JPS58196185A - Controlling method and device for resistance welding - Google Patents

Controlling method and device for resistance welding

Info

Publication number
JPS58196185A
JPS58196185A JP7924682A JP7924682A JPS58196185A JP S58196185 A JPS58196185 A JP S58196185A JP 7924682 A JP7924682 A JP 7924682A JP 7924682 A JP7924682 A JP 7924682A JP S58196185 A JPS58196185 A JP S58196185A
Authority
JP
Japan
Prior art keywords
max
resistance
welding
nugget
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7924682A
Other languages
Japanese (ja)
Other versions
JPS622917B2 (en
Inventor
Masahiro Kato
正弘 加藤
Katsuo Yoshimura
吉村 勝夫
Nobusuke Horikawa
堀川 円佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dengensha Toa Co Ltd
Original Assignee
Dengensha Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dengensha Manufacturing Co Ltd filed Critical Dengensha Manufacturing Co Ltd
Priority to JP7924682A priority Critical patent/JPS58196185A/en
Publication of JPS58196185A publication Critical patent/JPS58196185A/en
Publication of JPS622917B2 publication Critical patent/JPS622917B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices
    • B23K11/252Monitoring devices using digital means
    • B23K11/256Monitoring devices using digital means the measured parameter being the inter-electrode electrical resistance

Abstract

PURPOSE:To control resistance welding with high accuracy by improving the disadvantage relating to the evaluation of the resistance component between electrode tips from the difference in the local max. value of both change curves between the max. welding current in a range where no welding nuggets are formed and the resistance between the electrode tips in the state of ordinary conduction of welding current. CONSTITUTION:The resistance mu between tips is measured 1 and is shaped, then the local max. value mu max. is detected in the mu max. detecting and holding circuit 2 in the next stage. On the other hand, the resistance nu between the tips in the stage of conducting max. welding current in the state in which no welding nuggets are formed under the same conditions as the conditions for the mu is beforehand measured and stored, and the voltage signal corresponding to the pattern after said nu max. is transmitted 3 simultaneously with the detection of the max. An arithmetic circuit 4 for (mu max. -mu) and an arithmetic circuit 5 for (nu max. -nu) is syncyronized exactly with time and the (mu max. -mu) and the (nu max. -nu) corresponding to the respective current conduction times are operated and are inputted respectively to the (c=a-b) operator of an arithmetic circuit 6 for (a-b) in the next stage. As a result, the (c) is supplied as the effective quantity relating to the growth of a nugget area to a control part 7 for welding nugget in the next stage.

Description

【発明の詳細な説明】 本発明は、スポット溶接等重ね抵抗溶接における溶接ナ
ゲツト制御のため電極チップ間抵抗又は電圧の評価方法
およびその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for evaluating resistance or voltage between electrode tips for weld nugget control in lap resistance welding such as spot welding.

近年、スポット溶接等のナゲツト品質の監視ないしは制
御のために電極チップ間の溶接通電時における電圧降下
を測定し、ナゲツト生成に伴うチップ間電圧の変化、又
はその値を溶接電流で処理してチップ間抵抗の変化とし
て掴える方式が多数発表されている。
In recent years, in order to monitor or control nugget quality in spot welding, etc., the voltage drop during welding current is measured between electrode tips, and changes in the inter-tip voltage due to nugget formation, or the value is processed with welding current, to determine the welding current. Many methods have been published that can be used to detect changes in inter-resistance.

j蓼 これらチップ間抵抗又は電圧の変化の形態l第2図(−
)に示されるようになる。
Figure 2: Changes in resistance or voltage between these chips
).

即ち、溶接通電の極(初期においてチップ先端やワーク
間等の接触抵抗が消えると、ワーク(導鋼板が主体)の
温度上昇によりチップ間抵抗は増加する。次にワーク間
に溶接ナゲツトが生成するとその部分のワーク間抵抗が
減少するため、ナゲツトの生育に伴いチップ間抵抗は減
少し、曲線は局部的な最大値を持つことになる。
In other words, when the contact resistance at the tip of the tip or between the workpieces disappears at the poles of welding energization, the resistance between the tips increases due to the temperature rise of the workpiece (mainly the conductive steel plate).Next, when a weld nugget is generated between the workpieces, the resistance between the tips increases. Since the inter-work resistance in that part decreases, the inter-chip resistance decreases as the nugget grows, and the curve has a local maximum value.

この局部的最大値、即ち第2図(a)の(イ)maxの
値と同曲線(イ)との間の抵抗(又は電圧)の差(a)
の値又は(a)を含む三角形の面積Σ((イ)max−
(イ))の値は前述した理由からナゲツトの面積と相関
があり、ナゲツト大きさの監視ないしは制御のパラメー
タとして実用されている。
This local maximum value, that is, the difference (a) in resistance (or voltage) between the value of (a) max in Figure 2 (a) and the same curve (a)
The value of or the area of the triangle containing (a) Σ((a) max-
The value of (a)) has a correlation with the area of the nugget for the reasons mentioned above, and is used as a parameter for monitoring or controlling the size of the nugget.

、1・L しかし、ナゲツト面積との相関特収に関し、第2図(8
)の(a)の値、即ち(イ)max−(イ)の値をその
ま1ジツ ま使用すると不具合が生ずることが一明して来た。
, 1・L However, regarding the correlation with the nugget area, Figure 2 (8
It has become clear that problems will occur if the value of (a) in ), that is, the value of (a) max - (a), is used as is.

それは、第2図(a)のパターンが得られる溶接条件の
もとて溶接電流値を除々に減少してゆくと、やがてい(
ら通電時間を延長しても溶接ナゲツトが生成しなくなる
状態が発生する。
If the welding current value is gradually decreased under the welding conditions that yield the pattern shown in Figure 2(a), it will eventually become (
A situation occurs in which weld nuggets are not generated even if the energization time is extended.

これは溶接電流とワーク接触部抵抗とによるジュール発
熱量と水冷電極チップやワーク横方向への熱伝導放散量
とがバランスするためであることは古くから知られてい
る。
It has been known for a long time that this is because the amount of Joule heat generated by the welding current and workpiece contact resistance is balanced with the amount of heat conduction and radiation to the water-cooled electrode tip and the workpiece in the lateral direction.

しかし、問題はこのときのチップ間抵抗(又は電圧)の
変化の状態である。第2図(b)はspc。
However, the problem is the state of change in interchip resistance (or voltage) at this time. Figure 2(b) shows spc.

1、□mmtX2枚■ね状態におけるこの状態の特性曲
線を示す。
1. The characteristic curve of this state in the state where □mmt×2 sheets ■ is shown is shown.

溶接電流が小さいため発生時期がおそ(、且つ第2図(
a)に比して変化量は小さくなるが、やはり局部的最大
値(ロ)maxが存在し、丁度小さなナゲツトが生成し
たのと類似したパターンを示している。
Because the welding current is small, the time of occurrence is late (and Fig. 2).
Although the amount of change is smaller than in a), there is still a local maximum value (b) max, showing a pattern similar to the one in which a small nugget was generated.

このときのワーク間接合部の様子は、spc板の場合は
白変部が発生し、強力な電極チップ間の加圧力のため仮
同志が軽く圧接された状態になっている。
At this time, the state of the joint between the works is that, in the case of the SPC board, white discoloration occurs, and the temporary comrades are lightly pressed together due to the strong pressure between the electrode tips.

即ち、ナゲツトは生成していないため、いわゆる溶接強
さはほとんどないが、電極チップ間の抵抗(又は電圧)
としては前述した局部的最大値以降通電時間と供に除々
に減少してゆ(特性をもっている。
In other words, since no nuggets are generated, there is almost no so-called welding strength, but the resistance (or voltage) between the electrode tips
It has a characteristic that after the local maximum value described above, it gradually decreases as the energization time increases.

第1図はスポット溶接のナゲツト部断面を示すが、適正
な溶接電流によりナゲツトが生成している状態において
も、その周辺のいわゆるコロナポンド部や更にその外周
部は電流密度が偏(なり前述した溶接強度には無効であ
るが、電極チップ間抵抗(又は電圧)の減少には影響を
与える部分が存在している。又、溶接電流が少ない条件
のもとでは、第2図(b)の(ロ)max−(ロ)の無
効分は第2図(a)の(イ)max −(イ)の制御量
に対し無視できない値となることは実験的に確かめられ
ている。
Figure 1 shows a cross-section of a nugget during spot welding.Even when a nugget is generated with an appropriate welding current, the current density is uneven (as described above) in the surrounding so-called corona pound area and furthermore in the outer periphery. Although it has no effect on the welding strength, there is a part that affects the reduction of the resistance (or voltage) between the electrode tips.Also, under conditions where the welding current is small, the It has been experimentally confirmed that the invalid portion of (b) max - (b) has a value that cannot be ignored with respect to the control amount of (a) max - (a) in FIG. 2(a).

本発明はこのチップ間抵抗(又は電圧)減少分の評価に
関する欠点を教養し、ナゲツトの監視ないしは制御に関
する不合理性を一挙に解消する方式を提供するものであ
る。
The present invention aims to address the shortcomings associated with the evaluation of the inter-chip resistance (or voltage) reduction and provide a system that eliminates the unreasonableness regarding nugget monitoring or control all at once.

第2図(C)は本発明の概念を示すもので、第2図(a
)ノ(()ma!−(()ニ含まれる第2図(b)(7
)to) ma x−io)の無効分を差引き、第2図
(C)の曲線(ロ)と(イ)の間の抵抗(又は電圧)の
偏差分又はその積分値等をナゲツト面積、即ち溶接強さ
に対する有効量として取扱うことを特長とした方式であ
る。
Figure 2 (C) shows the concept of the present invention, and Figure 2 (a)
)ノ(()ma!-(()ni included in Figure 2(b) (7
) to) max-io), and calculate the deviation of the resistance (or voltage) between curves (b) and (a) in Figure 2 (C) or its integral value as the nugget area, In other words, this method is characterized by treating it as an effective amount for welding strength.

又、第3図は、本発明の一実施例を電気ブロック図とし
て示したもので、図の(イ)、(イ)max、(ロ)、
(ロ)max及び(a)、 (b)、 (C1等の符号
は第2図に示した符号と一致している。
Moreover, FIG. 3 shows an embodiment of the present invention as an electrical block diagram, and (a), (a) max, (b),
(b) max and the symbols such as (a), (b), (C1, etc.) match the symbols shown in FIG.

溶接通電に対応したチップ間抵抗又は電圧(イ)はチッ
プ間抵抗(電圧)検出回路(1)により測定。
The inter-chip resistance or voltage (A) corresponding to welding current is measured by the inter-chip resistance (voltage) detection circuit (1).

整形され、次段(イ)max*出嘩保出回保持回路によ
りその局部的最大値(イ)maxが検出されその値は保
持される。
The local maximum value (A) max is detected by the next stage (A) max*output, hold, and output times holding circuit, and that value is held.

一方、(イ)と同一条件で溶接ナゲツトが生成されない
状態での最大の溶接電流を流通したときのチップ間抵抗
又は電圧(ロ)は前もって測定記憶され、その(o)m
ax以降のパターンに相当する電圧信号は、第3図のパ
ターン電圧信号回路(3)により(イ)max検出と同
時に発信を開始する。
On the other hand, the inter-chip resistance or voltage (b) when the maximum welding current is passed under the same conditions as (a) and no weld nuggets are generated is measured and stored in advance, and its (o) m
Voltage signals corresponding to patterns after ax start being transmitted by the pattern voltage signal circuit (3) in FIG. 3 at the same time as (a) max is detected.

第3図の(イ1max−(イ)演算回路(4)と(ロ)
max−(ロ)演算回路(5)は時間的に全く同期して
、夫々の通電時間に対応した(イ)max−(イ)及び
(口1max−(ロ)を演算し、夫々函数電圧(a)及
び(b)として次段(a)−(b)演算回路(6)のf
c) −(a)−(b)演算器に入力を与える。
(A1max-(A) Arithmetic circuit (4) and (B) in Figure 3
The max-(b) calculation circuit (5) calculates (a) max-(b) and (1max-(b)) corresponding to the respective energization times in complete temporal synchronization, and calculates the function voltage ( f of the next stage (a)-(b) arithmetic circuit (6) as a) and (b)
c) -(a)-(b) Give input to the arithmetic unit.

この演算結果(C)はナゲツト面積生育に関する有効量
として次段の溶接ナゲツト制御部(7)に供給される。
This calculation result (C) is supplied to the next stage welding nugget control section (7) as an effective amount regarding nugget area growth.

この制御は、例えば(イ)maxの値に対する(C)の
値の割合いが所定の一定値になるように通電時間を調節
したり、或いは第2図(C)における(イ)max、(
ロ)および(イ)が形作る三角形に似た部分の面積が所
定の一定値になるように通電時間を調節したりして所定
の溶接強さを持ったナゲツトの生成を制御することにな
る。
This control may be carried out, for example, by adjusting the energization time so that the ratio of the value (C) to the value (A) max becomes a predetermined constant value, or by adjusting the energization time so that the ratio of the value (C) to the value (B) max in FIG.
Generation of a nugget with a predetermined welding strength is controlled by adjusting the current application time so that the area of the triangular-like part formed by (b) and (a) becomes a predetermined constant value.

本発明の制御方法又は制御装置を採用することにより、
従来の偏差量(イ)max−(イ)、又はその積分値Σ
((イ)max=(イ))等無効分を含んだ電極チップ
間り 抵抗、又は電圧の変化を測定量とする誤差のない制御に
代り、真にナゲツトの生育に関係のある有効分のみを取
扱うことになり、高い精度の適応制御を実現することが
できる。
By adopting the control method or control device of the present invention,
Conventional deviation amount (a) max - (a) or its integral value Σ
((A) max = (A))Instead of error-free control that uses the resistance between the electrode tips or the change in voltage as the measurement quantity, which includes inactive components, only the effective components that are truly related to the growth of nuggets are used. As a result, highly accurate adaptive control can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、スポット溶接のナゲツト部断面、第2図は、
チップ間抵抗(又は電圧)の変化を示すグラフ、第3図
は本発明の実施例を示す電気ブロック図である。 (1)・−・チップ間抵抗(電圧)検出回路(2)・・
・(イ1max検出保持回路(3)・・・パターン電圧
信号回路 (4)・・・(イ)max−(イ)演算回路(5)−(
ol+nax −(ol演J1回路(6)・・・(al
−(bl演算回路 (7)・・・溶接ナゲツト制御部 発明者 加 藤 正 弘(外二名)
Figure 1 is a cross section of the nugget part of spot welding, Figure 2 is:
A graph showing changes in inter-chip resistance (or voltage), and FIG. 3 is an electrical block diagram showing an embodiment of the present invention. (1) - Chip-to-chip resistance (voltage) detection circuit (2)...
・(A 1max detection holding circuit (3)...Pattern voltage signal circuit (4)...(A) max-(A) Arithmetic circuit (5)-(
ol+nax −(ol performance J1 circuit (6)...(al
- (bl operation circuit (7)...Welding nugget control unit inventor Masahiro Kato (two others)

Claims (1)

【特許請求の範囲】 1 通常の溶接通電を行った状態で通電時間に対する電
極チップ間の抵抗(又は電圧)の変化曲線を測定し、該
曲線の局部的最大値からの減少量を溶接ナゲツトの制御
パラメータとして使用するに際し、同一条件で、溶接ナ
ゲツトが生成されない範囲内での最大溶接電流を流通し
た状態で同様の電極チップ間の抵抗(又は電圧)の変化
曲線をあらかじめ測定しておき、両曲線の局部的最大値
を重ね合せた状態にて両曲線の抵抗値(又は電圧炉)に
関する差分をもって上記局部的最大値からの減少量とし
て規定することを特徴とした重ね抵抗溶接におけるナゲ
ツトの制御方法。 2 溶接通電に対応する電極チップ間の抵抗(又は電圧
)の変化曲線(イ)を検出するための測定回路、および
その局部的最大値(イ)max、を検出し、その値を保
持する回路、前記(イ)と同一条件で、溶接ナゲツトが
生成されない範囲内での最大溶接電流を流通した状態に
おける該電極チップ間の抵抗(又は電圧)の変化曲線の
うち、その局部的最大値(ロ)maw、以降のパターン
と同等の函数電圧信号(ロ)の発信回路とを備え、変化
曲線(イ)が局部的最大値(イ)max点に到達すると
同時に、通電時間に対応して fa)−(イ)max −(イ) (b) −f口1max −(ロ) (C) −fa)−(b) を遂次演算し、この(C)をもって電極チップ間の抵抗
(又は電圧)における局部的最大値からの減少量として
取扱うことを特徴とした重ね抵抗溶接におけるナゲツト
の制御装置。
[Claims] 1. Measure the change curve of the resistance (or voltage) between the electrode tips with respect to the current application time under normal welding current, and calculate the amount of decrease from the local maximum value of the curve for the welding nugget. When using it as a control parameter, measure the change curve of resistance (or voltage) between similar electrode tips in advance under the same conditions and flowing the maximum welding current within the range where weld nuggets are not generated, and Nugget control in lap resistance welding, characterized in that when the local maximum values of the curves are superimposed, the difference in resistance value (or voltage furnace) of both curves is defined as the amount of decrease from the local maximum value. Method. 2. A measurement circuit for detecting the change curve (a) of resistance (or voltage) between electrode tips corresponding to welding current application, and a circuit for detecting its local maximum value (a) max and holding that value. , Under the same conditions as in (a) above, the local maximum value (lo ) maw, and a transmitting circuit of a functional voltage signal (b) equivalent to the following pattern, and at the same time when the change curve (a) reaches the local maximum value (a) max point, fa) corresponding to the energization time. -(A) max -(A) (b) -f port 1max -(B) (C) -fa)-(b) A nugget control device for lap resistance welding, characterized in that nugget is handled as a decrease from a local maximum value in .
JP7924682A 1982-05-13 1982-05-13 Controlling method and device for resistance welding Granted JPS58196185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7924682A JPS58196185A (en) 1982-05-13 1982-05-13 Controlling method and device for resistance welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7924682A JPS58196185A (en) 1982-05-13 1982-05-13 Controlling method and device for resistance welding

Publications (2)

Publication Number Publication Date
JPS58196185A true JPS58196185A (en) 1983-11-15
JPS622917B2 JPS622917B2 (en) 1987-01-22

Family

ID=13684496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7924682A Granted JPS58196185A (en) 1982-05-13 1982-05-13 Controlling method and device for resistance welding

Country Status (1)

Country Link
JP (1) JPS58196185A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171189A (en) * 1984-09-14 1986-04-12 Kanto Jidosha Kogyo Kk Method of monitoring weld zone of spot welding
JPS6213277A (en) * 1985-07-09 1987-01-22 Dengensha Mfg Co Ltd Monitoring method for abnormality in work plate thickness in spot welding
JPS6457989A (en) * 1987-08-28 1989-03-06 Kinzoku Gijutsu Kenkyusho Kk Method for controlling electric resistance welding of metal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171189A (en) * 1984-09-14 1986-04-12 Kanto Jidosha Kogyo Kk Method of monitoring weld zone of spot welding
JPS6213277A (en) * 1985-07-09 1987-01-22 Dengensha Mfg Co Ltd Monitoring method for abnormality in work plate thickness in spot welding
JPS6457989A (en) * 1987-08-28 1989-03-06 Kinzoku Gijutsu Kenkyusho Kk Method for controlling electric resistance welding of metal
JPH0372389B2 (en) * 1987-08-28 1991-11-18 Kinzoku Gijutsu Kenkyusho Jugen

Also Published As

Publication number Publication date
JPS622917B2 (en) 1987-01-22

Similar Documents

Publication Publication Date Title
US6057523A (en) Method of controlling welding conditions of a resistance welder
CA2342520C (en) Joining equipment
JPH10314956A (en) Method and device for evaluating quality of resistance welded zone
CA3017083C (en) Resistance welding method and resistance welding apparatus
JPS58196185A (en) Controlling method and device for resistance welding
US4289951A (en) Power factor monitoring and control system for resistance welding with line disturbance immunity
JPH07185832A (en) Method for measuring nugget diameter of spot welding
JP2767328B2 (en) Resistance welding control device and resistance welding measuring device
JP3396602B2 (en) Method and apparatus for monitoring welding quality
KR100270098B1 (en) Apparatus and method for quality judge of welding
JP2002239743A (en) Resistance welding machine control device and quality monitoring device
JP3489760B2 (en) Joining method
JP2006110554A (en) Method for judging quality of resistance spot welding and monitoring device
JPH0371982A (en) Resistance welding method
JP3163530B2 (en) Control device for resistance welding
JP2747375B2 (en) Resistance welding equipment
KR20160130030A (en) Pipe welding apparatus
JPS5940550B2 (en) Spot welding strength monitoring device
SU761194A1 (en) Apparatus for controlling process of contact spot welding
TWI425992B (en) Current measuring method and system
JPS6160755B2 (en)
WO2007029170A1 (en) A spot welding machine with control circuit for determining the magnitude of weld current to be applied on load circuit
JPH0994674A (en) Control method for resistance welding
JPS6150708B2 (en)
SU1113226A1 (en) Apparatus for controlling the process of resistance welding