JPS6356019B2 - - Google Patents

Info

Publication number
JPS6356019B2
JPS6356019B2 JP56067877A JP6787781A JPS6356019B2 JP S6356019 B2 JPS6356019 B2 JP S6356019B2 JP 56067877 A JP56067877 A JP 56067877A JP 6787781 A JP6787781 A JP 6787781A JP S6356019 B2 JPS6356019 B2 JP S6356019B2
Authority
JP
Japan
Prior art keywords
powder
steel
molten steel
sio
tundish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56067877A
Other languages
Japanese (ja)
Other versions
JPS57184563A (en
Inventor
Yutaka Yoshii
Yasuhiro Kakio
Toshihiko Emi
Kenichi Tanmachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6787781A priority Critical patent/JPS57184563A/en
Publication of JPS57184563A publication Critical patent/JPS57184563A/en
Publication of JPS6356019B2 publication Critical patent/JPS6356019B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/111Treating the molten metal by using protecting powders

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は鋼の連続鋳造において、タンデイツ
シユ内の湯面もしくは鋳型内の湯面を被覆するた
めのパウダに関するものである。 周知のように鋼の連続鋳造においては取鍋から
鋳型に溶鋼を注入するにあたつて、取鍋から一旦
中間容器(タンデイツシユ)に注湯し、そのタン
デイツシユから鋳型へ注湯するのが通常である。
タンデイツシユにおいては、溶鋼湯面の温度低下
を防止するとともに、湯面に浮遊する脱酸生成物
やスカムと称される空気酸化物、あるいは転炉ス
ラグ等が混合した浮遊物等を吸収するかまたは希
釈して比較的無害なものに変化させ、併せて溶鋼
中に懸濁する非金属介在物を吸着する等の目的か
ら、酸化物粉を主体とするパウダによつて溶鋼湯
面を被覆することが行なわれている。また鋳型に
おいても、上記同様な目的、および鋳片と鋳型内
壁面との間を潤滑する目的から前記同様に酸化物
粉を主体とするパウダで湯面を被覆することが行
なわれている。このような湯面被覆用のパウダと
しては、前述の目的を効率良く達成するため、粘
性、軟化温度、滓化温度、流動性、塩基度等の諸
物性を適正に調整する必要があり、またパウダの
成分系として耐火レンガやタンデイツシユノズル
等の溶損を生じ難いものに調整しなければならな
い。これらの観点から従来の連続鋳造に使用され
るパウダとしては、CaO―SiO2―Al2O3を母材と
し、それにCaF2,NaFなどのフラツクス成分、
骨材としての炭素を適量配合して塩基度を0.8〜
1.3、軟化温度を1050〜1250℃、粘度を使用目的
に応じて2.5〜100ポアズ(1300℃)に調整したも
のが一般的である。 ところで一般にAl含有量の高い溶鋼では、溶
鋼中のAlと溶鋼湯面に浮遊する前述のような浮
遊物中のMnO,FeO,Fe2O3,SiO2,P2O5等の
還元され易い酸化物との間の還元反応により
Al2O3が生成され、このAl2O3が溶鋼中に分散し
て懸濁され、溶鋼汚染の原因となることが知られ
ている。そこで前述のようなパウダを特に浮遊物
量が多いタンデイツシユにおいて使用すれば、こ
れらの浮遊物が希釈されて前述の還元反応による
Al2O3の生成量が低減されて、清浄度が向上する
効果が得られる。しかしながら、より高い清浄度
が要求される深絞り用Alキルド鋼板や曲げ加工
用の低炭素Alキルド鋼等においては、前述のよ
うなパウダを使用しても充分に満足できる程度の
高い清浄度が得られていないのが実情である。そ
してまたこれらのAlキルド鋼の連続鋳造におい
ては、タンデイツシユから鋳型へ溶鋼を注入する
ためのイマージヨンノズル(タンデイツシユノズ
ル)内にAl2O3等の非金属介在物が付着・凝固し
てそのノズルが閉塞することが多いが、前述のよ
うなパウダを用いた場合でもその問題が根本的に
解決されていないのが実情である。一方、Alを
殆ど含有しないSi―Mnを主体とするキルド鋼
(Al≦0.01%)の場合、Al含有量が著しく小さい
ためAlと前述のような湯面浮遊物との間の還元
反応によりAl2O3が生成されるおそれは少ないと
考えられるが、それにもかかわらず、得られた鋼
中には依然としてMnO―SiO2,3MnO―Al2O3
3SiO2をはじめCaO―Al2O3等の非金属介在物が
微量残留し、そのため酸素値を一定限界内に抑え
ることが困難となることがあり、またこの種の
Al含有量が少ないキルド鋼でも前記同様に非金
属介在物の付着によるタンデイツシユノズルの閉
塞が発生することがあつた。 この発明は以上の事情に鑑みてなされたもの
で、ノズル閉塞を有効に防止するとともに非金属
介在物の少ない鋳片を得ることができる連続鋳造
湯面被覆用パウダを提供することを目的とするも
のである。 本発明者が前述の問題について種々検討したと
ころ、前述のような問題が発生するのは、根本的
に従来のパウダの成分に問題があること、および
パウダの非金属介在物に対する吸着能が未だ充分
でないことに起因していることを知見した。すな
わち、従来のパウダを用いたAlキルド鋼の連続
鋳造では、パウダ中のSiO2と溶鋼中のAlとの反
応が生じてAl2O3が生成され、したがつてスカム
等の浮遊物をパウダで希釈できても、そのパウダ
中のSiO2分が多ければ、 Al+SiO2→Al2O3+Si などの反応が生じてしまい、結局はAl2O3等の非
金属介在物をある程度以上減少させることが困難
であることを知見した。また、Al含有量が少な
いSi―Mnキルド鋼においてもAl2O3、CaO―
Al2O3等の付着・堆積によりノズル閉塞が生じて
いることから、従来のパウダでは介在物の吸収が
未だ充分でないことが判明した。これらの点か
ら、本発明者等は従来のCaO―SiO2―Al2O3主体
のパウダ組成から、CaO―Al2O3主体、すなわち
SiO2成分を極力減少させた組成のパウダとして、
パウダ中のSiO2による反応の発生を防止し、か
つこれに適当な量のC,CaF2,Na2O,MgOを
配合して粘性、滓化性、流動性等の物性を適正に
調整して、介在物吸収性能を従来よりも良好にし
たパウダを開発するに至つたのである。 具体的には、この発明の湯面被覆用のパウダ
は、CaO40%を越え60%以下、Al2O320〜40%、
MgO0.5%以上5.0未満、C0.5〜2.0%、Na2O0.1〜
5.0%、CaF21〜10%を含有しかつSiO2を7.0%以
下に規制したものである。 以下この発明の連続鋳造湯面被覆用パウダをよ
り詳細に説明する。 この発明のパウダはその組成を前述のように定
めて、軟化温度が1200〜1300℃、粘度が1〜10ポ
アズ(1300℃)の範囲内となるようにしたもので
ある。このパウダの組成の成分限定理由は次の通
りである。 CaOおよびAl2O3はこの発明のパウダの主成分
であり、CaOを40%を越え60%以下、Al2O3を20
〜40%の範囲内で配合することによつて、パウダ
に必要な非金属介在物吸着能、粘性、軟化温度、
塩基度等の特性を持たせることができる。これら
の特性はCaF2,Na2O等によつても変えることが
できるが、これらの含有量はCaOやAl2O3よりも
少ないから大幅な変更は困難であり、したがつて
CaOおよびAl2O3の配合量によつて最適な特性を
確保する。なおAl2O3の配合量が過剰であれば非
金属介在物の吸着能が悪くなり、パウダの粘性が
特に大きく(すなわち硬く)なり易いから、前述
のように40%以下に抑える。 MgO,Na2OおよびCaF2はいずれもパウダの
前述の特性のほか、流動性や滓化温度などを微妙
に調整するために必要な成分であるが、MgOの
添加量が過剰であればパウダが硬くなり、また
Na2O,CaF2が過剰であれば逆に軟らかくなり過
ぎて、耐火レンガを溶損させ易くなつたりあるい
は溶鋼中に巻込まれ易くなつたりするほか、溶鋼
中のAlとパウダ中のSiO2やMnOとの反応が活発
になつて溶鋼中のAl2O3系の非金属介在物が増加
するおそれがあり、したがつてこれらの上限を前
述のように定める必要がある。またこれらの添加
量が過少であればパウダの特性を適正に調整する
ことが困難となるためそれぞれの添加量の下限を
前述のように定めている。またCはパウダの滓化
時間、軟化温度等を調整するための骨材成分であ
つて、添加量が過剰であればパウダの溶融特性が
悪化し、少な過ぎれば溶融過多となつて支障を来
たすから、TC(総炭素量)として前述のように
0.5〜2.0%の範囲内に定める。 一方、SiO2はこの発明のパウダにおいては可
乃的に少ないことが望ましく、斯くすることによ
つて前述のように溶鋼中のAlとパウダ中のSiO2
との反応による溶鋼中へのAl2O3の増加を防止す
ることができるのである。しかしながらCaOや
Al2O3だけでは軟化温度等の特性を適当に維持す
ることが困難なこともあり、例えばCaOとAl2O3
との比が1:1であれば軟化温度が自ずと低くな
るが、両者の比がいずれかにずれれば軟化温度が
高くなつてしまい、このような場合にはCaF2
Na2Oのみならず、SiO2を少量(通常は0.2%以
上)添加して調整することもある。但しSiO2
7%を越えれば前述のAl2O3増加防止効果がほと
んど得られなくなつてしまうから、SiO2を添加
する場合でもその最大量は7%以下に規制する必
要がある。 上述のようにこの発明のパウダは、SiO2を抑
制して、CaOおよAl2O3を主体とし、かつフラツ
クスとしてのCaF2およびNa2O、骨材としての
C、およびMgOをそれぞれ少量配合したもので
あり、それぞれの添加量を前述の範囲とすること
によつて、パウダの溶融特性や粘性を適正に調整
し、パウダの非金属介在物吸着能、あるいは連続
鋳造時の鋳型と鋳片との間の潤滑能等を充分に高
め、かつ溶鋼中のAlとパウダ中のSiO2等との反
応による溶鋼中のAl2O3の増加を防止するもので
ある。なおパウダの成分としては上述のほか、少
量のFe2O3,MnO等を添加しても良いが、これ
らはあくまで微量成分であり、基本的組成は前述
の通りである。 上述のようなこの発明のパウダは、連続鋳造に
おけるタンデイツシユの湯面被覆、および鋳型内
湯面のいずれにも使用可能であるが、その使用箇
所によつて若干特性を変えることが望ましく、例
えば鋳型においては鋳型内壁面と鋳片との間の潤
滑性を重視して軟化温度および粘性をやや小さく
し、一方タンデイツシユにおいては取鍋からの溶
鋼注入量によつてパウダが巻込まれないよう粘性
をやや高くすることが望ましい。 なおこの発明のパウダは、Al2O3の吸着量が増
しても固化せず、粘性が殆ど変化しないから、
Al2O3の吸着能力が長時間低下しない特徴も備え
ている。 次にこの発明のパウダを鋼の連続鋳造に実際に
使用した実験例を記す。 先ず、予備実験として低炭素Alキルド冷延鋼
板を製造する際の連続鋳造タンデイツシユにこの
発明のパウダを使用したところ、製品板(冷延鋼
板)を加工する際の大型介在物に起因するベンド
不良は従来の組成のパウダを用いた場合と比較し
て格段に減少し、またタンデイツシユノズル内の
介在物付着量も格段に減少した。但しこの実験で
用いたこの発明のパウダの具体的組成は、CaO51
%、Al2O335%、SiO22.0%、Na2O2.5%、
CaF23.5%、MgO3.8%、TC1.8%である。この予
備実験における連続鋳造の鋳込条件は従来と同じ
であることから、上述の効果は単純にパウダの組
成のみによる効果であり、この効果から、溶鋼中
のAlとパウダ中のSiO2との反応によるAl2O3の生
成がこの発明のパウダでは殆ど生じていないこと
が推察される。 次いで上述の予備実験の結果を踏まえて、Al
含有量が高い缶用の深絞り用低炭素Alキルド冷
延鋼板(Al0.080%)製造の際の連続鋳造、およ
びAl含有量が0.007〜0.009%と低いSUS430鋼の
連続鋳造において、この発明のパウダをタンデイ
ツシユと鋳型との双方、もしくはいずれか一方に
使用した実験を行ない、併せて従来のパウダを用
いた実験を行つた。但しこの発明のパウダとして
は次の第1表のパウダ番号A1,A2,A3の3種の
組成のものを用い、従来のパウダとしては同じく
第1表のパウダ番号Bに示す組成のものを用い
た。この実験のうち、深絞り用低炭素Alキルド
鋼については、最終製品すなわち冷延および深絞
りにより得られた缶について、Al2O3もしくは
CaO―Al2O3に起因する缶表面の線状欠陥発生率
と、連続鋳造時のタンデイツシユノズル閉塞発生
率とを調べ、またAl0.01%以下のSUS430鋼につ
いては鋼中酸素値を測定することによつて溶鋼中
の微細介在物の吸収能を調べた。これらの結果を
第2表に示す。
The present invention relates to a powder for coating the molten metal surface in a tundish or mold in continuous steel casting. As is well known, in continuous steel casting, when pouring molten steel from a ladle into a mold, it is usual to first pour the molten steel from the ladle into an intermediate container (tundish), and then pour it from the tundish into the mold. be.
In a tandate, the temperature of the molten steel surface is prevented from decreasing, and the deoxidation products floating on the surface of the molten steel, air oxides called scum, and suspended matter mixed with converter slag, etc., are absorbed or The surface of molten steel is coated with powder mainly composed of oxide powder for the purpose of diluting it to make it relatively harmless and also adsorbing non-metallic inclusions suspended in molten steel. is being carried out. Also, in molds, the surface of the molten metal is coated with powder mainly composed of oxide powder, in the same manner as described above, for the same purpose as mentioned above and for the purpose of lubricating the space between the slab and the inner wall surface of the mold. In order to efficiently achieve the above-mentioned purpose, it is necessary to appropriately adjust the physical properties of such powder for coating the hot water surface, such as viscosity, softening temperature, slag temperature, fluidity, and basicity. The composition of the powder must be adjusted so that it is unlikely to cause melting damage to firebricks, tundish nozzles, etc. From these points of view, the powder used in conventional continuous casting has a base material of CaO-SiO 2 -Al 2 O 3 and flux components such as CaF 2 and NaF.
Basicity is 0.8~ by adding appropriate amount of carbon as aggregate.
1.3. Generally, the softening temperature is adjusted to 1050 to 1250°C and the viscosity is adjusted to 2.5 to 100 poise (1300°C) depending on the purpose of use. By the way, in general, in molten steel with a high Al content, the Al in the molten steel and the above-mentioned floating substances such as MnO, FeO, Fe 2 O 3 , SiO 2 , P 2 O 5 , etc. floating on the molten steel surface are easily reduced. Due to the reduction reaction between oxides
It is known that Al 2 O 3 is generated and this Al 2 O 3 is dispersed and suspended in the molten steel, causing contamination of the molten steel. Therefore, if a powder like the one mentioned above is used in a tundish with a particularly large amount of suspended matter, these suspended matter will be diluted and the aforementioned reduction reaction will occur.
The amount of Al 2 O 3 produced is reduced and the cleanliness is improved. However, for products such as Al-killed steel sheets for deep drawing and low-carbon Al-killed steel for bending, which require higher cleanliness, even if the powder described above is used, the cleanliness is sufficiently high. The reality is that we are not getting it. Furthermore, in continuous casting of these Al-killed steels, non-metallic inclusions such as Al 2 O 3 adhere and solidify inside the immersion nozzle (tundish nozzle) for injecting molten steel from the tundish into the mold. The nozzle often becomes clogged, but the reality is that this problem has not been fundamentally solved even when the powder described above is used. On the other hand, in the case of killed steel (Al≦0.01%), which is mainly composed of Si-Mn and contains almost no Al, the Al content is extremely small, so the reduction reaction between Al and the floating matter on the hot water surface causes Al Although it is thought that there is little risk of 2 O 3 being generated, the resulting steel still contains MnO―SiO 2 , 3MnO―Al 2 O 3
Trace amounts of non-metallic inclusions such as 3SiO 2 and CaO-Al 2 O 3 remain, which may make it difficult to keep the oxygen value within a certain limit.
Even in killed steel with a low Al content, clogging of the tundish nozzle due to adhesion of nonmetallic inclusions occurred in the same manner as described above. The present invention has been made in view of the above circumstances, and aims to provide powder for continuously casting molten metal surface coating, which can effectively prevent nozzle clogging and produce slabs with less non-metallic inclusions. It is something. The inventor of the present invention has conducted various studies on the above-mentioned problems, and has found that the above-mentioned problems occur because there is a fundamental problem with the components of conventional powders, and that the adsorption ability of powders for non-metallic inclusions is still insufficient. It was found that this was due to the fact that the amount was not sufficient. In other words, in the conventional continuous casting of Al-killed steel using powder, a reaction occurs between SiO 2 in the powder and Al in the molten steel, producing Al 2 O 3. Therefore, suspended matter such as scum is removed from the powder. Even if the powder can be diluted, if there is too much SiO2 in the powder, a reaction such as Al + SiO 2 → Al 2 O 3 + Si will occur, which will eventually reduce nonmetallic inclusions such as Al 2 O 3 to a certain extent. We found that this is difficult. In addition, even in Si—Mn killed steel with low Al content, Al 2 O 3 , CaO—
The adhesion and accumulation of Al 2 O 3 etc. caused nozzle blockage, and it was found that the conventional powder was still not able to absorb inclusions sufficiently. From these points, the present inventors changed from the conventional powder composition mainly composed of CaO-SiO 2 -Al 2 O 3 to powder composition mainly composed of CaO-Al 2 O 3 , i.e.
As a powder with a composition that reduces the SiO 2 component as much as possible,
It prevents reactions caused by SiO 2 in the powder, and mixes appropriate amounts of C, CaF 2 , Na 2 O, and MgO to properly adjust physical properties such as viscosity, slagability, and fluidity. This led to the development of a powder with better inclusion absorption performance than conventional powders. Specifically, the powder for coating the hot water surface of the present invention contains more than 40% CaO and less than 60%, Al 2 O 3 20 to 40%,
MgO 0.5% or more and less than 5.0, C0.5~2.0%, Na2O0.1 ~
5.0%, CaF 2 1-10%, and SiO 2 regulated to 7.0% or less. The powder for coating the continuous casting surface of the present invention will be explained in more detail below. The composition of the powder of this invention is determined as described above, and has a softening temperature of 1200 to 1300°C and a viscosity of 1 to 10 poise (1300°C). The reasons for limiting the composition of this powder are as follows. CaO and Al 2 O 3 are the main components of the powder of this invention, with CaO being more than 40% and less than 60%, and Al 2 O 3 being 20%.
By blending within the range of ~40%, the non-metallic inclusion adsorption ability, viscosity, softening temperature, and
It can have properties such as basicity. These properties can also be changed by using CaF 2 , Na 2 O, etc., but since their contents are smaller than CaO and Al 2 O 3 , it is difficult to change them significantly.
Optimal properties are ensured by adjusting the amounts of CaO and Al 2 O 3 . Note that if the amount of Al 2 O 3 blended is excessive, the ability to adsorb nonmetallic inclusions will deteriorate and the viscosity of the powder will tend to become particularly high (that is, hard), so as mentioned above, it should be kept at 40% or less. MgO, Na 2 O, and CaF 2 are all necessary components to finely adjust the powder's properties such as fluidity and slag temperature, but if the amount of MgO added is excessive, the powder may deteriorate. becomes hard, and
On the other hand, if Na 2 O and CaF 2 are in excess, they become too soft, making it easier for the refractory bricks to melt or get caught up in the molten steel, and also cause Al in the molten steel and SiO 2 in the powder to deteriorate. There is a possibility that the reaction with MnO becomes active and the number of Al 2 O 3 -based nonmetallic inclusions in the molten steel increases, so it is necessary to set the upper limit of these inclusions as described above. Furthermore, if the amounts added are too small, it will be difficult to properly adjust the characteristics of the powder, so the lower limits of the amounts added are determined as described above. Further, C is an aggregate component for adjusting the powder slag time, softening temperature, etc. If the amount added is excessive, the melting characteristics of the powder will deteriorate, and if it is too small, it will cause excessive melting, which will cause problems. As mentioned above, TC (total carbon content)
Set within the range of 0.5 to 2.0%. On the other hand, it is desirable that SiO 2 be as small as possible in the powder of the present invention, and by doing so, Al in the molten steel and SiO 2 in the powder can be reduced as described above.
This can prevent the increase of Al 2 O 3 in the molten steel due to the reaction with the molten steel. However, CaO
It may be difficult to maintain properties such as softening temperature with Al 2 O 3 alone; for example, if CaO and Al 2 O 3
If the ratio with
In addition to Na 2 O, it may also be adjusted by adding a small amount (usually 0.2% or more) of SiO 2 . However, if SiO 2 exceeds 7%, the aforementioned effect of preventing the increase in Al 2 O 3 will hardly be obtained, so even when SiO 2 is added, the maximum amount must be regulated to 7% or less. As mentioned above, the powder of the present invention suppresses SiO 2 and contains CaO and Al 2 O 3 as main components, and contains small amounts of CaF 2 and Na 2 O as fluxes, and small amounts of C and MgO as aggregates. By adding each amount within the above-mentioned range, the melting characteristics and viscosity of the powder can be adjusted appropriately, and the ability of the powder to adsorb non-metallic inclusions, as well as the mold and mold during continuous casting, can be adjusted. This is to sufficiently enhance the lubrication ability between the steel and the steel piece, and to prevent an increase in Al 2 O 3 in the molten steel due to the reaction between Al in the molten steel and SiO 2 in the powder. In addition to the above-mentioned components of the powder, small amounts of Fe 2 O 3 , MnO, etc. may be added, but these are only trace components and the basic composition is as described above. The powder of the present invention as described above can be used both for coating the surface of the tundish in continuous casting and for the surface of the mold. However, it is desirable to have slightly different characteristics depending on the location of use. In tundish, the softening temperature and viscosity are set slightly low to emphasize lubricity between the mold inner wall surface and the slab, while in tundish, the viscosity is set slightly high to prevent powder from being drawn in by the amount of molten steel injected from the ladle. It is desirable to do so. The powder of this invention does not solidify even if the amount of Al 2 O 3 adsorbed increases, and its viscosity hardly changes.
It also has the feature that the adsorption capacity for Al 2 O 3 does not decrease for a long time. Next, an experimental example in which the powder of the present invention was actually used for continuous casting of steel will be described. First, as a preliminary experiment, when the powder of the present invention was used in a continuous casting tandate for manufacturing low-carbon Al-killed cold-rolled steel sheets, bending defects caused by large inclusions were observed when processing the product sheets (cold-rolled steel sheets). was significantly reduced compared to the case of using powder with a conventional composition, and the amount of inclusions deposited in the tundish nozzle was also significantly reduced. However, the specific composition of the powder of this invention used in this experiment is CaO51
%, Al2O3 35 %, SiO2 2.0%, Na2O2.5 %,
CaF 2 3.5%, MgO 3.8%, TC 1.8%. Since the casting conditions for continuous casting in this preliminary experiment were the same as before, the above-mentioned effect was simply due to the composition of the powder, and from this effect, the relationship between Al in the molten steel and SiO 2 in the powder was determined. It is inferred that almost no Al 2 O 3 is produced by the reaction in the powder of the present invention. Next, based on the results of the preliminary experiment described above, Al
This invention can be applied to continuous casting in the production of low-carbon Al-killed cold-rolled steel sheets (Al 0.080%) for deep drawing for cans with a high content, and in continuous casting of SUS430 steel with a low Al content of 0.007 to 0.009%. An experiment was conducted using the powder for both the tundish and the mold, or for either one, and an experiment was also conducted using a conventional powder. However, the powders of this invention have three compositions, powder numbers A 1 , A 2 , and A 3 in Table 1 below, and the conventional powders have the compositions shown in powder number B in Table 1. I used something. In this experiment, for the low carbon Al-killed steel for deep drawing, the final product, that is, the can obtained by cold rolling and deep drawing, was
We investigated the occurrence rate of linear defects on the can surface caused by CaO-Al 2 O 3 and the occurrence rate of tundice nozzle blockage during continuous casting, and also investigated the oxygen value in the steel for SUS430 steel with Al 0.01% or less. The ability to absorb fine inclusions in molten steel was investigated by measurement. These results are shown in Table 2.

【表】【table】

【表】 但し第2表中において線状欠陥発生率指数およ
びノズル閉塞発生率指数はそれぞれ従来パウダを
タンデイツシユおよび鋳型に用いた実験番号6に
おける各発生率を100として指数化した値を示す。
またSUS430鋼の鋼中酸素値は100例の平均値を
示す。 また第2表において、実験番号1〜3はそれぞ
れタンデイツシユと鋳型との双方にこの発明のパ
ウダA1〜A3を使用した例であるが、これらのパ
ウダA1〜A3は第1表に示すようにそれぞれSiO2
含有量が異なるものである。一方、実験番号4は
この発明のパウダA1をタンデイツシユのみに使
用し、実験番号5はこの発明のパウダA1を鋳型
のみに使用したものである。 第2表に示される結果から、この発明のパウダ
を用いればAl2O3クラスタあるいはCaO―Al2O3
系の大型介在物に起因して発生する線状欠陥が減
少することが明らかであり、またその効果はパウ
ダのSiO2含有量が少ない程顕著となり、しかも
タンデイツシユと鋳型との双方に同時に使用すれ
ば、いずれか一方のみに使用した場合よりも顕著
となる。一方、ノズル閉塞発生率も同様な傾向と
なる。但しこの場合のノズルはタンデイツシユと
鋳型との間のものであるから、鋳型のみにこの発
明のパウダを使用してもノズル閉塞発生率低減効
果は得られない。またAl含有量が0.007〜0.009%
の範囲にあるSUS430鋼の鋼中酸素値もこの発明
のパウダを使用することによつて著しく低下して
清浄度が向上すること、換言すればこの発明のパ
ウダの微細介在物吸収能が高いことが明らかであ
る。 以上の説明で明らかなようにこの発明の連続鋳
造湯面被覆用パウダによれば、溶鋼中のAlとパ
ウダ中のSiO2等との反応により溶鋼中のAl2O3
増加することが防止され、したがつてタンデイツ
シユに使用すればAl2O3の付着・堆積に起因する
タンデイツシユノズルの閉塞を可及的に防止で
き、また上述のようにAl2O3の増加が防止される
こととその他微細介在物の吸収能が従来のパウダ
よりも格段に高いこととが相俟つて、タンデイツ
シユおよび鋳型の双方または一方に使用すれば鋳
片の清浄度が従来よりも格段に良好となつて製品
の欠陥発生率が減少するとともに、鋼中酸素量が
減少する等、各種の効果が得られる。
[Table] However, in Table 2, the linear defect occurrence rate index and the nozzle clogging incidence rate index are the values obtained by indexing each occurrence rate in Experiment No. 6, in which conventional powder was used for the tundish and mold, as 100.
In addition, the oxygen value in SUS430 steel is the average value of 100 cases. In addition, in Table 2, experiment numbers 1 to 3 are examples in which powders A 1 to A 3 of the present invention were used for both the tundish and the mold, respectively. SiO2 as shown respectively
They have different contents. On the other hand, in Experiment No. 4, the powder A 1 of the present invention was used only for the tundish, and in Experiment No. 5, the powder A 1 of the present invention was used only for the mold. From the results shown in Table 2, if the powder of this invention is used, Al 2 O 3 clusters or CaO-Al 2 O 3
It is clear that linear defects caused by large inclusions in the system are reduced, and this effect becomes more pronounced as the SiO 2 content of the powder decreases. If it is used for only one of them, it will be more noticeable. On the other hand, the nozzle blockage occurrence rate also follows a similar trend. However, since the nozzle in this case is between the tundish and the mold, the effect of reducing the nozzle clogging rate cannot be obtained even if the powder of the present invention is used only in the mold. Also, Al content is 0.007~0.009%
By using the powder of this invention, the oxygen value in SUS430 steel, which is in the range of is clear. As is clear from the above explanation, the powder for coating the continuous casting surface of the present invention prevents the Al 2 O 3 in the molten steel from increasing due to the reaction between Al in the molten steel and SiO 2 etc. in the powder. Therefore, when used in a tundish, clogging of the tundish nozzle due to adhesion and accumulation of Al 2 O 3 can be prevented as much as possible, and as mentioned above, an increase in Al 2 O 3 can be prevented. This, combined with the fact that it has a much higher ability to absorb other fine inclusions than conventional powders, means that when used in both the tundish and/or mold, the cleanliness of the slab will be much better than conventional powders. Various effects can be obtained, such as reducing the defect rate of products and reducing the amount of oxygen in the steel.

Claims (1)

【特許請求の範囲】[Claims] 1 CaO40%を越え60%以下、Al2O320〜40%、
MgO0.5%以上〜5.0%未満、C0.5〜2.0%、
Na2O0.1〜5.0%、CaF21〜10%を含有しかつSiO2
を7.0%以下に規制したことを特徴とする、鋼の
連続鋳造におけるタンデイツシユもしくは鋳型内
の湯面被覆用パウダ。
1 CaO more than 40% and less than 60%, Al 2 O 3 20-40%,
MgO0.5% to less than 5.0%, C0.5 to 2.0%,
Contains 0.1-5.0% Na 2 O, 1-10% CaF 2 and SiO 2
Powder for coating the surface of hot water in a tundish or mold in continuous casting of steel, characterized in that the amount of water is regulated to 7.0% or less.
JP6787781A 1981-05-06 1981-05-06 Powder for surface coating of molten metal in continuous casting Granted JPS57184563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6787781A JPS57184563A (en) 1981-05-06 1981-05-06 Powder for surface coating of molten metal in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6787781A JPS57184563A (en) 1981-05-06 1981-05-06 Powder for surface coating of molten metal in continuous casting

Publications (2)

Publication Number Publication Date
JPS57184563A JPS57184563A (en) 1982-11-13
JPS6356019B2 true JPS6356019B2 (en) 1988-11-07

Family

ID=13357573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6787781A Granted JPS57184563A (en) 1981-05-06 1981-05-06 Powder for surface coating of molten metal in continuous casting

Country Status (1)

Country Link
JP (1) JPS57184563A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106457370A (en) * 2014-06-24 2017-02-22 蒂森克虏伯钢铁欧洲股份公司 Casting powder, casting slag and method for casting steel

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049858A (en) * 1983-08-30 1985-03-19 Daido Steel Co Ltd Ingot making method
US5179997A (en) * 1991-09-12 1993-01-19 Atlantic Metals Corporation Process for insulating molten steel during continuous casting
KR100718852B1 (en) * 1998-12-08 2007-05-16 시나가와 시로렝가 가부시키가이샤 Mold powder for continuous casting of steel and a method for continuous casting of steel
JP4750985B2 (en) * 2001-09-27 2011-08-17 新日本製鐵株式会社 Molten steel surface heat insulating material and continuous casting method of steel using the same
KR100964306B1 (en) 2003-07-12 2010-06-17 두산중공업 주식회사 The Teeming Flux for improving Ingots surface
CN102259175B (en) * 2011-07-16 2013-03-13 鞍山市和丰耐火材料有限公司 Production method for Ca-Al-Mg carbon-free tundish covering flux
JP5965186B2 (en) * 2012-03-30 2016-08-03 日新製鋼株式会社 Continuous casting method
JP6323973B2 (en) * 2012-03-30 2018-05-16 日新製鋼株式会社 Continuous casting method
WO2015029107A1 (en) * 2013-08-26 2015-03-05 日新製鋼株式会社 Continuous casting method
EP3040138B1 (en) * 2013-08-26 2019-10-09 NIPPON STEEL Stainless Steel Corporation Continuous casting method
JP6228524B2 (en) 2013-09-27 2017-11-08 日新製鋼株式会社 Continuous casting method
CN105312523B (en) * 2014-06-24 2017-12-19 上海梅山钢铁股份有限公司 A kind of non-orientation silicon steel tundish covering flux
CN106041007A (en) * 2016-08-10 2016-10-26 中南大学 Medium manganese steel continuous casting tundish covering agent for improved automobile and application of medium manganese steel continuous casting tundish covering agent
JP6680320B2 (en) * 2017-08-25 2020-04-15 Jfeスチール株式会社 Steel manufacturing method and flux for addition to container containing molten steel
CN108480579B (en) * 2018-06-29 2020-01-31 西峡县西保冶金材料有限公司 Low-silicon ultralow-carbon covering agent special for automobile plate steels and preparation method thereof
CN113894272A (en) * 2021-10-08 2022-01-07 成都先进金属材料产业技术研究院股份有限公司 Corrosion-resistant alloy die casting protective slag
CN114130974B (en) * 2021-12-14 2023-06-27 广东韶钢松山股份有限公司 Covering slag and method for improving pit pitting surface on surface of medium carbon steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4893535A (en) * 1972-03-13 1973-12-04
JPS522833A (en) * 1975-06-19 1977-01-10 Mannesmann Ag Powder for continuous casting and ingot making

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4893535A (en) * 1972-03-13 1973-12-04
JPS522833A (en) * 1975-06-19 1977-01-10 Mannesmann Ag Powder for continuous casting and ingot making

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106457370A (en) * 2014-06-24 2017-02-22 蒂森克虏伯钢铁欧洲股份公司 Casting powder, casting slag and method for casting steel
US10486227B2 (en) 2014-06-24 2019-11-26 Thyssenkrupp Steel Europe Ag Casting powder, casting slag and method for casting steel
CN106457370B (en) * 2014-06-24 2019-12-13 蒂森克虏伯钢铁欧洲股份公司 Casting powder, casting slag and method for casting steel

Also Published As

Publication number Publication date
JPS57184563A (en) 1982-11-13

Similar Documents

Publication Publication Date Title
JPS6356019B2 (en)
JPH09263820A (en) Production of cluster-free aluminum killed steel
CN101629224A (en) Deoxidation modification agent of molten steel
US5028257A (en) Metallurgical flux compositions
CN111590039A (en) Continuous casting covering slag for low-carbon high-aluminum steel and preparation method thereof
US3937269A (en) Mold powder composition and method for continuously casting employing the same
US4286984A (en) Compositions and methods of production of alloy for treatment of liquid metals
CN109454210B (en) Double-layer tundish covering agent for ultrathin belt
CN104874755A (en) Tundish covering agent used for chrome-bearing steel and application thereof
RU2356687C2 (en) Slag-forming mixture for tundish ladle
US3607234A (en) Steel-refining composition containing portland cement and fluorspar
US6328781B1 (en) Mold cover powder for continuous casting of steel, especially very-low-carbon steels
JP3142216B2 (en) Mold powder for continuous casting of steel
JPH02220746A (en) Mold powder for continuous casting for ti-containing dead soft carbon steel
EP0141523B1 (en) Mold additives for use in continuous casting
JPH05208250A (en) Casting mold additive for continuous casting of steel
GB2265564A (en) Tundish cover layer containing flux ingredients and expandable graphite
JP3004657B2 (en) Powder and casting method for casting high aluminum content steel
JP7219854B2 (en) Flux added to molten steel contained in a container
JPH0464767B2 (en)
JPS6344464B2 (en)
JPH1190596A (en) Mold powder for continuous casting of steel
JP4121635B2 (en) Steel continuous casting method
JP4477971B2 (en) Low carbon steel sheet, low carbon steel slab and method for producing the same
JPH0413453A (en) Flux for casting and method for casting la-containing steel using this flux