JPH01241385A - Electrification control method for resistance welding machine - Google Patents

Electrification control method for resistance welding machine

Info

Publication number
JPH01241385A
JPH01241385A JP6576688A JP6576688A JPH01241385A JP H01241385 A JPH01241385 A JP H01241385A JP 6576688 A JP6576688 A JP 6576688A JP 6576688 A JP6576688 A JP 6576688A JP H01241385 A JPH01241385 A JP H01241385A
Authority
JP
Japan
Prior art keywords
energization
welding
current
occurrence
expulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6576688A
Other languages
Japanese (ja)
Other versions
JPH0681670B2 (en
Inventor
Hajime Tsujii
元 辻井
Masahide Kondo
正英 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP63065766A priority Critical patent/JPH0681670B2/en
Publication of JPH01241385A publication Critical patent/JPH01241385A/en
Publication of JPH0681670B2 publication Critical patent/JPH0681670B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To surely stop electrification at the early stage of the occurrence of expulsion and surface flash by connecting electrodes to the secondary side of a welding transformer via a rectifier circuit and connecting the primary side of the transformer to an AC power source via an inverter and a rectifier circuit. CONSTITUTION:The secondary side of the welding transformer 1 is connected to a couple of electrodes 3 and 3 via the rectifier circuit 2. The primary side of the welding transformer 1 is connected to a three-phase AC power source terminal 8 via the inverter consisting of four power transistors 51, 52, 53 and 54, a filter circuit 6 and the rectifier circuit 7. The electrification pulse width at the primary side 1 is then changed according to the pulse width of a control pulse added to these power transistors 51-54 to control a welding current and the control pulse is allowed to rise when the occurrence of the expulsion and surface flash is detected and the electrification is stopped immediately.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、抵抗溶接機における通電制御方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for controlling energization in a resistance welding machine.

(従来の技術) 抵抗溶接では、電極間に挾まれるワークの部分に通電に
よる発熱でナゲツト部が形成されるが、その後も通電を
続けるとナゲツト部の熱膨張力を電極加圧力が押えきれ
なくなり、溶接金属の一部が外に飛出して散りを生ずる 溶接強度が最大になるのは、散りの発生寸前で通電を停
止したときであるが、散りの発生時期を事前に知ること
はできず、そこで従来は、特公昭57−37430号公
報で知られるように、通電時間を一定にして通電を行い
、散りが発生したときは次の打点での溶接に際し溶接電
流を所定量減少させるか、或いは特開昭58−4757
9号公報や、特開昭511−47580号公報に見られ
るように、散りの発生時点で通電を停止するようにして
いる。
(Conventional technology) In resistance welding, a nugget is formed in the part of the work sandwiched between electrodes due to heat generation due to energization, but if the current is continued after that, the electrode pressure force cannot suppress the thermal expansion force of the nugget. The strength of the weld reaches its maximum when the current is stopped just before the weld metal ejects, but it is not possible to know in advance when the weld metal will occur. Therefore, conventionally, as known from Japanese Patent Publication No. 57-37430, energization is carried out at a constant energization time, and when expulsion occurs, the welding current is reduced by a predetermined amount when welding at the next welding point. , or JP-A-58-4757
As seen in Japanese Patent No. 9 and Japanese Patent Application Laid-Open No. 511-47580, the electricity supply is stopped at the point where scattering occurs.

尚、上記のものでは、散りによって変化する電極間の距
離や抵抗値、電流値、電極加圧力等のパラメータを検出
し、この検出値の変化からチリの発生を検出している。
In the above method, parameters such as the distance between the electrodes, the resistance value, the current value, and the electrode pressing force that change due to scattering are detected, and the occurrence of dust is detected from changes in the detected values.

(発明が解決しようとする課8) 上記特公昭57−37430号公報の技術は、散りが発
生したときの事後対策であり、散りが発生した打点部の
溶接強度を保証できない。
(Problem 8 to be Solved by the Invention) The technique disclosed in Japanese Patent Publication No. 57-37430 is a measure taken after expulsion occurs, and cannot guarantee the welding strength of the welding point where expulsion occurs.

又、特開昭58−47579号公報や特開昭58−47
580号公報に記載のものは、商用電源からコンタクタ
を介して溶接トランスに電力を供給する通常の交流式溶
接機であって、1次電流の波形は第9図に示すようにな
り、ここ□でコンタクタは一般にサイリスタで構成する
ため、通電途中では電流をカットできず、通電途中のt
、の時点で散りが発生しても半サイクルの通電が終了す
るt2の時点までは通電が継続され、散りの発生から通
電停止までのタイムラグは、電源周波数が50fizの
場合最大限lOミリ秒になる。
Also, JP-A-58-47579 and JP-A-58-47
The one described in Publication No. 580 is a normal AC welding machine that supplies power from a commercial power source to a welding transformer via a contactor, and the waveform of the primary current is as shown in Figure 9, where □ Since the contactor is generally composed of a thyristor, the current cannot be cut during energization, and
Even if dissipation occurs at time , energization continues until time t2, when half-cycle energization ends, and the time lag from the occurrence of dissipation until energization stops is at most 10 milliseconds when the power supply frequency is 50 fiz. Become.

ところで、本願発明者は高速度カメラを用いて実験を行
い、散りの飛散速度が時速200b(5、5cm / 
”+)秒)に達することを確認した。
By the way, the inventor of this application conducted an experiment using a high-speed camera, and found that the scattering speed of the particles was 200 b/h (5.5 cm/h).
”+) seconds) was confirmed.

上記の如<、lOミリ秒のタイムラグがあると、散りの
発生を初期段階で抑制できなくなり、溶接強度が低下し
てしまう。
As mentioned above, if there is a time lag of 10 milliseconds, the occurrence of expulsion cannot be suppressed in the initial stage, resulting in a decrease in welding strength.

本発明は、以上の点に鑑−み、散りが発生したときその
初期段階で確実に通電を停止して、良好な溶接を行い得
られるようにした通電制御方法を提供することをその目
的とする。
In view of the above points, an object of the present invention is to provide an energization control method that reliably stops energization at the initial stage when expulsion occurs, thereby achieving good welding. do.

(課題を解決するための手段) 本発明は、上記目的を達成すべく、1対の電極間にワー
クを挾んで通電する際に、散りの発生で値が変化するパ
ラメータを検出し、このパラメータ値の変化から散りの
発生を検出して通電を停止するようにしたものにおいて
、溶接トランスの2次側に整流回路を介して前記電極を
接続すると共に、該トランスの1次側をパワトランジス
タで構成されるインバータと整流回路とを介して交流電
源端子に接続し、該インバータに加える制御パルスのパ
ルス幅に応じて1次側の通電パルス幅を変化させて溶接
電流を制御するようにし、散りの発生を検出したとき制
御パルスを立上げて直ちに通電を停止するようにしたこ
とを特徴とする。
(Means for Solving the Problem) In order to achieve the above object, the present invention detects a parameter whose value changes due to the occurrence of scattering when a workpiece is sandwiched between a pair of electrodes and energized, and detects a parameter whose value changes due to the occurrence of scattering. In a device that detects the occurrence of dissipation from a change in value and stops energization, the electrode is connected to the secondary side of a welding transformer via a rectifier circuit, and the primary side of the transformer is connected to a power transistor. The welding current is connected to an AC power supply terminal through an inverter and a rectifier circuit, and the welding current is controlled by changing the energization pulse width on the primary side according to the pulse width of the control pulse applied to the inverter. The present invention is characterized in that the control pulse is raised and the energization is immediately stopped when the occurrence of is detected.

この場合、溶接電流を通電開始後漸増させることが望ま
しい。
In this case, it is desirable to gradually increase the welding current after starting to apply the welding current.

(作 用) インバータのパワトランジスタは、制御パルスの立上り
と立下りでオンオフし、これにより溶接トランスの1次
側の通電パルス幅が制御パルスに応じて変化する。そし
て、散りの発生により制御パルスが立下ると、瞬時にパ
ワトランジスタがオフし、散りの発生初期段階で確実に
通電が停止される。
(Function) The power transistor of the inverter is turned on and off at the rising and falling edges of the control pulse, thereby changing the energization pulse width on the primary side of the welding transformer in accordance with the control pulse. Then, when the control pulse falls due to the occurrence of expulsion, the power transistor is instantly turned off, and the current supply is reliably stopped at the initial stage of occurrence of expulsion.

ところで、ワークの種類や板厚等によってナゲツトの形
成に必要な溶接電流値が変化するため、例えば板厚の異
る打点を定電流で溶接する場合、打点毎に電流値を設定
せざるを得なくなり、又電位の摩耗による電流密度の減
少に合わせて電流値を設定し直す必要を生ずる これに対し、溶接電流を漸増させるようにすれば、−々
電流値を設定する必要がなくなり、而も散りの発生で自
動的に通電が停止されるため、通電時間の設定も不要と
なり、設定作業が極めて簡単になる。
By the way, the welding current value required to form a nugget changes depending on the type of workpiece, plate thickness, etc., so for example, when welding points with different plate thicknesses with a constant current, it is necessary to set the current value for each point. In contrast, if the welding current is gradually increased, there is no need to set the current value again. Since the energization is automatically stopped when scattering occurs, there is no need to set the energization time, making the setting work extremely simple.

(実施例) 第1図を参照して、(1)は溶接トランスを示し、該ト
ランス(1)の2次側を整流回路(2)を介して1対の
電極(3) (3)に接続し、後記するコントローラ(
It)により空圧サーボ回路■を介して作動される加圧
シリンダ(4)により電極(3) (3)間にワークW
を挾んで加圧した状態で該画電極(3) (3)間に直
流の溶接電流を通電してワークWのスポット溶接を行う
ようにした。
(Example) Referring to FIG. 1, (1) shows a welding transformer, and the secondary side of the transformer (1) is connected to a pair of electrodes (3) through a rectifier circuit (2). Connect the controller (
The workpiece W is moved between the electrodes (3) by the pressurizing cylinder (4) operated by the pneumatic servo circuit
The workpiece W was spot welded by passing a direct current welding current between the image electrodes (3) (3) while holding and pressurizing the workpieces W.

該トランス(1)の1次側は、4個のパワトランジスタ
(51) (52) (53) (54)から成るイン
バータ(5)と、濾波回路(6)と、整流回路(7)と
を介して三相の交流電源端子(8)に接続され、これら
パワトランジスタ(51)〜(54)をパルス幅制御回
路(9)によりベースドライブ回路(IOを介してオン
オフ制御するようにした。
The primary side of the transformer (1) includes an inverter (5) consisting of four power transistors (51), (52), (53), and (54), a filter circuit (6), and a rectifier circuit (7). These power transistors (51) to (54) are controlled to be turned on and off by a pulse width control circuit (9) via a base drive circuit (IO).

図中(l′Dはマイクロコンピュータから成る抵抗溶接
機のコントローラ、aのは電流検出素子(12a)から
の信号で実効電流値を検出する電流検出回路、113は
電流設定器、(IOは電流検出回路(13と電流設定器
03との出力を比較して実効電流値が設定電流値が達す
るまで低レベルの信号を出力し両者が一致したとき高レ
ベルの信号を出力する比較器、a9は高周波例えば16
00 I2のクロックパルスを発生する発振器を示し、
これらコントローラ(Ivからの信号と、比較器(IΦ
からの信号と、発振器(+51からのクロックパルスと
をパルス幅制御回路(9)に入力して、該回路(9)か
ら後記する如く制御パルスを出力させるようにした。
In the figure (l'D is the controller of the resistance welding machine consisting of a microcomputer, a is the current detection circuit that detects the effective current value by the signal from the current detection element (12a), 113 is the current setting device, (IO is the current A9 is a comparator that compares the outputs of the detection circuit (13 and current setter 03) and outputs a low level signal until the effective current value reaches the set current value, and outputs a high level signal when the two match. High frequency e.g. 16
00 indicates an oscillator that generates a clock pulse of I2,
These controllers (signals from Iv and comparator (IΦ
A signal from the oscillator (+51) and a clock pulse from the oscillator (+51) are input to a pulse width control circuit (9), and the circuit (9) outputs a control pulse as described later.

パルス幅制御回路(9)の詳細は第2図に示す通りであ
り、比較器a@からの信号を入力するANDゲート(′
lGと、クロックパルスを入力するANDゲートa71
と、両ANDゲートaea7)ノ出力をO1iゲート(
1&を介して人力するフリップフロップa!りと、クロ
ックパルスを人力するフリップフロップ■と、クロック
パルスの人力で同端子の出力が短時間低レベルになる単
安定マルチバイブレータ0と、出力側の2個のANDゲ
ート■■とを設け、該両人NDゲート■■にフリップフ
ロップ(+9のQ端子と単安定マルチバイブレータ■の
同端子とコントローラ(+1)との信号を入力すると共
に、一方のANDゲート■にフリップフロップ■のQ端
子の信号と、他方のANDゲート■に該フリップフロッ
プ■の同端子の信号とを入力した。
The details of the pulse width control circuit (9) are as shown in Fig. 2, and include an AND gate ('
AND gate a71 that inputs lG and clock pulse
and the output of both AND gates aea7) is connected to the O1i gate (
Flip-flop a! In addition, a flip-flop ■ that manually generates a clock pulse, a monostable multivibrator 0 whose output at the same terminal becomes low level for a short time due to the manual input of the clock pulse, and two AND gates ■■ on the output side are installed. Input the signals from the Q terminal of the flip-flop (+9), the same terminal of the monostable multivibrator ■, and the controller (+1) into both ND gates ■■, and input the signals from the Q terminal of the flip-flop ■ to one AND gate ■■. The signal and the signal at the same terminal of the flip-flop (2) were input to the other AND gate (2).

かくて、実効電流値が設定電流値に達するまでは、AN
Dゲートaeに比較器(I41から低レベルの信号が入
力されて、フリップフロップa印のQ端子からは高レベ
ルの信号が継続して出力され、一方フリップフロップ■
のQ端子及び同端子の出力はクロックパルスによって交
互に高レベルとなり、又単安定マルチバイブレータ12
I)の同端子の出力はクロックパルスの入力毎に短時間
低レベルになるため、ANDゲート■■からクロックパ
ルスに同期した短い休止時間を存して高レベルの制御パ
ルスが交互に出力され、一方のANDゲート■からの制
御パルスによりパワトランジスタ(5+) (52)と
、他方のANDゲートのからの制御パルスによりパワト
ランジスタ(53) (5A)とがオンされて、溶接ト
ランス(1)の1次コイルに第8図に示す如き矩形波の
交流パルスが通電される。
Thus, until the effective current value reaches the set current value, AN
A low level signal is input from the comparator (I41) to the D gate ae, and a high level signal is continuously output from the Q terminal of the flip-flop marked a, while the flip-flop ■
The Q terminal of
Since the output of the same terminal of I) becomes low level for a short time every time a clock pulse is input, high level control pulses are outputted alternately from the AND gate ■■ with a short pause period synchronized with the clock pulse. The control pulse from one AND gate ■ turns on the power transistor (5+) (52), and the control pulse from the other AND gate turns on the power transistor (53) (5A), which turns on the welding transformer (1). A rectangular alternating current pulse as shown in FIG. 8 is applied to the primary coil.

実効電流値が設定電流値に一致すると、比較器(IΦか
らANDゲート(161に高レベルの信号が入力されて
、フリップフロップa9のQ端子の出力が低レベルにな
り、かくするときはクロックパルスが入力される前に制
御パルスが立下って制御パルスのパルス幅が減少し、こ
れに応じて溶接トランス(1)の1次側の通電パルス幅
Tも減少し、溶接電流が設定電流値に等しくなるように
制御される。
When the effective current value matches the set current value, a high level signal is input from the comparator (IΦ to the AND gate (161), and the output of the Q terminal of the flip-flop a9 becomes low level. The control pulse falls before the input is input, and the pulse width of the control pulse decreases. Accordingly, the energization pulse width T on the primary side of the welding transformer (1) also decreases, and the welding current reaches the set current value. controlled to be equal.

そして、電流設定器(13から第7図に示す特性の設定
信号を出力し、溶接電流を通電開始後この特性に従って
漸増させるようにした。
Then, a setting signal having the characteristics shown in FIG. 7 was outputted from the current setting device (13), and the welding current was gradually increased according to the characteristics after the welding current started being applied.

前記コントローラ(11)には、加圧シリンダ〈4)の
ピストンの変位から電極(3) (3)間の開度を検出
する光学式距離センサから成る開度検出器■の信号と、
電極(3) (3)間の電圧と電流とから電極(3) 
(3)間の抵抗値を検出する抵抗検出回路■の信号とか
人力され、開度検出器QΦからの信号で電極(3)(3
)が所定の加圧開度に閉じられたことが確認されたとき
、該コントローラ(l′Dから前記ANDゲート■■に
高レベルの通電指令信号を出力して、通電を開始するよ
うにし、又抵抗検出回路■で検出された抵抗値の単位時
間当りの変化量ΔRをコントローラ(ITのCPUで演
算して、これが規定値以上になったときコントローラ(
′l′DからANDゲート■■に低レベルの通電停止信
号を出力し、制御パルスを立下げて通電を停止するよう
にした。
The controller (11) includes a signal from an opening detector (1) consisting of an optical distance sensor that detects the opening between the electrodes (3) (3) from the displacement of the piston of the pressurizing cylinder (4);
Electrode (3) (3) Voltage and current between electrodes (3)
(3) The signal from the resistance detection circuit ■ that detects the resistance value between electrodes (3) (3) is input manually, and the signal from the opening detector QΦ
) is confirmed to be closed to a predetermined pressurized opening degree, output a high-level energization command signal from the controller (l'D) to the AND gate ■■ to start energization, In addition, the amount of change ΔR of the resistance value detected by the resistance detection circuit ■ per unit time is calculated by the controller (IT CPU), and when it exceeds the specified value, the controller (
A low-level energization stop signal was output from 'l'D to the AND gate ■■, and the control pulse was lowered to stop the energization.

第4図のa線は良好な溶接が行われた場合の電W (3
) (3)間の抵抗値の変化を示し、通電初期に接触抵
抗の減少で抵抗値が一旦低下した後、発熱により抵抗値
か次第に増加し、ナゲツトの形成後の散りの発生で抵抗
値が急激に低下する。
The a-line in Figure 4 shows the electric current W (3
) (3) The resistance value decreases due to the decrease in contact resistance at the initial stage of energization, then the resistance value gradually increases due to heat generation, and the resistance value increases due to the occurrence of dispersion after nuggets are formed. Declines rapidly.

尚、ワークの汚損や電極(3)の片当り等で電極(3)
とワークの接触面積が小さくなると、ワークの局部加熱
により通電初期に散りを発生し、抵抗値の変化特性は第
4図のb線のようになり、又電極(3)が過度に摩耗す
ると、電流密度の減少でナゲツトが良好に形成されなく
なり、その結果散りも発生しなくなって、抵抗値の変化
特性は第4図のa線のようになる。
In addition, if the workpiece is contaminated or the electrode (3) is unevenly touched, the electrode (3)
When the contact area between the electrode (3) and the workpiece becomes small, local heating of the workpiece causes scattering at the initial stage of energization, and the resistance value change characteristic becomes as shown by line b in Figure 4.Also, when the electrode (3) is excessively worn, As the current density decreases, nuggets are no longer formed well, and as a result, no scattering occurs, and the resistance value change characteristic becomes as shown by line a in FIG. 4.

第3図はコントローラ(11のプログラムを示し、先ず
抵抗値を読込んでストアし、所定の単位時間前に読込ん
だ抵抗値と今回読込んだ抵抗値との偏差から単位時間当
りの変化量ΔRを演算しく■)、次にΔRが設定値α以
上か否かを判別して(■)、△R<aのときは通電開始
からの経過時間tが予め定めた最大通電時間t l1a
xに達したか否かを判別しく■)、t<taaxのとき
は■のステップに戻り上記の判別処理を繰返す。
Figure 3 shows a program for the controller (11). First, the resistance value is read and stored, and the amount of change ΔR per unit time is determined from the deviation between the resistance value read a predetermined unit time ago and the resistance value read this time. (■), then determine whether ΔR is greater than or equal to the set value α (■), and if ΔR<a, the elapsed time t from the start of energization is the predetermined maximum energization time t l1a
It is determined whether or not x has been reached (■), and if t<taax, the process returns to step (■) and the above determination process is repeated.

尚、前記単位時間はこの判別処理のサイクルタイムのn
(整数)倍に設定し、■のステップでn回前に読込んだ
抵抗値をI?A)Iから読出してΔRを演算する。単位
時間を100マイクロ秒程度に設定すれば、散りの発生
時にのみΔRが判別可能な大きさとなり、散り発生時以
外の抵抗値の変化ではΔRが殆んど零となり、誤作動を
生ずることなく散りの発生を応答性良く検出できる。
Note that the unit time is n of the cycle time of this discrimination process.
(integer) times the resistance value read n times before in step ■. A) Read from I and calculate ΔR. If the unit time is set to about 100 microseconds, ΔR will be large enough to be determined only when expulsion occurs, and ΔR will be almost zero when the resistance value changes other than when expulsion occurs, without causing malfunction. The occurrence of scattering can be detected with good responsiveness.

散りの発生でΔR≧αになると、経過時間tが予め定め
た最小通電時間tllljnを越えているか否かを判別
する(■)。t>winでΔR〉αになるのは、第4図
のa線の如く良好な溶接が行われたときであり、この場
合は■のステップに進んで通電停止信号を出力する。こ
れによれば、パルス幅制御回路(9)から出力されてい
る制御パルスが立下り、ΔR〉αになった第6図のt、
の時点で直ちに通電が停止される。
When ΔR≧α due to the occurrence of scattering, it is determined whether the elapsed time t exceeds a predetermined minimum energization time tllljn (■). When t>win and ΔR>α, it is when good welding is performed as shown by line a in FIG. 4. In this case, proceed to step (3) and output a energization stop signal. According to this, the control pulse output from the pulse width control circuit (9) falls and becomes ΔR>α at t in FIG.
Power is immediately cut off at this point.

又、第4図のb線の如く初期散りを生じてt<tIli
nでΔR〉αになったときは、■のステップに進んで通
電停止信号を出力し、次いで■のステップに進んでアラ
ームを作動する。
In addition, initial dispersion occurs as shown by line b in Figure 4, and t<tIli
When ΔR>α at n, the process proceeds to step (2) to output a energization stop signal, and then proceeds to step (2) to activate an alarm.

又、第4図のa線の如く最大通電時間t tnaxにな
ってもΔR≧αにならないときは、■のステップから■
のステップに進んで通電停止信号を出力し、次いで■の
ステップに進んで整形指令信号を出力し、抵抗溶接機を
これを取付けたロボットの作動で整形器の配置場所に移
動して、電極(3)を整形する。
Also, if ∆R≧α does not hold even after the maximum energization time ttnax as shown by line a in Fig. 4, proceed from step ① to ②.
Proceed to step (2) to output the energization stop signal, then proceed to step (2) to output the shaping command signal, move the resistance welding machine to the location where the shaping device is placed by the action of the robot to which it is attached, and attach the electrode ( 3) Format.

尚、溶接電流を上記の如く漸増させるため、ワークの種
類や板厚が変化しても、電極(3)が過度に摩耗してい
ない限り確実にナゲツトが形成され、tstnとtma
xとを、各種ワークのナゲツト形成時期がその間に含ま
れるように多少余裕を持って設定しておけば、ワーク毎
に溶接電流や溶接時間を設定しなくとも、良好に溶接が
行われる。
In addition, since the welding current is gradually increased as described above, even if the type of workpiece or plate thickness changes, a nugget is reliably formed as long as the electrode (3) is not excessively worn, and tstn and tma
If x is set with some leeway so that the nugget formation times of various workpieces are included, welding can be performed satisfactorily without setting the welding current and welding time for each workpiece.

又、上記実施例では散りの発生を検出するパラメータと
して抵抗値を用いたが、電極(3) (3)間の距離即
ち電極開度をパラメータとして用いることも可能である
Further, in the above embodiment, the resistance value is used as a parameter for detecting the occurrence of expulsion, but it is also possible to use the distance between the electrodes (3), that is, the opening degree of the electrodes, as a parameter.

電極開度は、−ワークの発熱による膨張で次第に増加し
、散りの発生で急激に減少し、その変化特性は、溶接が
良好に行われたとき第6図のa線、電極(3)の接触不
良による初期散りを生じたとき同図す線、電極(3)の
過度の摩耗を生じたとき同図C線の如くになる。
The electrode opening degree gradually increases due to expansion due to heat generation of the workpiece, and rapidly decreases due to the occurrence of expulsion, and its change characteristics are as shown in Figure 6, line a, electrode (3) when welding is well performed. The line shown in the figure shows the line when initial scattering occurs due to poor contact, and the line C shows the line C in the figure when excessive wear of the electrode (3) occurs.

第5図は電極開度θをパラメータに用いたときの制御プ
ログラムを示し、■のステップで前記開度センサQ@に
より検出される電極開度θを読込んでストアし、■のス
テップで単位時間前に読込んだ電極開度と今回読込んだ
電極開度との偏差から単位時間当りの開度変化量△θを
演算し、■のステップで八〇が設定値β以上になったか
否かを判別する。■のステップから先の判別処理は、第
3図のものと同一である。
Fig. 5 shows a control program when the electrode opening degree θ is used as a parameter; in step (■), the electrode opening degree θ detected by the opening sensor Q@ is read and stored; Calculate the opening change amount △θ per unit time from the deviation between the electrode opening read previously and the electrode opening read this time, and check whether 80 becomes greater than the set value β in step ■. Determine. The determination processing from step (2) onward is the same as that in FIG.

尚、第5図では通電開始までのプログラムを付記したの
で、これについて説明する。
Incidentally, in FIG. 5, a program up to the start of energization has been added, so this will be explained.

加圧開始後、電極開度θを読込んでθが打点位置のワー
クの厚さに相当する正規の加圧開度θ、に減少したか否
かを判別しく0、@)、θ〉θ、のときは空圧サーボ回
路■を介して加圧力を増加しく0)、θ≦θ、になった
とき通電を開始する。
After the start of pressurization, read the electrode opening θ and determine whether θ has decreased to the normal pressurization opening θ, which corresponds to the thickness of the workpiece at the dot position.0, @), θ>θ, When 0), the pressurizing force is increased via the pneumatic servo circuit (2), and when θ≦θ, energization is started.

これによれば、ワーク同士が加圧密着されたときにのみ
通電か行われ、密着不良状態での通電によるワークの穴
明きといった不具合の発生を防止できる。
According to this, energization is performed only when the workpieces are brought into close contact with each other under pressure, and it is possible to prevent problems such as holes in the workpieces due to energization in a state of poor adhesion.

そして、電極開度を本実施例の如く散りの検出パラメー
タに用いれば、抵抗検出回路■のような別の検出手段が
不用となり、コストダウンを図ることができる。
If the electrode opening degree is used as a scattering detection parameter as in this embodiment, a separate detection means such as the resistance detection circuit (2) becomes unnecessary, and costs can be reduced.

(発明の効果) 以上の説明から明らかなように、請求項1の発明によれ
ば、散りの発生初期段階で確実に通電を停止でき、自動
的に良好な溶接を行い得られ、更に請求項2の発明によ
れば、溶接条件の設定が容易なり、生産性の一層の向上
を図れる効果を有する。
(Effects of the Invention) As is clear from the above description, according to the invention of claim 1, it is possible to reliably stop energization at the initial stage of occurrence of expulsion, and it is possible to automatically perform good welding. According to the second invention, it becomes easy to set welding conditions, which has the effect of further improving productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施に用いる通電制御装置の1例
のブロック回路図、第2図は制御パルスを発生するパル
ス幅制御回路の1例のブロック回路図、第3図はコント
ローラのプログラムを示すフローチャート、第4図は抵
抗値の変化特性を示す線図、第5図はパラメータとして
電極開度を用いた場合のプログラムを示すフローチャー
ト、第6図は電極開度の変化特性を示す線図、第7図は
溶接電流の設定特性を示す線図、第8図は溶接トランス
の1次電流の波形を示す線図、第9図は交流溶接を行う
従来技術における溶接トランスの1次電流の波形を示す
線図である。 W・・・ワ − り    (1)・・・溶接トランス
(2)・・・整流回路    (3)・・・電  極(
5)・・・インバータ (51)〜(5a)・・・パワトランジスタ(7)・・
・整流回路    (8)・・・交流電源端子(9)・
・・パルス幅制御回路 (11)・・・コントローラ 外3名 \−
Fig. 1 is a block circuit diagram of an example of an energization control device used to carry out the method of the present invention, Fig. 2 is a block circuit diagram of an example of a pulse width control circuit that generates control pulses, and Fig. 3 is a controller program. Figure 4 is a flowchart showing the change characteristics of the resistance value, Figure 5 is a flowchart showing the program when electrode opening is used as a parameter, and Figure 6 is a line showing the change characteristics of the electrode opening. Figure 7 is a diagram showing the setting characteristics of the welding current, Figure 8 is a diagram showing the waveform of the primary current of the welding transformer, and Figure 9 is the primary current of the welding transformer in the conventional technology for AC welding. FIG. W...Ware (1)...Welding transformer (2)...Rectifier circuit (3)...Electrode (
5)...Inverter (51) to (5a)...Power transistor (7)...
・Rectifier circuit (8)...AC power supply terminal (9)・
...Pulse width control circuit (11)...3 people outside the controller\-

Claims (1)

【特許請求の範囲】 1、1対の電極間にワークを挾んで通電する際に、散り
の発生で値が変化するパラメータを検出し、このパラメ
ータ値の変化から散りの発生を検出して通電を停止する
ようにしたものにおいて、溶接トランスの2次側に整流
回路を介して前記電極を接続すると共に、該トランスの
1次側をパワトランジスタで構成されるインバータと整
流回路とを介して交流電源端子に接続し、該インバータ
に加える制御パルスのパルス幅に応じて1次側の通電パ
ルス幅を変化させて溶接電流を制御するようにし、散り
の発生を検出したとき制御パルスを立上げて直ちに通電
を停止するようにしたことを特徴とする抵抗溶接機にお
ける通電制御方法。 2、溶接電流を通電開始後漸増させるようにしたことを
特徴とする請求項1記載の抵抗溶接機における通電制御
方法。
[Claims] 1. When a workpiece is held between a pair of electrodes and energized, a parameter whose value changes due to the occurrence of expulsion is detected, and the occurrence of expulsion is detected from a change in the parameter value, and then energization is applied. The electrode is connected to the secondary side of the welding transformer via a rectifier circuit, and the primary side of the transformer is connected to the alternating current via an inverter composed of power transistors and a rectifier circuit. The welding current is connected to a power supply terminal, and the welding current is controlled by changing the energization pulse width on the primary side according to the pulse width of the control pulse applied to the inverter, and when the occurrence of expulsion is detected, the control pulse is raised. A method for controlling energization in a resistance welding machine, characterized in that energization is immediately stopped. 2. The method of controlling current flow in a resistance welding machine according to claim 1, wherein the welding current is gradually increased after the start of current flow.
JP63065766A 1988-03-22 1988-03-22 Energization control method in resistance welding machine Expired - Fee Related JPH0681670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63065766A JPH0681670B2 (en) 1988-03-22 1988-03-22 Energization control method in resistance welding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63065766A JPH0681670B2 (en) 1988-03-22 1988-03-22 Energization control method in resistance welding machine

Publications (2)

Publication Number Publication Date
JPH01241385A true JPH01241385A (en) 1989-09-26
JPH0681670B2 JPH0681670B2 (en) 1994-10-19

Family

ID=13296472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63065766A Expired - Fee Related JPH0681670B2 (en) 1988-03-22 1988-03-22 Energization control method in resistance welding machine

Country Status (1)

Country Link
JP (1) JPH0681670B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2724860A1 (en) * 1994-09-23 1996-03-29 Lorraine Laminage Appts. with circuit for regulating welding current in a resistance welding unit
EP0780186A3 (en) * 1995-12-21 1998-01-07 Matsushita Electric Industrial Co., Ltd. Control apparatus for resistance welding machine
CN102107317A (en) * 2011-01-20 2011-06-29 毛振刚 Automatic power-saving controller for electric welding machines
CN104816082A (en) * 2015-05-14 2015-08-05 哈尔滨工业大学 Silicon controlled rectifier connection angle and triggering angle extraction circuit
WO2019159815A1 (en) * 2018-02-16 2019-08-22 マツダ株式会社 Method for detecting expulsion in electric resistance welding, and apparatus therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847579A (en) * 1981-09-17 1983-03-19 Dengensha Mfg Co Ltd Method and device for controlling weld time in resistance welding
JPS60118393A (en) * 1983-12-01 1985-06-25 Inoue Japax Res Inc Welding device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847579A (en) * 1981-09-17 1983-03-19 Dengensha Mfg Co Ltd Method and device for controlling weld time in resistance welding
JPS60118393A (en) * 1983-12-01 1985-06-25 Inoue Japax Res Inc Welding device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2724860A1 (en) * 1994-09-23 1996-03-29 Lorraine Laminage Appts. with circuit for regulating welding current in a resistance welding unit
EP0780186A3 (en) * 1995-12-21 1998-01-07 Matsushita Electric Industrial Co., Ltd. Control apparatus for resistance welding machine
US5892197A (en) * 1995-12-21 1999-04-06 Matsushita Electric Industrial Co., Ltd. Control apparatus for resistance welding machine
CN102107317A (en) * 2011-01-20 2011-06-29 毛振刚 Automatic power-saving controller for electric welding machines
CN104816082A (en) * 2015-05-14 2015-08-05 哈尔滨工业大学 Silicon controlled rectifier connection angle and triggering angle extraction circuit
WO2019159815A1 (en) * 2018-02-16 2019-08-22 マツダ株式会社 Method for detecting expulsion in electric resistance welding, and apparatus therefor
CN111699068A (en) * 2018-02-16 2020-09-22 马自达汽车株式会社 Splash detection method and device for resistance welding

Also Published As

Publication number Publication date
JPH0681670B2 (en) 1994-10-19

Similar Documents

Publication Publication Date Title
US4399511A (en) Power factor monitoring and control system for resistance welding
US4746051A (en) Ultrasonic welding control
JP2596517Y2 (en) Stud welding machine control device
JPH0732164A (en) Resistance welding control method
US4678887A (en) Method and apparatus for resistance welding
US4408114A (en) Resistance welding with pressure control in response to deviation between welding voltage and time varying reference values therefor
US3654424A (en) Quotient circuit
JPH01241385A (en) Electrification control method for resistance welding machine
JPS6096378A (en) Flash butt welding method
US4387289A (en) Control system for resistance welding
JPS5847579A (en) Method and device for controlling weld time in resistance welding
JP2559976B2 (en) Spot welding equipment
JPS63180384A (en) Inter-tip power control type control system for resistance welding
JPH0422584A (en) Method and device for controlling welding current of spot welding machine
JPH0130593B2 (en)
JPH10156549A (en) Resistance welding controlling device
SU965669A1 (en) Method and apparatus for controlling resistance welding process
JPS5847580A (en) Method and device for controlling weld time in resistance welding
JPH1190642A (en) Method and device for electrically pressurizing and controlling resistance welding machine
GB2126511A (en) Method of and apparatus for automatic control of a machine for upset butt welding of metal workpieces
JP2000237878A (en) Control method of electric servo type resistance welding equipment and controller therefor
JPS5913584A (en) Method and device for controlling resistance welding
JPH06344155A (en) Controller for spot welding machine
JPS6341677B2 (en)
US4463244A (en) Air core type current pulse and power factor monitoring and control system for a resistance welding apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees