth as shown in Figure 2, the zinc around the weld zone melts and fills the gaps in the welding material, expanding the current carrying path area, resulting in a decrease in interelectrode resistance. slow the rise,
Moreover, the maximum value itself is also low. Finally, in the nugget growth process shown in Figure 2C, the current carrying path area has already been expanded by molten zinc, so even if the nugget diameter increases, the resulting decrease in interelectrode resistance is not as noticeable in the case of a bare steel plate. . Therefore, it has been extremely difficult to accurately detect the amount of decrease or its integral value because the occurrence of extremely thick dots is not clear and the rate of decrease in interelectrode resistance is slow.

本発明はかかる不具合を解消するためになされたもので
、従来は溶接中宮に一定で行なわれていた電極加圧力を
被溶接材の種別、即ち材質、板厚、表面処理状況等に対
応し、しかも電極間抵抗の推移の狭小化をきたさないよ
うにあらかじめ目的とする溶接材に対してテスト溶接を
行い、ナゲツトの生長を促進し、なおかつ電極間抵抗の
挙動が顕著に現れるような溶接中の電極加圧カバターン
を求めておき、以後の溶接作業を前記加圧カバターンを
以て行い、ナゲツトの生長を確実ならしめるとともに、
溶接中の電極間抵抗の推移が高精度で検出できるように
し、均一な溶接品質を保証するものて゛ある。
The present invention has been made in order to solve this problem, and the electrode pressurizing force, which was conventionally applied at a constant value during welding, is changed to correspond to the type of material to be welded, that is, the material, plate thickness, surface treatment status, etc. Furthermore, in order to avoid narrowing the transition of the interelectrode resistance, test welding is performed on the target welding material in advance to promote nugget growth and to prevent the behavior of the interelectrode resistance from becoming noticeable during welding. The electrode pressure cover turn is determined, and the subsequent welding work is performed using the pressure cover turn to ensure the growth of the nugget.
There is a method that allows the transition of interelectrode resistance during welding to be detected with high precision and guarantees uniform welding quality.

第4図に本発明を合金化亜鉛メッキ鋼板の溶接に適用し
た実施例を示し、以下図面に基いて説明する。第4図に
おいて加圧力波形1は従来の適応制御法に従い一定加圧
力を以て溶接を行ったことを示し、波形2はその場合の
電極間抵抗の推移であって、第2図の波形と同一である
。波形3は実験によって求められた該溶接材に対する適
正な加圧力波形で、溶接性の改善と波形4、即ちそのと
きの電極間抵抗の推移の検出精度の向上が考慮されてい
る。従来の適応制御法に比較して、まずす溶融亜鉛がも
たらす通電路面積の拡大による清流密度の低下を補う。
FIG. 4 shows an embodiment in which the present invention is applied to welding of alloyed galvanized steel sheets, and will be described below with reference to the drawings. In Fig. 4, pressure waveform 1 indicates that welding was performed with a constant pressure according to the conventional adaptive control method, and waveform 2 shows the transition of interelectrode resistance in that case, and is the same as the waveform in Fig. 2. be. Waveform 3 is an appropriate pressing force waveform for the welding material obtained through experiments, and takes into consideration improvement in weldability and waveform 4, that is, improvement in detection accuracy of the transition of interelectrode resistance at that time. Compared to conventional adaptive control methods, it first compensates for the decrease in clear stream density due to the expansion of the energized path area brought about by molten zinc.

これによって溶接部温度が上昇し、固有抵抗も上昇する
結果、電極間抵抗は上昇し、極大点が明瞭に出現する。
As a result, the temperature of the weld zone increases and the specific resistance also increases, resulting in an increase in the interelectrode resistance and a clear maximum point.

この時点ですでにナゲツトは生成され、成長を開始して
いるので以後は散りを防止するため加圧力を上昇させ、
やや緩慢にナゲツトを成長させる。上記のように波形3
のような通電を行えば、波形4のような電極間抵抗の推
移となり、これはたとえば極大点からの下降量あるいは
その積分値を検出するとずれば波形2の場合よりはるか
に精度の向上がはかれることは明白である。従って種々
の外乱によるナゲツトの成長速度の変動もより鋭敏に検
出可能であり、良好な再現性が得られ、以て均一を溶接
品質を保証することができる。
At this point, nuggets have already been generated and have started to grow, so from now on, the pressure is increased to prevent them from scattering.
Grow nuggets somewhat slowly. Waveform 3 as above
If energization is carried out, the interelectrode resistance will change as shown in waveform 4, which means that, for example, if the amount of decline from the maximum point or its integral value is detected, the accuracy will be much better than in the case of waveform 2. That is clear. Therefore, fluctuations in the growth rate of nuggets due to various disturbances can be detected more sensitively, good reproducibility can be obtained, and uniform welding quality can be guaranteed.

適正な加圧力波形を求めるためには溶接材の種別ごとに
あらかじめ溶接実験を行って良好な溶接品質が得られ、
なおかつ電極間抵抗の推移の変位量が大きくなるように
考慮しながら電極加圧カバターンを決定する。なお従来
はこのように1回の溶接作業中に加圧力を変更すること
は多大の経費を要し、実現が困難であったが、近年の電
気空気圧比例変換弁やマイクロコンビーータ技術等の進
歩によりこれが可能となって来たことが本発明の背景に
ある。
In order to find the appropriate pressure waveform, welding experiments should be conducted in advance for each type of welding material to ensure good welding quality.
In addition, the electrode pressurization cover pattern is determined while taking into consideration that the amount of displacement in the transition of the interelectrode resistance becomes large. In the past, changing the pressurizing force during a single welding operation required a large amount of money and was difficult to realize, but with recent advances in electropneumatic proportional conversion valves and microconbeater technology, etc. The background of the present invention is that progress has made this possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第2図は表面処理を施さない裸鋼板に対して適切な一定
電流値を以て通電を行った場合の電極間抵抗の推移の代
表例である。また第2図はこれを合金化亜鉛メッキ鋼板
に対して行なったものである。 第3図は合金化亜鉛メッキ鋼板の溶接部近傍の断面図で
溶融した亜鉛がシートセパレーションを抑制し、通電路
面積を拡げている状況を示したものである。 第4図は波形1および3が電極加圧力を示し、波形2お
よび波形4は溶接中の電極間抵抗の推移でそれぞれ波形
1,3に対応し7たものである。 第1図 第3図 第4図 手続補正書(オK) 昭和59年11月19日 特許庁長官  志 賀  学 殿 昭和59年特許願第141749号 2 発明の名称 抵抗溶接方法 3 補正をする者 事件との関係 特許出願人 デングンシャ 名 称  株式会社電元社製作所 明細計第7ページ13行の「!82図」を「第1図」に
訂正する。
FIG. 2 is a typical example of the change in interelectrode resistance when a bare steel plate without surface treatment is energized with an appropriate constant current value. Moreover, FIG. 2 shows the results obtained by applying this method to an alloyed galvanized steel sheet. FIG. 3 is a cross-sectional view of a welded portion of an alloyed galvanized steel sheet showing a situation in which molten zinc suppresses sheet separation and expands the current carrying path area. In FIG. 4, waveforms 1 and 3 indicate the electrode pressing force, and waveforms 2 and 4 are changes in interelectrode resistance during welding, corresponding to waveforms 1 and 3, respectively. Figure 1 Figure 3 Figure 4 Procedural Amendment (OK) November 19, 1980 Commissioner of the Patent Office Manabu Shiga Patent Application No. 141749 of 1981 2 Name of the invention Resistance welding method 3 Person making the amendment Relationship to the incident Name of patent applicant Dengunsha Title Dengensha Seisakusho Co., Ltd. Correct "Figure !82" to "Figure 1" on page 7, line 13 of the detailed statement.

Claims (1)

【特許請求の範囲】[Claims] 実溶接期間中に電極加圧力を前記プログラムにそって変
化させることにより、溶接ナゲットの生成を確実にした
ことを特徴とする抵抗溶接方法。
A resistance welding method characterized in that the generation of a weld nugget is ensured by changing the electrode pressurizing force according to the program during the actual welding period.
JP14174984A 1984-07-09 1984-07-09 Resistance welding method Pending JPS6120673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14174984A JPS6120673A (en) 1984-07-09 1984-07-09 Resistance welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14174984A JPS6120673A (en) 1984-07-09 1984-07-09 Resistance welding method

Publications (1)

Publication Number Publication Date
JPS6120673A true JPS6120673A (en) 1986-01-29

Family

ID=15299301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14174984A Pending JPS6120673A (en) 1984-07-09 1984-07-09 Resistance welding method

Country Status (1)

Country Link
JP (1) JPS6120673A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07171685A (en) * 1992-05-01 1995-07-11 Na Detsukusu:Kk Welding controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07171685A (en) * 1992-05-01 1995-07-11 Na Detsukusu:Kk Welding controller

Similar Documents

Publication Publication Date Title
US4329561A (en) Method of ensuring the maintenance of constant quality of spot welds
AU677843B2 (en) Resistance welding control method
EP0350013B1 (en) Resistance welding control method
US4456810A (en) Adaptive schedule selective weld control
US5852273A (en) Resistance welding controller and method including thermal conduction simulation of weld nugget condition
EP0070904A1 (en) Method for bonding a contact
JPH1133743A (en) Resistance welding system using accumulated heating value per unit cubage as index
US4678887A (en) Method and apparatus for resistance welding
CA2279372A1 (en) Plasma arc welding apparatus and method
JP3314407B2 (en) Method and apparatus for controlling resistance welding of coated conductive member
CA3017083A1 (en) Resistance welding method and resistance welding apparatus
JPS6120673A (en) Resistance welding method
JP3117543B2 (en) Resistance welding control device
US5889262A (en) System for and method of automatically controlling amount of input heat in high-frequency electric resistance welding machine
JPS619982A (en) Resistance welding method
US4634829A (en) Control method of spot welding
JPS6178580A (en) Controlling method for resistance welding
JP2020082168A (en) Spot-welding method and method for setting welding condition for spot-welding
JP2943559B2 (en) Resistance spot welding method
JPS6356368A (en) Method and device for adaptive control for resistance welding
Williams et al. Current stepping programmes for maximising electrode campaign life when spot welding coated steels
JPH03204182A (en) Resistance welding machine
JP2019118921A (en) Welding device
JP3588874B2 (en) Resistance welding control method
JPS6238779A (en) Control method for resistance welding