【発明の詳細な説明】[Detailed description of the invention]
(産業上の利用分野)
本発明は、AlとSを含有する鋼のブルーム・
ビレツト連鋳において、皮下及び中心部大型非金
属介在物欠陥の少ない良好な品質を得るための連
続鋳造法に関する。
(従来の技術)
ブルーム・ビレツト連鋳においては、スラブ連
鋳に比べて小断面鋳片サイズであるため鋳型内へ
の浸漬ノズルの設置スペースに制約があること及
び注入流量制御性向上の面から、小径の浸漬ノズ
ルを用いて鋳造が行われる。
Alを含有する溶鋼中には、脱酸生成物として
のAl2O3が不可避的に存在し、鋳造中にノズル内
壁に付着成長してノズル詰まりを引き起こし、安
定鋳造の阻害原因になると共に鋳片表面欠陥及び
皮下・中心部における介在物欠陥の生成原因とな
り易い。この対策として、従来から取鍋精錬によ
る溶鋼中懸濁Al2O3の低減及びノズル内へのArガ
スの吹き込み制御等の組合せによつて、ノズル付
着を抑制する方法が採用されている。しかしなが
ら、取鍋精錬効果には限度があること更に吹き込
みAr気泡が鋳型内に流出して鋳片表面のピンホ
ール欠陥を形成する問題点がある。特に、ビレツ
ト連鋳においては、ピンホールが小さな球状欠陥
となるために磁粉探傷での検出精度が低下する特
徴も相俟つて、成品表面疵レベルを悪化せしめる
のでArガスの吹き込みは望ましくない。
そのため、近年SやOと強い親和力を有する
Caに着目してCa添加による溶鋼中介在物の形態
制御が行われている。例えば、耐サワーガスライ
ンパイプ材の水素誘起割れや耐ラメラテイア鋼の
溶接割れ防止策としてのMnSの球状CaSへの硫
化物形態制御、或は連続鋳造におけるノズル詰ま
り防止を目的としてのAl2O3のCaO−Al2O3系低
融点酸化物への形態制御などである。
従来、MnSのCaSへの形態制御に関しては、
拝田らが鉄と鋼、第66年(1980)第3号、P354
で報告しているように、Sとの反応に利用される
有効CaとSとのモル比で表される定量的な操業
パラメータACRが提案されている。このパラメ
ータの値が1以上であれば、MnSの形態制御が
可能となるために、溶鋼のCa処理と極低硫化
(例えばS<10ppm)との組合せによつて、ACR
≧1が確保されるように操業が行われている。
一方、Al2O3のCaO−Al2O3系低融点酸化物へ
の形態制御に関しては、鋳造温度域で液相を呈す
る12CaO・7Al2O3(融点1460℃)やCaO・Al2O3
(融点 1610℃)に相当する組成に形態制御すれ
ば、ノズル詰まりの発生が少ないと定性的に言わ
れているものの、鋳造された鋳片内の介在物欠陥
の生成と防止に関連付けて、定量的に掲示された
操業パラメータは見当たらない。
(発明が解決しようとする課題)
前述したように、鋳片のピンホール性表面疵を
低減するためには、Arガスのノズルへの吹き込
みを中止して溶鋼をCa処理し、Al2O3を低融点の
CaO−Al2O3系介在物に形態制御すれば有効であ
ると一般に考えられる。しかし、得られた鋳片を
成品まで圧延し超音波探傷するとCaO−Al2O3−
CaS系の大型介在物が発生し、成品品質を満足し
ない場合がある。
本発明は、AlとSとを含有する鋼のブルー
ム・ビレツト連鋳材においてCaO−Al2O3−CaS
系の大型介在物の生成を防止するものである。
(課題を解決するための手段)
本発明は、Al 0.010〜0.050%、S 0.005〜
0.050%を含有する鋼のブルーム・ビレツト連続
鋳造において、溶鋼中へCaを添加して[%
Ca]/[%Al]比を0.06〜0.20の範囲内に調整し
て連続鋳造するものである。
(作用)
この発明では、鋼中のAlとSについては以下
の理由からその成分範囲を規定する。
Alは、鋼の結晶粒度調整用に0.010%以上の含
有が必要であるが、0.050%を超えて添加しても
結晶粒度調整作用が飽和することに加えて、Al
濃度の増加と共に鋼中O濃度が低下し、Oと反応
して残存したCaがSと反応してCaS生成量を増
加させるので上限を0.050%とする。
Sは機械構造用鋼或は冷間圧造用鋼などに用い
られる棒鋼・線材成品への被削性付与の面から
0.005%以上の含有は最低限必要であるが、0.050
%を超えて含有されると機械的性質が劣化すると
同時に、添加Caと反応してCaS生成量を増加さ
せるので上限を0.050%に規定する。
Caは、Alに応じて[%Ca]/[%Al]比が
0.06〜0.20の範囲内に入るように添加調整する。
第1図に、鋼中[%Al]、[%Ca]、[%Ca]/
[%Al]と成品における介在物系超音波探傷不良
率{(不良成品本数/合計成品本数)×100、%}
との関係を示す。また第2図には、[%Ca]/
[%Al]比と介在物系超音波探傷不良率との関係
を示すが、両図から明らかなように超音波探傷不
良率は、[%Ca]/[%Al]比が0.06〜0.20の範
囲内で低位安定するが、逆に0.06未満の領域では
高くなる。
特に、棒鋼・線材においては被削性を付与する
ためにSの含有が必要であるが、第3図に示すよ
うに、[%Ca]/[%Al]比が0.06未満の領域で
は、Sが0.010%を超えて高くなると超音波探傷
不良率が増加する傾向が明らかに認められる。こ
の理由は、[%Ca]/[%Al]比の低下によつ
て、高融点のCaO−Al2O3系酸化物が生成するの
に加えて、高S化に伴いCaS生成量が増加して溶
鋼中で高融点のCaO−Al2O3−CaS系介在物を形
成し、凝集合体並びに浮上分離が困難となるため
である。
尚、[%Ca]/[%Al]比が0.20を超えると、
CaO/Al2O3比の高い高融点CaO−Al2O3系酸化
物が形成されるのみならず、多量のCa添加を余
儀なくされるので[%Ca]/[%Al]比の上限
を0.20に規定する。以上から、本発明においては
[%Ca]/[%Al]比を0.06〜0.20に限定するも
のである。
このように、鋼中[%Ca]/[%Al]比を
0.06〜0.20の範囲内に調整することにより、第1
図に示す如く、鋼中介在物の組成を低融点の
12CaO−7Al2O3系酸化物の組成に近接させるこ
とが出来る。この酸化物は、CaO/Al2O3比の異
なる他のCaO−Al2O3系酸化物と同様に少量の
CaSを含有するが、約1500℃前後の鋳造温度では
液相状態に保たれるために、凝固前の凝集肥大化
並びに浮上分離が容易である。しかして、成品の
超音波探傷で検出されるような大型介在物は、ブ
ルーム・ビレツト鋳片内には残存しない。
(実施例)
本発明の実施例を以下に示す。
転炉及び脱ガス設備を用いて120トン/ヒート
の棒鋼・線材向けの機械構造用鋼、冷間圧造用鋼
を溶製するに際し、FeO、MnO、SiO2等を多く
含む酸化性の転炉流出スラグを除去し生石灰並び
にアルミニウム精錬滓等からなる高塩基性且つ非
酸化性のスラグを取鍋内溶鋼表面に形成せしめて
成分調整並びに脱水素後、取鍋内溶鋼中深部へワ
イアー外径13mmφの鉄被覆CaSi合金ワイアー
(充填物中Ca含有量30%)をCaSi原単位で0.48
Kg/T(Ca原単位0.14Kg/T)前後添加した。
このようにして、Caの酸化ロスを抑制しなが
ら第1表に示す如く溶鋼中[%Ca]/[%Al]
比が0.06〜0.20の範囲内になるように調整した10
ヒートを鋳片横断面サイズが162mm×162mmの湾曲
型ビレツト連鋳機で別に鋳造した。
一方、比較材として第1表に示すように溶鋼中
[%Ca]/[%Al]比が0.06未満となるように調
整した5ヒートについても同一の連鋳機で別に鋳
造した。
夫々のヒートから得られたビレツトを直径40mm
の棒鋼に圧延した後、該棒鋼成品の超音波探傷試
験を実施し、大型介在物による超音波探傷不良率
を[%Ca]/[%Al]比との関係で比較して第
4図に示す。図から明らかなように、[%Ca]/
[%Al]比が0.06〜0.20の範囲内に調整したヒー
トにおいては、介在物欠陥が極めて少ない。
(Industrial Application Field) The present invention is directed to the blooming of steel containing Al and S.
This invention relates to a continuous billet casting method for obtaining good quality with few subcutaneous and central large nonmetallic inclusion defects. (Conventional technology) In bloom billet continuous casting, the size of the slab is smaller in cross-section than in continuous slab casting, so there is a restriction in the installation space for the immersion nozzle in the mold, and from the viewpoint of improving controllability of injection flow rate. , casting is carried out using a small-diameter submerged nozzle. In molten steel containing Al, Al 2 O 3 is inevitably present as a deoxidation product, and during casting, it adheres and grows on the inner wall of the nozzle, causing nozzle clogging, inhibiting stable casting, and impairing casting. It is likely to cause defects on one surface and inclusion defects in the subcutaneous and central areas. As a countermeasure against this problem, a method has conventionally been adopted in which nozzle adhesion is suppressed by a combination of reducing Al 2 O 3 suspended in molten steel by ladle refining and controlling the blowing of Ar gas into the nozzle. However, there is a problem that the ladle refining effect is limited and that the blown Ar bubbles flow into the mold and form pinhole defects on the surface of the slab. In particular, in continuous billet casting, blowing Ar gas is undesirable because pinholes become small spherical defects, which lowers detection accuracy in magnetic particle testing, and this also worsens the level of defects on the surface of the product. Therefore, in recent years it has developed a strong affinity with S and O.
Focusing on Ca, the morphology of inclusions in molten steel has been controlled by adding Ca. For example, controlling the sulfide form of MnS into spherical CaS as a measure to prevent hydrogen-induced cracking in sour gas line pipe materials and weld cracking in lamellar tear-resistant steel, or Al 2 O 3 to prevent nozzle clogging in continuous casting. This includes controlling the morphology of CaO-Al 2 O 3 to form low-melting-point oxides. Conventionally, regarding the morphology control of MnS to CaS,
Haida et al., Tetsu to Hagane, No. 66 (1980), No. 3, P354
As reported in , a quantitative operational parameter ACR expressed by the molar ratio of effective Ca and S used for reaction with S has been proposed. If the value of this parameter is 1 or more, it becomes possible to control the morphology of MnS, so ACR
Operations are conducted to ensure ≧1. On the other hand, regarding the morphology control of Al 2 O 3 to CaO-Al 2 O 3 based low melting point oxides, 12CaO・7Al 2 O 3 (melting point 1460℃) and CaO・Al 2 O which exhibit a liquid phase in the casting temperature range are used. 3
Although it is qualitatively said that nozzle clogging will occur less if the morphology is controlled to a composition equivalent to (melting point 1610℃), quantitative No operational parameters posted. (Problems to be Solved by the Invention) As mentioned above, in order to reduce pinhole surface defects on slabs, the blowing of Ar gas into the nozzle is stopped, the molten steel is treated with Ca, and Al 2 O 3 of low melting point
It is generally considered that it is effective to control the morphology of CaO-Al 2 O 3- based inclusions. However, when the obtained slab is rolled to a finished product and subjected to ultrasonic testing, CaO−Al 2 O 3 −
Large CaS-based inclusions may occur, resulting in unsatisfactory product quality. The present invention is directed to a bloom billet continuously cast steel material containing Al and S, in which CaO-Al 2 O 3 -CaS
This prevents the formation of large inclusions in the system. (Means for solving the problem) The present invention has Al 0.010-0.050%, S 0.005-0.005%
In bloom billet continuous casting of steel containing 0.050%, Ca is added to the molten steel to reduce [%
Continuous casting is performed by adjusting the Ca]/[%Al] ratio within the range of 0.06 to 0.20. (Function) In this invention, the composition ranges of Al and S in steel are defined for the following reasons. Al needs to be contained at 0.010% or more to adjust the grain size of steel, but even if it is added in excess of 0.050%, the grain size adjustment effect will be saturated, and Al
As the concentration increases, the O concentration in the steel decreases, and the Ca remaining after reacting with O reacts with S to increase the amount of CaS produced, so the upper limit is set to 0.050%. S is from the perspective of imparting machinability to steel bars and wire rod products used for machine structural steel or cold heading steel.
The minimum content is 0.005% or more, but 0.050
If the content exceeds 0.05%, the mechanical properties will deteriorate and at the same time it will react with the added Ca and increase the amount of CaS produced. Therefore, the upper limit is set at 0.050%. For Ca, the [%Ca]/[%Al] ratio depends on Al.
Adjust the addition so that it falls within the range of 0.06 to 0.20.
Figure 1 shows [%Al], [%Ca], [%Ca]/
[%Al] and defective rate of inclusion-based ultrasonic flaw detection in finished products {(number of defective products/total number of products) x 100, %}
Indicates the relationship between Figure 2 also shows [%Ca]/
The relationship between the [%Al] ratio and the inclusion-based ultrasonic flaw detection failure rate is shown. It is stable at low levels within the range, but conversely becomes high in the area below 0.06. In particular, it is necessary to contain S to impart machinability to steel bars and wire rods, but as shown in Figure 3, in the region where the [%Ca]/[%Al] ratio is less than 0.06, S There is a clear tendency for the ultrasonic flaw detection failure rate to increase when the value increases beyond 0.010%. The reason for this is that as the [%Ca]/[%Al] ratio decreases, CaO- Al2O3 - based oxides with a high melting point are produced, and as the S content increases, the amount of CaS produced increases. This is because CaO- Al2O3 -CaS inclusions with a high melting point are formed in the molten steel, making agglomeration and flotation difficult. Furthermore, if the [%Ca]/[%Al] ratio exceeds 0.20,
Not only will a high melting point CaO-Al 2 O 3 -based oxide with a high CaO/Al 2 O 3 ratio be formed, but a large amount of Ca will have to be added, so the upper limit of the [%Ca]/[%Al] ratio should be set. Specified in 0.20. From the above, in the present invention, the [%Ca]/[%Al] ratio is limited to 0.06 to 0.20. In this way, the [%Ca]/[%Al] ratio in steel is
By adjusting within the range of 0.06 to 0.20, the first
As shown in the figure, the composition of inclusions in steel has a low melting point.
The composition can be made close to that of 12CaO−7Al 2 O 3 based oxide. This oxide, like other CaO−Al 2 O 3 oxides with different CaO/Al 2 O 3 ratios, has a small amount
Although it contains CaS, it is maintained in a liquid phase at a casting temperature of about 1500°C, so it is easy to aggregate and thicken before solidifying and float and separate. Therefore, large inclusions that are detected by ultrasonic flaw detection of finished products do not remain in the bloom billet slab. (Example) Examples of the present invention are shown below. When producing mechanical structural steel and cold heading steel for 120 tons/heat of steel bars and wire rods using a converter and degassing equipment, an oxidizing converter containing a large amount of FeO, MnO, SiO 2 , etc. is used. After removing the spilled slag and forming a highly basic and non-oxidizing slag made of quicklime and aluminum slag on the surface of the molten steel in the ladle, adjusting the composition and dehydrogenation, a wire with an outer diameter of 13 mmφ is inserted deep into the molten steel in the ladle. iron-coated CaSi alloy wire (Ca content in filling 30%) with CaSi consumption of 0.48
Around Kg/T (Ca basic unit: 0.14 Kg/T) was added. In this way, while suppressing the oxidation loss of Ca, the [%Ca]/[%Al] in the molten steel is reduced as shown in Table 1.
10 adjusted so that the ratio is within the range of 0.06 to 0.20
The heat was separately cast using a curved billet continuous caster with a slab cross-sectional size of 162 mm x 162 mm. On the other hand, as a comparative material, five heats were separately cast in the same continuous casting machine in which the [%Ca]/[%Al] ratio in the molten steel was adjusted to be less than 0.06 as shown in Table 1. The billet obtained from each heat is 40mm in diameter.
After rolling into a steel bar, the resulting steel bar was subjected to an ultrasonic flaw detection test, and the ultrasonic flaw detection failure rate due to large inclusions was compared in relation to the [%Ca]/[%Al] ratio, as shown in Figure 4. show. As is clear from the figure, [%Ca]/
In the heat where the [%Al] ratio is adjusted within the range of 0.06 to 0.20, there are extremely few inclusion defects.
【表】
(発明の効果)
本発明は、Al、S含有鋼を[%Ca]/[%
Al]比を適正範囲に調整して連続鋳造すること
により、溶鋼中介在物組成を低融点介在物組成に
近接させて凝集浮上分離を促進し、大型介在物の
鋳片内へ形成を防止するものである。この結果、
成品の皮下及び中心部における大型介在物欠陥の
発生を防止すると共に、ノズルへのAr吹き込み
を必要としないのでピンホール性表面疵をほぼ皆
無とすることが出来る。[Table] (Effects of the invention) The present invention provides Al and S containing steel with [%Ca]/[%
By adjusting the Al] ratio within an appropriate range and performing continuous casting, the composition of inclusions in the molten steel approaches the composition of low-melting-point inclusions, promoting agglomeration and flotation, and preventing the formation of large inclusions in the slab. It is something. As a result,
In addition to preventing the occurrence of large inclusion defects in the subcutaneous and central areas of the product, since there is no need to blow Ar into the nozzle, pinhole surface defects can be virtually eliminated.
【図面の簡単な説明】[Brief explanation of drawings]
第1図は鋼中、[%Al]、[%Ca][%Ca]/
[%Al]と成品における介在物系超音波探傷不良
率との関係を示す図、第2図は鋼中[%Ca]/
[%Al]比と介在物系超音波探傷不良率との関係
を示す図、第3図は鋼中[%S]、[%Ca]/
[%Al]比と介在物系超音波探傷不良率との関係
を示す図、第4図は本発明の実施例および比較例
における超音波探傷不良率を示す図である。
Figure 1 shows steel, [%Al], [%Ca] [%Ca]/
Figure 2 shows the relationship between [%Al] and the failure rate of inclusion-based ultrasonic flaw detection in finished products.
A diagram showing the relationship between the [%Al] ratio and the inclusion-based ultrasonic flaw detection defect rate, Figure 3 shows the relationship between [%S], [%Ca]/
A diagram showing the relationship between the [%Al] ratio and the inclusion-based ultrasonic flaw detection failure rate, and FIG. 4 is a diagram showing the ultrasonic flaw detection failure rate in Examples and Comparative Examples of the present invention.