JP2006110554A - Method for judging quality of resistance spot welding and monitoring device - Google Patents

Method for judging quality of resistance spot welding and monitoring device Download PDF

Info

Publication number
JP2006110554A
JP2006110554A JP2004297361A JP2004297361A JP2006110554A JP 2006110554 A JP2006110554 A JP 2006110554A JP 2004297361 A JP2004297361 A JP 2004297361A JP 2004297361 A JP2004297361 A JP 2004297361A JP 2006110554 A JP2006110554 A JP 2006110554A
Authority
JP
Japan
Prior art keywords
power
difference
electrode
power difference
inter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004297361A
Other languages
Japanese (ja)
Inventor
Hiroshi Abe
博司 阿部
Reiji Kitabori
礼司 北堀
Mitsuyasu Hirose
光康 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dengensha Toa Co Ltd
Original Assignee
Dengensha Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dengensha Manufacturing Co Ltd filed Critical Dengensha Manufacturing Co Ltd
Priority to JP2004297361A priority Critical patent/JP2006110554A/en
Publication of JP2006110554A publication Critical patent/JP2006110554A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To quicken judgment of welding quality and to increase the accuracy of the judgment by monitoring a welded nugget production process under energizing utilizing a change in electric power difference between electrodes per half-cycle. <P>SOLUTION: When welding current and voltage between electrodes changing every moment under energizing are detected at least per half-cycle and the difference in electric power is time sequentially monitored, the difference in electric power being obtained by subtracting, from the electric power applied to a work in the reducing process of the electric power between electrodes corresponding to the respective same current values in the increasing process and reducing process of welding current per half-cycle, the electric power applied to the work in the increasing process, a curve showing the behavior of the difference in electric power is expressed on a cycle diagram with the difference in electric power as the axis of ordinate and the cycle number as the axis of abscissa, and, from the change in the difference in electric power at the measurement reference point of the optional designated cycle number in the axis of abscissa, the evaluation of welding quality is performed under a welded nugget growing process. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は,スポット溶接中に被溶接物(ワーク)に必要な強度に適応した適正な大きさの溶接ナゲットができているかどうか,そのナゲット生成過程を観察して溶接部の品質を判定するための非破壊モニタリング方法および装置に関し,さらに詳しくは通電中の時々刻々変化する溶接電流と電極間電圧(又は電極間抵抗)を検出し,半サイクルごとに電極間電力の電力差分を求め,その電力差分の変化から溶接ナゲットの生成プロセスをリアルタイムで観察し溶接部の品質良否判定を行う抵抗ポット溶接品質判定方法と監視装置に関する。 The present invention is intended to determine the quality of a welded part by observing the nugget generation process to determine whether a weld nugget of an appropriate size adapted to the strength required for the work piece (workpiece) is formed during spot welding. In more detail, the non-destructive monitoring method and device of the above are described. More specifically, the welding current and the interelectrode voltage (or interelectrode resistance) that change every moment during energization are detected, and the power difference between the electrodes is obtained every half cycle. The present invention relates to a resistance pot welding quality determination method and a monitoring device that observe a generation process of a weld nugget in real time from a change in difference and determine quality of a welded portion.

抵抗スポット溶接は一対の電極チップでワークを挟みつけて,これに加圧力をかけ集中的に溶接電流を流し抵抗発熱により溶融してここにワークに必要な強度をもつ溶接ナゲットを生成して接合する。溶接強度を十分に満たす適正な溶接が行われているかどうかを検査するには,破壊検査方法と非破壊検査方法とが知られている。 In resistance spot welding, a work piece is sandwiched between a pair of electrode tips, a pressure is applied to this work, a welding current is applied intensively, and melting is caused by resistance heat generation to form a welding nugget with the necessary strength for the work. To do. Destructive inspection methods and non-destructive inspection methods are known for checking whether or not proper welding that sufficiently satisfies the welding strength is performed.

破壊検査方法にはマクロ試験,たがね試験,ねじり試験などある。この種の破壊検査方法は文字通りオフライン上で溶接部を強制的に破壊して検査するもので,溶接サンプルの抜き取りおよび溶接部の引張り強度確認が手作業で行われるため生産性に影響する。近年はこれに代わりオンライン上で迅速かつ適正な検査ができるようスポット溶接中の溶接ナゲット生成プロセスを監視する非破壊検査方法が開発されている。 Destructive inspection methods include macro tests, chisel tests, and torsion tests. This type of destructive inspection method literally breaks and inspects the welded part off-line and inspects it, and it affects the productivity because the welding sample is extracted and the tensile strength of the welded part is checked manually. In recent years, instead of this, a nondestructive inspection method has been developed to monitor a welding nugget generation process during spot welding so that rapid and appropriate inspection can be performed online.

従来の非破壊検査方法には,溶接ナゲットの熱膨張を利用して電極間の変位量を測定して溶接品質の良否を判定する方法や超音波を利用して溶接部の大きさを測定する方法(特許文献1参照)および溶接ナゲット生成過程中に溶接部に印加した超音波の透過率曲線の挙動を利用してモデル透過率の推移と比較して溶接品質を判定(及び/又は溶接電流,加圧力,通電時間等の溶接条件要素を適応制御)する方法(特許文献2参照),又は溶接電流とチップ間電圧の検出値から熱伝導モデルに基づいてワーク温度を算出し,その算出温度分布から推定ナゲット径を算出して適正な溶接強度確保に必要なモデルナゲット径とを比較して溶接結果を判定する方法などが知られている(特許文献3参照)。 Conventional nondestructive inspection methods include measuring the amount of displacement between electrodes using the thermal expansion of the weld nugget, and measuring the size of the weld using ultrasonic waves. Judgment of welding quality (and / or welding current) using the method (see Patent Document 1) and the behavior of the transmission curve of the ultrasonic wave applied to the weld during the welding nugget generation process in comparison with the transition of the model transmission The workpiece temperature is calculated based on a heat conduction model based on a method of adaptively controlling welding condition elements such as welding pressure, energizing time, etc. (see Patent Document 2), or a detected value of welding current and inter-chip voltage. A method is known in which an estimated nugget diameter is calculated from the distribution and compared with a model nugget diameter necessary for ensuring appropriate welding strength to determine a welding result (see Patent Document 3).

これらの非破壊検査方法にはその他数種あるが,超音波による場合は超音波送受信機や複雑な測定及び処理システムを必要とし高価な設備となる。また超音波の反射量はワーク材質,ワーク表面処理(例えを言えば塗装,めっき層など)によって変わるため,とくに同一ラインにおける多品種生産においてはオンライン途中からワーク材質が変わる場合に時としてナゲット境界面でエコーバックの乱れが生じ測定精度に狂いが生じる場合がある。また一方の温度分布による場合もナゲット径の算出方法が温度分布からの推定によるもので,測定算出するプログラムが複雑となり検査の迅速化と検査精度の面でまだ改善すべき問題が残されていた。
特開平6−138100号公報 特表2004−507365号公報 特開平6−170552号公報 特開2004−58153号公報 阿部博司,外1名「スポット溶接の散り防止制御に関する研究」MP−313−2002,軽構造接合加工研究委員会,社団法人溶接学会,発行2002年 6月 6日
There are several other types of these nondestructive inspection methods. However, in the case of using ultrasonic waves, an ultrasonic transmitter / receiver and a complicated measurement and processing system are required, resulting in expensive equipment. In addition, the amount of ultrasonic reflection varies depending on the workpiece material and workpiece surface treatment (for example, coating, plating layer, etc.). The echo back may be disturbed on the surface and the measurement accuracy may be distorted. Also, in the case of one temperature distribution, the nugget diameter calculation method is based on estimation from the temperature distribution, and the measurement calculation program is complicated, and there are still problems to be improved in terms of speeding up the inspection and inspection accuracy. .
JP-A-6-138100 Special table 2004-507365 gazette JP-A-6-170552 JP 2004-58153 A Hiroshi Abe, 1 other "Research on Scattering Prevention Control of Spot Welding" MP-313-2002, Light Structure Joining Research Committee, Japan Welding Society, Published June 6, 2002

本発明が解決しようとする問題点は,従来の非破壊検査方式では超音波にしろ温度センサーにしろいずれも測定システムが複雑高価となり,しかも混流生産によるオンラインでの検査スピードおよび検査精度上の判定評価が十分でなかった点にある。本発明は半サイクルごとにおける同一電流点の溶接電流減少過程のワークにかかる電極間電力から溶接電流増加過程のワークにかかる電極間電力を引いた電力差分を時系列的に算出し電力差分の挙動曲線を作成し,この電力差分の挙動曲線を利用してスポット溶接中の溶接ナゲット生成プロセスを監視すると共にオンライン上で全打点数にわたって高精度の溶接品質検査がリアルタイムで実施できる溶接品質判定方法及び監視装置を提供し,品質判定精度の向上と非破壊検査の迅速化を図る。   The problems to be solved by the present invention are that the conventional non-destructive inspection method has a complicated and expensive measuring system, whether it is an ultrasonic or a temperature sensor, and further, on-line inspection speed and inspection accuracy judgment by mixed flow production. The evaluation was not sufficient. The present invention calculates the power difference obtained by subtracting the inter-electrode power applied to the workpiece in the welding current increasing process from the inter-electrode power applied to the workpiece in the welding current decreasing process at the same current point in each half cycle, and the behavior of the power difference. A welding quality judgment method capable of creating a curve and monitoring the welding nugget generation process during spot welding using the behavior curve of the power difference and performing a high-precision welding quality inspection on the entire number of hit points online in real time, and A monitoring device will be provided to improve quality judgment accuracy and speed up non-destructive inspection.

本発明の請求項1は,ワークを一対の電極チップで挟みつけて,これに加圧力をかけながら溶接電流を流し抵抗発熱によりナゲットを生成して接合する抵抗スポット溶接方法において,適切な溶接条件下にて通電中の時々刻々変化する溶接電流と電極間電圧とを少なくとも半サイクルごとに検出して,各半サイクルごとの溶接電流の増加過程と減少過程それぞれの所定の同一電流値に対応したワークにかかる電極間電力を用い,溶接電流減少過程の電極間電力から溶接電流増加過程の電極間電力を引いた電力差分を時系列的に監視する場合,前記電力差分を縦軸に取り,その横軸にサイクル数を取ったサイクル線図上に前記電力差分の挙動曲線を表し,この電力差分の挙動曲線が前記横軸の任意指定サイクル数の前記計測基準点でほぼ水平状態に達したときにはナゲット成長が正常であると判定することを特徴とする。   According to a first aspect of the present invention, in a resistance spot welding method in which a workpiece is sandwiched between a pair of electrode tips and a welding current is applied to the workpiece while applying a pressure to the workpiece to generate a nugget by resistance heat generation, a suitable welding condition is achieved. The welding current and the interelectrode voltage, which change from moment to moment during energization, are detected at least every half cycle, and correspond to the same predetermined current value for each of the increasing and decreasing processes of the welding current for each half cycle. When using the inter-electrode power applied to the workpiece and monitoring the power difference obtained by subtracting the inter-electrode power in the welding current increasing process from the inter-electrode power in the welding current decreasing process, the power difference is plotted on the vertical axis, The behavior curve of the power difference is represented on a cycle diagram with the number of cycles on the horizontal axis, and the behavior curve of the power difference is substantially horizontal at the measurement reference point of the arbitrarily specified number of cycles on the horizontal axis. When it reaches the wherein the nugget growth is determined to be normal.

本発明の請求項2は前記電力差分の挙動曲線が任意指定サイクル数の前記計測基準点で降下している場合はナゲット成長が不十分であると判定することを特徴とする。 A second aspect of the present invention is characterized in that it is determined that nugget growth is insufficient when the behavior curve of the power difference falls at the measurement reference point having an arbitrarily specified number of cycles.

本発明の請求項3は,前記電力差分の挙動曲線が任意指定サイクル数の前記計測基準点で上昇し続けているとき又は前記計測基準点に至る途中で一定時間上昇した後にほぼ水平状態に推移したときには散り発生限界点にあると判定することを特徴とする。 According to a third aspect of the present invention, when the behavior curve of the power difference continues to rise at the measurement reference point having an arbitrarily specified number of cycles, or has risen for a certain time on the way to the measurement reference point, it changes to a substantially horizontal state. It is characterized in that it is determined that it is at the scattering occurrence limit point.

本発明の請求項4は,前記電力差分の挙動曲線が急峻な角度で下降直後上昇又は上昇直後下降しているときにはその時点で散りが発生していると判定することを特徴とする。     According to a fourth aspect of the present invention, when the behavior curve of the power difference rises immediately after falling or falls immediately after rising at a steep angle, it is determined that scattering occurs at that time.

本発明の請求項5は,前記抵抗スポット溶接方法において,各半サイクルごとの溶接電流の増加過程と減少過程それぞれの所定の同一電流値に対応した電極間電力比分,又は電極間電圧差分,又は電極間電圧比分,又は電極間抵抗差分,又は電極間抵抗比分,又は各半サイクルにおける溶接電流の最大値に到達した時点と電極間電圧が最大値に到達する時点までの時間差分を時系列的に監視する場合でも前記電力差分の挙動曲線同様グラフ表示し,前記線図の横軸に設けた任意指定サイクル数の計測基準点で前記電極間電力比分,又は前記電極間電圧差分,又は前記電極間電圧比分,又は前記電極間抵抗差分,又は前記電極間抵抗比分,又は最大値到達時間差分の変化を監視し請求項1〜4の何れかに記載の方法にて判定することを特徴とする。     According to claim 5 of the present invention, in the resistance spot welding method, an inter-electrode power ratio corresponding to a predetermined same current value in each of the increasing and decreasing processes of the welding current for each half cycle, or an inter-electrode voltage difference, or The time difference between the time when the interelectrode voltage ratio, the interelectrode resistance difference, or the interelectrode resistance ratio, or when the maximum value of the welding current in each half cycle is reached and when the interelectrode voltage reaches the maximum value Even in the case of monitoring in the same manner, a graph similar to the behavior curve of the power difference is displayed, and the power ratio between the electrodes, the voltage difference between the electrodes, or the electrode The change in the voltage ratio between the electrodes, or the difference in resistance between the electrodes, or the ratio in resistance between the electrodes, or the difference in maximum arrival time is monitored and determined by the method according to any one of claims 1 to 4. .

本発明の請求項6は,一対の電極チップのうち少なくとも一方の電極チップを流体圧又は電気,その他の動力源を用いて他方の電極チップと相対向して駆動し,前記電極チップでワークを挟みつけて加圧し,溶接電流を流して抵抗発熱により溶融して接合する抵抗スポット溶接機において,通電中の溶接電流と電極間電圧(又は電極間抵抗)とを少なくとも半サイクルごとに検出する検出部と,各半サイクルごとの溶接電流の増加過程と減少過程における同一電流点の電極間電圧を抽出する同一電流点の電圧抽出手段と,溶接電流の増加過程と減少過程それぞれの所定の同一電流値に対応したワークにかかる電極間電力を算出し,同一電流値に対応した溶接電流減少過程のワークにかかる電極間電力から溶接電流増加過程のワークにかかる電極間電力を引いた電力差分を時系列的に算出する電力差分算出手段と,前記算出して得られた電力差分から任意指定サイクル数の計測基準点における電力差分の変化値を算出する電力差分の変化値算出手段と,前記電力差分の変化からナゲット成長の良否を判定する判定手段を有する演算装置と,前記電力差分を縦軸に取り,その横軸にサイクル数を取ったサイクル線図上に前記電力差分の挙動曲線をグラフ表示する電力差分挙動曲線表示部と,前記グラフ表示された電力差分の挙動曲線の前記計測基準点での電力差分の変化によりナゲット成長の良否を判定した結果を表示する判定結果表示部を有する表示装置とを備えた抵抗スポット溶接品質監視装置を提供する。     According to a sixth aspect of the present invention, at least one of the pair of electrode tips is driven opposite to the other electrode tip using fluid pressure, electricity, or other power source, and the workpiece is moved by the electrode tip. Detection by detecting the welding current and the voltage between electrodes (or resistance between electrodes) at least every half cycle in a resistance spot welder that presses and pressurizes and melts and joins with resistance heating by flowing welding current A voltage extracting means for extracting the voltage between the electrodes at the same current point in the increasing and decreasing processes of the welding current every half cycle, and a predetermined same current in each of the increasing and decreasing processes of the welding current. The inter-electrode power applied to the workpiece corresponding to the value is calculated, and the power applied to the workpiece during the welding current increasing process from the inter-electrode power applied to the welding current decreasing process corresponding to the same current value Power difference calculating means for calculating power difference obtained by subtracting power between power sources in time series, and a power difference calculating unit for calculating a power difference change value at a measurement reference point of an arbitrarily specified number of cycles from the power difference obtained by the calculation. On a cycle diagram in which a change value calculation means, an arithmetic unit having a judgment means for judging the quality of nugget growth from the change in the power difference, and the power difference on the vertical axis and the number of cycles on the horizontal axis A power difference behavior curve display unit for displaying the power difference behavior curve in a graph, and a result of determining whether the nugget growth is good or not by a change in the power difference at the measurement reference point of the power difference behavior curve displayed in the graph There is provided a resistance spot welding quality monitoring device provided with a display device having a determination result display unit to perform.

本発明の請求項7は,各半サイクルごとにおける数点の電流点の溶接電流増加過程と溶接電流減少過程の電極間電圧を取り,前記電極間電圧から算出したワークにかかる電極間電力により,それぞれの電流点における溶接電流減少過程の前記電極間電力から溶接電流増加過程の前記電極間電力を引いた電力差分を各々算出し,検出誤差を減少させるため各々の前記電力差分を半サイクルごとに平均し,前記電力差分の平均値を縦軸に取り,その横軸にサイクル数を取った前記電力差分の挙動曲線をグラフ表示することを特徴とする。     Claim 7 of the present invention takes the inter-electrode voltage of the welding current increasing process and the welding current decreasing process at several current points in each half cycle, and the inter-electrode power applied to the workpiece calculated from the inter-electrode voltage A power difference is calculated by subtracting the inter-electrode power in the welding current increasing process from the inter-electrode power in the welding current decreasing process at each current point, and each power difference is calculated every half cycle to reduce detection error. The power difference is averaged, the average value of the power difference is taken on the vertical axis, and the behavior curve of the power difference is plotted on the horizontal axis.

本発明にかかる請求項1〜5の方法によれば,通電中の時々刻々変化する溶接電流と電極間電圧とを少なくとも半サイクルごとに検出して,各半サイクルごとの溶接電流の増加過程と減少過程それぞれの所定の同一電流値に対応したワークにかかる電極間電力を用い,溶接電流の減少過程の前記電極間電力から溶接電流の増加過程の前記電極間電力を引いた電力差分を時系列的にモニタリングして,縦軸に前記電力差分を取り,その横軸にサイクル数を取ったグラフ上に前記電力差分を挙動曲線で表示し,前記横軸に設けた任意指定サイクル数の前記計測基準点での電力差分の変化からナゲット成長状況を瞬時に判定することができる。また、各半サイクルごとの溶接電流の増加過程と減少過程それぞれの所定の同一電流値に対応した電極間電力比分,又は電極間電圧差分,又は電極間電圧比分,又は電極間抵抗差分,又は電極間抵抗比分,又は各半サイクルにおける溶接電流の最大値に到達した時点と電極間電圧が最大値に到達する時点までの時間差分を時系列的に監視する場合でも前記電力差分の挙動曲線同様グラフ表示し,前記線図の横軸に設けた任意指定サイクル数の計測基準点で前記電極間電力比分,又は前記電極間電圧差分,又は前記電極間電圧比分,又は前記電極間抵抗差分,又は前記電極間抵抗比分,又は前記最大値到達時間差分の変化を監視しナゲット成長状況を瞬時に判定することができる。もちろん溶接条件が極端に異なればこの限りではないが,それは一般に公開されている溶接条件表から経験的に分かる範囲であり,そのような非常識な設定は行われないものとして除外して考える。 According to the method of claims 1 to 5 of the present invention, the welding current and the interelectrode voltage that change every moment during energization are detected at least every half cycle, and the welding current increasing process for each half cycle is performed. Using the inter-electrode power applied to the workpiece corresponding to a predetermined current value in each decrease process, the power difference obtained by subtracting the inter-electrode power in the welding current increasing process from the inter-electrode power in the welding current decreasing process is time-series. The power difference is plotted on the vertical axis, the number of cycles is plotted on the horizontal axis, the power difference is displayed as a behavior curve on the graph, and the measurement of the arbitrarily specified number of cycles provided on the horizontal axis The nugget growth status can be determined instantaneously from the change in the power difference at the reference point. In addition, the inter-electrode power ratio, the inter-electrode voltage difference, or the inter-electrode voltage ratio, or the inter-electrode resistance difference, or the electrode corresponding to a predetermined same current value in each of the welding current increasing and decreasing processes for each half cycle Even when the time difference between the time when the maximum resistance value of the welding current in each half cycle and the time when the interelectrode voltage reaches the maximum value is monitored in time series, the same graph as the behavior curve of the power difference Display, the inter-electrode power ratio, or the inter-electrode voltage difference, or the inter-electrode voltage ratio, or the inter-electrode resistance difference at the measurement reference point of the arbitrarily specified number of cycles provided on the horizontal axis of the diagram, or A change in the resistance ratio between the electrodes or the difference in the maximum value arrival time can be monitored to instantly determine the nugget growth state. Of course, if the welding conditions are extremely different, this is not the case, but it is the range that can be empirically understood from the publicly available welding conditions table, and such insane settings are not considered as excluded.

本発明は前述した従来の超音波の反射を利用した検査方法と対比し,ワーク材質,ワーク表面処理によってナゲット境界面でのエコーバックの乱れによる測定精度上の不安定等を解消する。また本発明は温度分布による従来の検査方法と対比し,ナゲット径を温度分布の推定による測定算出するための複雑なプログラムや高価な温度測定設備を必要としない。したがって,本発明は同一の多品種混流生産ラインでも常にそのオンライン上で全打点数にわたって高精度の溶接品質検査がリアルタイムで実施でき,品質判定精度の向上と非破壊検査の迅速化を図ることができる。 In contrast to the above-described conventional inspection method using ultrasonic reflection, the present invention eliminates instability in measurement accuracy due to disturbance of echo back at the nugget boundary surface by workpiece material and workpiece surface treatment. Further, in contrast to the conventional inspection method based on temperature distribution, the present invention does not require a complicated program or expensive temperature measurement equipment for measuring and calculating the nugget diameter by estimating the temperature distribution. Therefore, the present invention can always carry out high-precision welding quality inspection over the entire number of hit points in real time on the same multi-mix mixed-flow production line in real time, thereby improving quality judgment accuracy and speeding up nondestructive inspection. it can.

本発明にかかる請求項6〜7の装置によれば,通電中の溶接電流と電極間電圧(又は電極間抵抗)とを少なくとも半サイクルごとに検出する検出装置と,各半サイクルごとにおける数点の電流点の溶接電流増加過程と溶接電流減少過程の電極間電圧を取り,前記電極間電圧からそれぞれの同一電流点の電極間電圧を抽出する同一電流点の電圧抽出手段と,前記電極間電圧から算出したワークにかかる電極間電力により,それぞれの電流点における溶接電流減少過程の前記電極間電力から溶接電流増加過程の前記電極間電力を引いた電力差分を各々算出し、検出誤差を減少させるため各々の前記電力差分を半サイクルごとに平均し時系列的に電力差分を算出する電力差分算出手段と,前記電力差分の平均値から任意指定サイクル数の計測基準点における前記電力差分の平均値の変化値を算出する電力差分の変化値算出手段と,前記電力差分の平均値を縦軸に取り,その横軸にサイクル数を取ったサイクル線図上に前記電力差分の挙動曲線をグラフ表示する電力差分挙動曲線表示部と,前記グラフ表示された電力差分の挙動曲線の任意指定サイクル数における前記電力差分の平均値の変化からナゲット成長の良否を判定する判定手段を有する演算装置と,判定した結果を表示する判定結果表示部を有する表示装置とを付加する。 According to the apparatus of claims 6 to 7 of the present invention, a detection device for detecting the welding current and the interelectrode voltage (or interelectrode resistance) during energization at least every half cycle, and several points in each half cycle A voltage extracting means for extracting the inter-electrode voltage at the same current point from the inter-electrode voltage, and extracting the inter-electrode voltage at the same current point from the inter-electrode voltage; From the inter-electrode power applied to the workpiece calculated from the above, the power difference obtained by subtracting the inter-electrode power in the welding current increasing process from the inter-electrode power in the welding current decreasing process at each current point is calculated to reduce the detection error. Therefore, a power difference calculating means for averaging each power difference every half cycle and calculating a power difference in time series, and a measurement reference point for an arbitrarily specified number of cycles from the average value of the power differences A power difference change value calculating means for calculating a change value of the average value of the power difference, and the power on the cycle diagram in which the average value of the power difference is taken on the vertical axis and the number of cycles is taken on the horizontal axis. A power difference behavior curve display unit that graphically displays a difference behavior curve, and a determination unit that determines whether nugget growth is good or not from a change in an average value of the power difference in an arbitrarily specified number of cycles of the power difference behavior curve displayed in the graph And a display device having a determination result display unit for displaying the determined result.

これによって,従来の超音波による非破壊検査装置と比べて超音波送受信機や複雑な測定及び処理システムを必要としない。また従来の温度分布による検査装置と比べて温度分布からの推定による複雑測定プログラムや設備が必要なく,高精度の溶接品質検査がリアルタイムで実施でき,品質判定精度の向上と非破壊検査の迅速化を図ることができる構成簡単かつ安価な抵抗スポット溶接品質監視装置を提供する。 This eliminates the need for ultrasonic transceivers and complex measurement and processing systems compared to conventional ultrasonic nondestructive inspection equipment. Compared to conventional inspection equipment based on temperature distribution, there is no need for complex measurement programs and equipment based on estimation from temperature distribution, high-precision welding quality inspection can be performed in real time, quality judgment accuracy is improved, and non-destructive inspection is accelerated. It is possible to provide a resistance spot welding quality monitoring device that is simple and inexpensive.

図5は半サイクルにおける溶接電流と電極間電圧および電極間電力の波形を示したものである。図6は本発明の実施例において同一電流値における電力差分(Ps)の推移を示したものである。     FIG. 5 shows waveforms of the welding current, the electrode voltage, and the electrode power in a half cycle. FIG. 6 shows the transition of the power difference (Ps) at the same current value in the embodiment of the present invention.

本発明は図5及び図6に示す基本技術を応用したもので,その基本原理は本件出願人がすでに公開及び発表した上記特許文献4及び上記非特許文献1に詳細記載が示されている。 The present invention is an application of the basic technique shown in FIGS. 5 and 6, and the basic principle is described in detail in the above-mentioned Patent Document 4 and Non-Patent Document 1 already published and announced by the present applicant.

溶接電流(I)と電極間電圧(V)の積である電極間電力(P)はP=V・Iであり,言い換えれば電極間抵抗をRとすれば,P=IRであるから,Pの値は電極間抵抗に比例している。図4に示すように,電極間抵抗(1)は溶接部であるワークの板間接触抵抗(2)と,ワーク自体の固有抵抗(3)と,電極チップ(6)とワーク(7)との接触抵抗(4)と,電極チップ自体及びその他導体の固有抵抗(5)の合成値である。電極間抵抗はワークが通電により軟化してワークの板間接触抵抗と電極チップとワークとの接触抵抗の接触状態が良好になり通電路面積が広がれば低下し,ワークの温度が変化すればワーク材質の固有抵抗の温度係数の特性により変化する。 The interelectrode power (P), which is the product of the welding current (I) and the interelectrode voltage (V), is P = V · I. In other words, if the interelectrode resistance is R, then P = I 2 R. , P is proportional to the interelectrode resistance. As shown in FIG. 4, the inter-electrode resistance (1) includes the inter-plate contact resistance (2) of the work as a welded part, the specific resistance (3) of the work itself, the electrode tip (6) and the work (7). Of the contact resistance (4) and the specific resistance (5) of the electrode tip itself and other conductors. The resistance between the electrodes decreases when the workpiece is softened by energization, and the contact state between the workpiece's plate-to-plate contact and the contact resistance between the electrode tip and the workpiece becomes good. Varies depending on the temperature coefficient characteristics of the material resistivity.

本発明において半サイクルごとに同一電流点の減少過程のワークにかかる電極間電力から増加過程のワークに係る電極間電力を引いた電力差分を時系列に監視する。すなわち,図5に示すように時々刻々に変化する溶接電流の通電半サイクルの増加過程と減少過程のそれぞれに対応した電極間電圧を所定の同一電流値(I)のもとで,それぞれを検出して,その時の電極間電圧(EupおよびEdown)と所定同一電流値(I)との積であるところの電極間電力(Pup=Eup×I および Pdown=Edown×I)の差(Pdown−Pup)をPsとして求める。     In the present invention, the power difference obtained by subtracting the inter-electrode power related to the increasing work from the inter-electrode power related to the decreasing work of the same current point is monitored in time series every half cycle. That is, as shown in Fig. 5, the inter-electrode voltage corresponding to each of the increasing and decreasing processes of the half-cycle of the welding current that changes from moment to moment is detected under the same current value (I). Then, the difference between the interelectrode power (Pup = Eup × I and Pdown = Edown × I) (Pdown−Pup), which is the product of the interelectrode voltage (Eup and Edown) and the predetermined current value (I) ) As Ps.

この時,Psの値を縦軸にサイクル数を横軸に取るとPs−サイクル線図は,前記電力差分の挙動曲線を例にとると,図6のグラフに示すような波形となる。この電力差分の挙動曲線では,前記計測基準点でほぼ水平状態に推移していると判定できる。     At this time, when the value of Ps is taken on the vertical axis and the number of cycles is taken on the horizontal axis, the Ps-cycle diagram has a waveform as shown in the graph of FIG. 6 taking the behavior curve of the power difference as an example. From this power difference behavior curve, it can be determined that the measurement reference point is almost horizontal.

特許文献4および非特許文献1に記載された従来技術によれば,図6の前記電力差分の挙動曲線に示す電力差分の変化があらかじめ定めた所定値以下にどの時点で到達したかを検出して,以降の溶接電流又は加圧力を変化させるか,又はその時点で通電を打ち切るなど行い,適正な溶接ナゲットを生成しながら散りの発生を予防することができる。 According to the prior art described in Patent Document 4 and Non-Patent Document 1, it is detected at which point the change in the power difference shown in the behavior curve of the power difference in FIG. 6 has reached a predetermined value or less. Thus, it is possible to prevent the occurrence of scattering while generating an appropriate welding nugget by changing the welding current or the applied pressure thereafter, or by stopping the energization at that time.

本発明は図6に示す前記電力差分の挙動曲線を利用することにより溶接ナゲット生成プロセスを半サイクルごとに電極間電力差分の変化をグラフィックにより監視し,前記計測基準点での電力差分の変化より溶接強度を十分に満たす適正な溶接が行われているかどうかを品質評価する非破壊検査方法と装置を開発したものである。     The present invention uses the power difference behavior curve shown in FIG. 6 to graphically monitor the change in the power difference between the electrodes every half cycle in the welding nugget generation process, and from the change in the power difference at the measurement reference point. We have developed a nondestructive inspection method and device for quality evaluation of whether or not proper welding that sufficiently satisfies the welding strength is performed.

本発明の実施例2において,図7は半サイクルにおける溶接電流と電極間電圧を示したものである。時々刻々変化する溶接電流の通電中の溶接電流と電極間電圧とを時々刻々に検出して,各半サイクルにおける溶接電流の最大値に到達した時点(Ti-peak)と電極間電圧が最大値に到達する時点(Te-peak)までの時間差(Ts)は,所定の同一電流値(I)のもとで,電流増加過程及び電流減少過程それぞれのその時の電極間電圧(EupおよびEdown)と所定同一電流値(I)との積であるところの電極間電力(Pup=Eup×I および Pdown=Edown×I)の差(Pdown−Pup)が大きい(又は小さい)場合は,時間差が大きく(又は小さく)なる。     In Example 2 of the present invention, FIG. 7 shows the welding current and the interelectrode voltage in a half cycle. The welding current and the interelectrode voltage during energization of the welding current that changes from moment to moment are detected momentarily, and when the maximum value of the welding current in each half cycle is reached (Ti-peak) and the interelectrode voltage is the maximum value. The time difference (Ts) until the point of arrival (Te-peak) reaches the current interelectrode voltage (Eup and Edown) in each of the current increasing process and current decreasing process under the same current value (I). If the difference (Pdown−Pup) between the electrode power (Pup = Eup × I and Pdown = Edown × I), which is the product of the predetermined current value (I), is large (or small), the time difference is large ( (Or smaller).

前記最大値到達時間差(Ts)を縦軸に取り,その横軸にサイクル数を取ったサイクル線図上に前記最大値到達時間差の挙動曲線を例にとると図8のグラフに示すような波形となる。この前記最大値到達時間差の挙動曲線では,前記計測基準点でほぼ水平状態に推移していると判定できる。     When the maximum value arrival time difference (Ts) is plotted on the vertical axis and the number of cycles is plotted on the horizontal axis, the behavior curve of the maximum value arrival time difference is taken as an example in the waveform shown in the graph of FIG. It becomes. In the behavior curve of the maximum value arrival time difference, it can be determined that the measurement reference point is almost horizontal.

特許文献4および非特許文献1に記載された従来技術によれば,図8の前記最大値到達時間差の挙動曲線に示す最大値到達時間差の変化があらかじめ定めた所定値以下にどの時点で到達したかを検出して,以降の溶接電流又は加圧力を変化させるか,又はその時点で通電を打ち切るなど行い,適正な溶接ナゲットを生成しながら散りの発生を予防することができる。 According to the prior art described in Patent Literature 4 and Non-Patent Literature 1, at which point the change in the maximum value arrival time difference shown in the behavior curve of the maximum value arrival time difference in FIG. It is possible to prevent the occurrence of scattering while generating an appropriate welding nugget by changing the welding current or the applied pressure thereafter, or by stopping the energization at that time.

本発明は図8に示す前記最大値到達時間差分の挙動曲線を利用することにより溶接ナゲット生成プロセスを半サイクルごとに上記最大値到達時間差の変化をグラフィックにより監視し,前記計測基準点での前記最大値到達時間差分の変化より溶接強度を十分に満たす適正な溶接が行われているかどうかを品質評価する非破壊検査方法と装置を開発したものである。     The present invention uses the behavior curve of the maximum value arrival time difference shown in FIG. 8 to graphically monitor the change in the maximum value arrival time difference every half cycle in the welding nugget generation process, and the measurement reference point at the measurement reference point. We have developed a nondestructive inspection method and device for quality evaluation of whether or not proper welding that sufficiently satisfies the welding strength is performed based on the change in the maximum value arrival time difference.

次に本発明の実施例3について説明する。実施例3は図2の電気ブロック回路図および図3のフロチャート図に基づいて本発明の方法を実施するための装置及び動作を示す。抵抗溶接機は溶接トランスTの二次側に有する対をなす電極のうち少なくとも一方の電極を可動側電極1として流体圧又は電気を駆動源とするアクチュエータにより駆動する。他方の電極は固定側電極2としてアームに支持される。     Next, a third embodiment of the present invention will be described. Example 3 shows an apparatus and operation for carrying out the method of the present invention based on the electric block circuit diagram of FIG. 2 and the flowchart of FIG. The resistance welder uses at least one of the paired electrodes on the secondary side of the welding transformer T as a movable side electrode 1 and is driven by an actuator using fluid pressure or electricity as a drive source. The other electrode is supported by the arm as the fixed electrode 2.

溶接機の起動を開始すると,溶接すべきワーク3を前記二つの電極1,2で挟持し,所定加圧力が立ち上がるとタイマ装置から通電信号でサイリスタを駆動し,前記トランスの主電流を制御し電極間に溶接電流を流しワーク3を抵抗発熱により溶融させてナゲット生成して接合する。     When starting the welding machine, the work 3 to be welded is sandwiched between the two electrodes 1 and 2, and when a predetermined pressurizing force rises, the thyristor is driven by the energization signal from the timer device to control the main current of the transformer. A welding current is passed between the electrodes, the work 3 is melted by resistance heat generation, and a nugget is generated and joined.

通電中の電極1,2に発生する電圧aを検出装置の誘導キャンセル回路6によりトロイダル4から得られる誘導電圧bを用いて電圧波形cのみを抽出し検出装置のインターフェース回路7により適切な波形にし検出装置の波形取込回路8にて取り込む。演算装置の同一電流点の電圧抽出手段11で半サイクルごとにCT5から検出装置のインターフェース回路10,検出装置の波形取込回路9を介し得られる溶接電流の同一電流点における減少過程の電圧と増加過程の電圧を求め,演算装置の電力差分算出手段12で同一電流点の減少過程の電力と増加過程の電力を算出し,その点における電力差分を求める。     Only the voltage waveform c is extracted using the induced voltage b obtained from the toroidal 4 by the induction cancel circuit 6 of the detecting device 6 and the voltage a generated in the energized electrodes 1 and 2 is made into an appropriate waveform by the interface circuit 7 of the detecting device. The waveform is captured by the waveform capture circuit 8 of the detection device. The voltage extraction means 11 at the same current point of the arithmetic unit voltage and increase of the decrease process at the same current point of the welding current obtained from the CT 5 through the interface circuit 10 of the detection device and the waveform acquisition circuit 9 of the detection device every half cycle. The voltage of the process is obtained, the power difference calculating means 12 of the arithmetic unit calculates the power in the decreasing process and the power in the increasing process at the same current point, and the power difference at that point is obtained.

演算装置の電力差分の変化算出手段14で算出した電力差分電力差分の変化を時系列的に演算装置の判定手段13で監視し,その電力の差分を縦軸に取り,その横軸にサイクル数を取ったサイクル線図上に前記電力差分の挙動を示したグラフを表示装置の電力差分の挙動曲線表示部15に表示する。     The change of the power difference calculated by the power difference change calculation means 14 of the arithmetic device is monitored by the determination means 13 of the arithmetic device in time series, the power difference is taken on the vertical axis, and the number of cycles on the horizontal axis. A graph showing the behavior of the power difference is displayed on the behavior curve display unit 15 of the power difference of the display device on the cycle diagram taken.

この場合,前記横軸には任意指定サイクル数の計測基準点を設け,前記電力差分の挙動曲線が請求項1の判定動作に示す図1(A)のごとく,前記計測基準点でほぼ水平状態に推移したときには,適正な熱的エネルギが溶接部に与えられ各半サイクルごとの溶接電流の増加過程と減少過程それぞれの所定の同一電流値に対応した電極間電力の減少過程のワークにかかる電力から増加過程のワークにかかる電力を引いた電力差分の変化が前記計測基準点で無くなっており熱的変化が安定した状態とみられ,ナゲット成長が正常であると判定する。その判定結果は表示装置の判定結果表示部16で表示する。     In this case, the horizontal axis is provided with a measurement reference point having an arbitrarily specified number of cycles, and the behavior curve of the power difference is substantially horizontal at the measurement reference point as shown in FIG. When the transition to, the appropriate thermal energy is given to the weld and the power applied to the work in the process of decreasing the inter-electrode power corresponding to the same predetermined current value in each of the increasing and decreasing processes of the welding current every half cycle. It is determined that the nugget growth is normal because the change in the power difference obtained by subtracting the power applied to the workpiece in the increasing process is lost at the measurement reference point and the thermal change is considered to be stable. The determination result is displayed on the determination result display unit 16 of the display device.

以下同様に請求項2の判定によれば,図1(B)のごとく,前記計測基準点で降下し続けている場合は,溶接部に与えられた熱的エネルギが低いため各半サイクルごとの前記電力差分の変化が前記計測基準点で徐々に降下しており,溶接部の熱的変化が継続していた状態とみられ,ナゲット成長が不十分であると判定する。その判定結果は表示装置の結果表示部16で表示する。また請求項3の判定動作では図1(C)のごとく前記計測基準点で上昇し続けているとき又は前記計測基準点に至る途中で一定時間上昇した後にほぼ水平状態に推移したときには,溶接部に与えられた熱的エネルギが高いため各半サイクルごとの前記電力差分が徐々に上昇している,あるいは徐々に上昇した後,前記電力差分の変化が無くなっており,溶接部に過大な熱的エネルギが与えられ散り発生寸前の状態から散り発生せずに徐々に熱的変化が安定した状態とみられ,散り発生限界点にあると判定する。その判定結果は表示装置の結果表示部16で表示する。     Similarly, according to the determination of claim 2, as shown in FIG. 1 (B), when the descent continues at the measurement reference point, the thermal energy applied to the welded portion is low, so that each half cycle is The change in the power difference gradually falls at the measurement reference point, and it is considered that the thermal change of the welded part is continued, and it is determined that the nugget growth is insufficient. The determination result is displayed on the result display unit 16 of the display device. In addition, in the determination operation of claim 3, when it continues to rise at the measurement reference point, as shown in FIG. The power difference for each half cycle is gradually increasing due to the high thermal energy applied to the slab, or after the gradual increase, there is no change in the power difference, and the weld has excessive thermal energy. It is judged that it is at the limit point of occurrence of scattering because it seems that the thermal change is gradually stabilized from the state just before the occurrence of scattering and no scattering occurs. The determination result is displayed on the result display unit 16 of the display device.

請求項4の判定動作によれば図1(D)のごとく前記電力差分の挙動曲線が急峻な角度で下降直後に上昇又は上昇直後に下降しているときには,溶接部に与えられた熱的エネルギが非常に高いため溶融した溶接物の一部が外部に飛散し各半サイクルごとの前記電力差分が急峻に変化した状態とみられ,その時点で散りが発生していると判定する。その判定結果は表示装置の結果表示部16で表示する。このようにいくつかの評価パターンから溶接品質良否判定をナゲット生成過程中に迅速かつ正確に行う。     According to the determination operation of claim 4, when the behavior curve of the power difference rises immediately after descending or descends immediately after ascending at a steep angle as shown in FIG. 1 (D), the thermal energy applied to the welded portion. Therefore, it is determined that a part of the molten welded material is scattered to the outside and the power difference for each half cycle is sharply changed. The determination result is displayed on the result display unit 16 of the display device. In this way, the quality of the weld quality is judged quickly and accurately from several evaluation patterns during the nugget generation process.

本発明は各半サイクルごとの溶接電流の増加過程と減少過程それぞれの所定の同一電流値に対応した電極間電力の減少過程のワークにかかる電力から増加過程のワークにかかる電力を引いた電力差分で説明しているが,電極間電力比分,又は電極間電圧差分,又は電極間電圧比分,又は電極間抵抗差分,又は電極間抵抗比分,又は各半サイクルにおける溶接電流の最大値に到達した時点と電極間電圧が最大値に到達する時点までの時間差分での挙動曲線からでも同様に判定することができる。   The present invention provides a power difference obtained by subtracting the power applied to the workpiece in the increasing process from the power applied to the workpiece in the decreasing process of the inter-electrode power corresponding to the predetermined same current value in each of the welding current increasing process and the decreasing process in each half cycle. However, when the inter-electrode power ratio, the inter-electrode voltage difference, the inter-electrode voltage ratio, the inter-electrode resistance difference, the inter-electrode resistance ratio, or the maximum welding current in each half cycle is reached. It can be determined in the same manner from the behavior curve of the time difference until the time when the interelectrode voltage reaches the maximum value.

本発明は抵抗スポット・プロジェクション溶接機,シーム溶接機の分野に限らず,抵抗発熱を利用する通電熱カシメ接合,又は電気アプセッテイグの用途にも適用できる。   The present invention is not limited to the field of resistance spot projection welders and seam welders, but can also be applied to energized heat caulking joints that use resistance heat generation or electrical upsetting.

本発明の実施例において同一電流値におけるチップ間電力差の挙動曲線の推移から溶接ナゲット生成時の幾つかの溶接品質評価パターンを示すサイクル線図である。In the Example of this invention, it is a cycle diagram which shows some welding quality evaluation patterns at the time of welding nugget production | generation from transition of the behavior curve of the power difference between chips | tips in the same electric current value. 本発明の方法を実施するための溶接スポット品質監視装置の実施例を示す電気ブロック回路図である。It is an electric block circuit diagram which shows the Example of the welding spot quality monitoring apparatus for enforcing the method of this invention. 本発明装置の動作を示すフロチャート図である。It is a flowchart figure which shows operation | movement of this invention apparatus. 本発明の実施例である電極間抵抗の構成要素を示す図である。It is a figure which shows the component of the resistance between electrodes which is an Example of this invention. 本発明の実施例において同一電流値におけるチップ間電力の差を示したものである。In the Example of this invention, the difference of the electric power between chips in the same electric current value is shown. 本発明の実施例において同一電流値におけるチップ間電力の差(Ps)の推移を示したものである。In the Example of this invention, transition of the difference (Ps) of the electric power between chips | tips in the same electric current value is shown. 本発明の実施例において,半サイクルにおける溶接電流の最大値とチップ電圧の最大値の時間差(Ts)を示したものである。In the Example of this invention, the time difference (Ts) of the maximum value of the welding current and the maximum value of a chip voltage in a half cycle is shown. 本発明の実施例において溶接電流の最大値とチップ電圧の最大値の時間差(Ts)の推移を示したものである。FIG. 5 shows the transition of the time difference (Ts) between the maximum value of the welding current and the maximum value of the tip voltage in the example of the present invention.

符号の説明Explanation of symbols

1 一方の電極(可動側電極) 2 他方の電極(固定側電極)
3 ワーク 4 トロイダル 5 CT 6 誘導キャンセル回路 7 インターフェース回路 8 波形取込回路 9 波形取込回路
10 インターフェース回路 11 同一電流点の電圧抽出手段
12 電力差分算出手段 13 判定手段
14 電力差分の変化算出手段 15 電力差分の挙動曲線表示部 16 判定結果表示部
1 One electrode (movable side electrode) 2 The other electrode (fixed side electrode)
3 Work 4 Toroidal 5 CT 6 Induction Cancel Circuit 7 Interface Circuit 8 Waveform Capture Circuit 9 Waveform Capture Circuit 10 Interface Circuit 11 Voltage Extraction Unit 12 at Same Current Point 12 Power Difference Calculation Unit 13 Determination Unit
14 power difference change calculation means 15 power difference behavior curve display section 16 determination result display section

Claims (7)

被溶接物を一対の電極チップで挟みつけて,これに加圧力をかけながら溶接電流を流し抵抗発熱によりナゲットを生成して接合する抵抗スポット溶接方法において,適切な溶接条件下において通電中の時々刻々変化する溶接電流と電極間電圧とを少なくとも半サイクルごとに検出して,各半サイクルごとの溶接電流の増加過程と減少過程それぞれの所定の同一電流値に対応した被溶接物にかかる電極間電力を算出し,前記溶接電流減少過程の前記電極間電力から溶接電流増加過程の前記電極間電力を引いた電力差分を時系列的に監視する場合,前記電力差分を縦軸に取り,その横軸にサイクル数を取ったサイクル線図上に前記電力差分の挙動曲線を表し,この前記電力差分の挙動曲線が前記横軸の任意指定サイクル数の計測基準点でほぼ水平状態に達したときにはナゲット成長が正常であると判定することを特徴とする抵抗スポット溶接品質判定方法。 In a resistance spot welding method in which a workpiece is sandwiched between a pair of electrode tips and a welding current is applied to the workpiece to generate a nugget by resistance heating to generate a nugget and joined. The welding current and the voltage between the electrodes that change every moment are detected at least every half cycle, and between the electrodes applied to the work piece corresponding to the predetermined same current value in each of the increasing and decreasing processes of the welding current in each half cycle. When calculating the power and monitoring the power difference obtained by subtracting the inter-electrode power in the welding current increasing process from the inter-electrode power in the welding current decreasing process, the power difference is plotted on the vertical axis, The power difference behavior curve is represented on a cycle diagram with the number of cycles on the axis, and the power difference behavior curve is substantially horizontal at the measurement reference point of the arbitrarily specified number of cycles on the horizontal axis. Resistance spot welding quality evaluation method characterized by determining the nugget growth is normal when it reaches the state. 前記電力差分の挙動曲線が任意指定サイクル数の前記計測基準点で降下している場合はナゲット成長が不十分であると判定することを特徴とする請求項1に記載の抵抗スポット溶接品質判定方法。 The resistance spot welding quality determination method according to claim 1, wherein nugget growth is determined to be insufficient when the behavior curve of the power difference falls at the measurement reference point having an arbitrarily specified number of cycles. . 前記電力差分の挙動曲線が任意指定サイクル数の前記計測基準点で上昇し続けているとき又は前記計測基準点に至る途中で一定時間上昇した後にほぼ水平状態に推移したときには散り発生限界点にあると判定することを特徴とする請求項1に記載の抵抗スポット溶接品質判定方法。 When the behavior curve of the power difference continues to rise at the measurement reference point for an arbitrarily specified number of cycles, or when it rises for a certain period of time on the way to the measurement reference point and changes to a substantially horizontal state, it is at the scattering occurrence limit point The resistance spot welding quality determination method according to claim 1, wherein: 前記電力差分の挙動曲線が急峻な角度で下降直後に上昇又は上昇直後に下降しているときにはその時点で散りが発生していると判定することを特徴とする請求項1に記載の抵抗スポット溶接品質判定方法。   2. The resistance spot welding according to claim 1, wherein when the behavior curve of the power difference rises immediately after being lowered at a steep angle or falls immediately after the rise, it is determined that scattering occurs at that time. Quality judgment method. 前記抵抗スポット溶接方法において,各半サイクルごとの溶接電流の増加過程と減少過程それぞれの所定の同一電流値に対応した電極間電力比分,又は電極間電圧差分,又は電極間電圧比分,又は電極間抵抗差分,又は電極間抵抗比分,又は各半サイクルにおける溶接電流の最大値に到達した時点と電極間電圧が最大値に到達する時点までの時間差分を時系列的に監視する場合でも前記電力差分の挙動曲線同様グラフ表示し,前記線図の横軸に設けた任意指定サイクル数の計測基準点で時系列的に前記電極間電力比分,又は前記電極間電圧差分,又は前記電極間電圧比分,又は前記電極間抵抗差分,又は前記電極間抵抗比分,又は前記最大値到達時間差分の変化を監視して判定することを特徴とする請求項1〜4に記載の抵抗スポット溶接品質判定方法。     In the resistance spot welding method, an inter-electrode power ratio, an inter-electrode voltage difference, an inter-electrode voltage ratio, or an inter-electrode corresponding to a predetermined same current value in each of the increasing and decreasing processes of the welding current in each half cycle. Even when the time difference between the time when the resistance difference or the resistance ratio between the electrodes reaches the maximum value of the welding current in each half cycle and the time when the voltage between the electrodes reaches the maximum value is monitored in time series, the power difference The graph is displayed in the same manner as the behavior curve, and the power ratio between the electrodes, or the voltage difference between the electrodes, or the voltage ratio between the electrodes, in time series at the measurement reference point of the arbitrarily specified number of cycles provided on the horizontal axis of the diagram, The resistance spot welded product according to claim 1, wherein the resistance spot welded product is determined by monitoring a change in the interelectrode resistance difference, the interelectrode resistance ratio, or the change in the maximum value arrival time difference. Determination method. 一対の電極チップのうち少なくとも一方の電極チップを流体圧又は電気,その他の動力源を用いて他方の電極チップと相対向して駆動し,前記電極チップで被溶接物を挟みつけて加圧し,溶接電流を流して抵抗発熱により溶融して接合する抵抗スポット溶接機において,適切な溶接条件下にて通電中の溶接電流と電極間電圧(又は電極間抵抗)とを少なくとも半サイクルごとに検出する検出装置と,各半サイクルごとの溶接電流の増加過程と減少過程それぞれの同一電流点の電極間電圧を抽出する同一電流点の電圧抽出手段と,溶接電流の増加過程と減少過程それぞれの所定の同一電流値に対応した被溶接物にかかる電極間電力を算出し,同一電流値に対応した溶接電流減少過程の被溶接物にかかる電極間電力から溶接電流増加過程の被溶接物にかかる電極間電力を引いた電力差分を時系列的に算出する電力差分算出手段と,前記算出して得られた電力差分から任意指定サイクル数の計測基準点における電力差分の変化値を算出する電力差分の変化値算出手段と,前記電力差分を縦軸に取り,その横軸にサイクル数を取ったサイクル線図上に前記電力差分の挙動曲線をグラフ表示する電力差分挙動曲線表示部と,前記グラフ表示された電力差分の挙動曲線の前記計測基準点における前記電力差分の変化からナゲット成長の良否を判定する判定手段を有する演算装置と,判定した結果を表示する判定結果表示部を有する表示装置とを備えた抵抗スポット溶接品質監視装置。 At least one electrode tip of the pair of electrode tips is driven opposite to the other electrode tip using fluid pressure, electricity, or other power source, and the workpiece is sandwiched and pressurized by the electrode tip, In a resistance spot welder that melts and joins with resistance heating by flowing a welding current, the welding current and the voltage between electrodes (or resistance between electrodes) are detected at least every half cycle under appropriate welding conditions. A detecting device, a voltage extracting means for extracting the voltage between the electrodes at the same current point in each of the increasing and decreasing processes of the welding current every half cycle, and a predetermined method for each of the increasing and decreasing processes of the welding current. Calculate the inter-electrode power applied to the workpiece corresponding to the same current value, and increase the welding current from the inter-electrode power applied to the workpiece in the welding current decreasing process corresponding to the same current value. A power difference calculation means for calculating a power difference obtained by subtracting the inter-electrode power applied in a time series, and a change value of the power difference at a measurement reference point of an arbitrarily specified number of cycles from the calculated power difference. A power difference change value calculation means, a power difference behavior curve display unit for displaying the power difference behavior curve on a cycle diagram having the power difference on the vertical axis and the number of cycles on the horizontal axis; A display having a calculation device having a determination means for determining the quality of nugget growth from a change in the power difference at the measurement reference point of the behavior curve of the power difference displayed in the graph, and a determination result display section for displaying the determined result Resistance spot welding quality monitoring device. 各半サイクルごとにおける数点の電流点の溶接電流増加過程と溶接電流減少過程の電極間電圧を取り,前記電極間電圧から算出した被溶接物にかかる電極間電力により,それぞれの電流点における溶接電流減少過程の前記電極間電力から溶接電流増加過程の前記電極間電力を引いた電力差分を各々算出し,検出誤差を減少させるため各々の前記電力差分を半サイクルごとに平均し,前記電力差分の平均値を縦軸に取り,その横軸にサイクル数を取った前記電力差分の挙動曲線をグラフ表示する請求項6の抵抗スポット溶接品質監視装置。     Take the voltage between the electrodes in the welding current increasing process and welding current decreasing process at several current points in each half cycle, and the welding power at each current point is calculated by the inter-electrode power applied to the work piece calculated from the inter-electrode voltage. A power difference obtained by subtracting the inter-electrode power in the welding current increasing process from the inter-electrode power in the current decreasing process is calculated, and each power difference is averaged every half cycle in order to reduce a detection error. The resistance spot welding quality monitoring apparatus according to claim 6, wherein a behavior curve of the power difference is plotted on a vertical axis, and the horizontal axis represents the number of cycles.
JP2004297361A 2004-10-12 2004-10-12 Method for judging quality of resistance spot welding and monitoring device Pending JP2006110554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004297361A JP2006110554A (en) 2004-10-12 2004-10-12 Method for judging quality of resistance spot welding and monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004297361A JP2006110554A (en) 2004-10-12 2004-10-12 Method for judging quality of resistance spot welding and monitoring device

Publications (1)

Publication Number Publication Date
JP2006110554A true JP2006110554A (en) 2006-04-27

Family

ID=36379500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004297361A Pending JP2006110554A (en) 2004-10-12 2004-10-12 Method for judging quality of resistance spot welding and monitoring device

Country Status (1)

Country Link
JP (1) JP2006110554A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090218323A1 (en) * 2005-11-09 2009-09-03 Hiroshi Abe Spot welding method, method for judging shape of nugget, spot welding machine and spot welding electrode
WO2012050108A1 (en) 2010-10-14 2012-04-19 住友金属工業株式会社 Welding quality determination device
CN108535660A (en) * 2018-04-26 2018-09-14 深圳市泰欣能源科技有限公司 The detection device and its detection method of a kind of group of battery modules junction conduction
CN117134504A (en) * 2023-10-25 2023-11-28 陕西禄远电子科技有限公司 Intelligent energy monitoring method and system based on safety protection

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090218323A1 (en) * 2005-11-09 2009-09-03 Hiroshi Abe Spot welding method, method for judging shape of nugget, spot welding machine and spot welding electrode
WO2012050108A1 (en) 2010-10-14 2012-04-19 住友金属工業株式会社 Welding quality determination device
CN108535660A (en) * 2018-04-26 2018-09-14 深圳市泰欣能源科技有限公司 The detection device and its detection method of a kind of group of battery modules junction conduction
CN117134504A (en) * 2023-10-25 2023-11-28 陕西禄远电子科技有限公司 Intelligent energy monitoring method and system based on safety protection
CN117134504B (en) * 2023-10-25 2024-01-26 陕西禄远电子科技有限公司 Intelligent energy monitoring method and system based on safety protection

Similar Documents

Publication Publication Date Title
JP3161339B2 (en) Method for controlling welding conditions of resistance welding machine
JP3221356B2 (en) Quality evaluation method and apparatus for resistance welds
JP6223535B2 (en) Ultrasonic welding quality judgment device and method
WO2014156290A1 (en) Resistance spot welding system
JP2001276980A (en) Connecting apparatus
Xing et al. Characteristics of shunting effect in resistance spot welding in mild steel based on electrode displacement
US9266187B2 (en) Method of monitoring thermal response, force and current during resistance welding
Ma et al. Review on techniques for on-line monitoring of resistance spot welding process
JP4674202B2 (en) Method for evaluating minute metal joints
EP0765710B1 (en) Apparatus and method for controlling resistance welding
KR101642807B1 (en) Method for quality judgment to spot welding
KR101390385B1 (en) Method for evaluating welding quality of nut projection welding
KR20180130173A (en) System and Method for Real time Monitoring of Electric Resistance Welding
JP3772175B2 (en) Ultrasonic welding equipment
JP2006110554A (en) Method for judging quality of resistance spot welding and monitoring device
JP5582277B1 (en) Resistance spot welding system
KR20150144138A (en) Method for evaluating welding quality of ring projection welding
JP2012200765A (en) Method and device for evaluating quality of resistance welding
JPH04178275A (en) Resistance spot welding
JP2011240368A (en) Method and system for determining weld quality
JP3927190B2 (en) Ultrasonic welding equipment
JPH11285848A (en) Resistance spot welding method
JPH09504741A (en) Welding machine monitoring method, application of the method for adjusting the welding machine and device for carrying out the method
KR100270098B1 (en) Apparatus and method for quality judge of welding
JP3703017B2 (en) Spot welding monitoring method and monitoring apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081029