JPS6355858A - Enclosed type alkaline storage battery - Google Patents

Enclosed type alkaline storage battery

Info

Publication number
JPS6355858A
JPS6355858A JP61200918A JP20091886A JPS6355858A JP S6355858 A JPS6355858 A JP S6355858A JP 61200918 A JP61200918 A JP 61200918A JP 20091886 A JP20091886 A JP 20091886A JP S6355858 A JPS6355858 A JP S6355858A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
oxygen
positive electrode
oxygen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61200918A
Other languages
Japanese (ja)
Other versions
JPH0795443B2 (en
Inventor
Nobuyuki Yanagihara
伸行 柳原
Munehisa Ikoma
宗久 生駒
Hiroshi Kawano
川野 博志
Isao Matsumoto
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61200918A priority Critical patent/JPH0795443B2/en
Publication of JPS6355858A publication Critical patent/JPS6355858A/en
Publication of JPH0795443B2 publication Critical patent/JPH0795443B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To reduce the oxygen gas generated by a positive electrode at the surface of a negative electrode, and to restrict the rise of the inner pressure of the battery, by furnishing an oxygen catalyst layer which consists of a conductive whisker over the surface of the negative electrode contacting to the positive electrode side. CONSTITUTION:A metallic oxide positive electrode 5, a negative electrode 4 which consists of a hydrogen absorption alloy 2 or a hydrate, a separator 6, and an alkaline electrolyte are furnished, and over the surface of the negative electrode 4 contacting to the positive electrode 5 side, is furnished an oxygen catalyst layer 3 which consists of a conductive whisker. The conductive whisker consists of a potassium titanate, over which a small amount of catalyst is included to give the catalystic function to the negative electrode 4. By exercising the control of the oxidation by the oxygen gas of the hydrogen absorption alloy 2, and the oxygen absorption or oxygen reducing reaction over the surface of the negative electrode 4 efficiently, the rise of the battery inner pressure is restricted, the charge and discharge cycle is extended, and the cost of the battery can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は水素吸蔵合金又は水素化物を負極とし、金属酸
化物を正極とする密閉型アルカリ蓄電池に係わるもので
、とくに負極の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a sealed alkaline storage battery that uses a hydrogen storage alloy or hydride as a negative electrode and a metal oxide as a positive electrode, and particularly relates to improvements in the negative electrode.

従来の技術 従来、この種の水素吸蔵合金又は水素化物を負極とする
密閉型金属酸化物−水素蓄電池では、正極で発生する酸
素ガスを負極に吸蔵している水素と反応して水にするこ
とによって、密閉状態を保持する方法が考えられている
。この場合、酸素ガスは負極表面で還元反応又はイオン
化反応を起こさせて水にする必要があるが、正極で発生
する酸素ガスによって水素吸蔵合金粒子の表面が酸化を
受けて、酸素ガスを効率よく還元する速度が遅くなる。
Conventional technology Conventionally, in sealed metal oxide-hydrogen storage batteries that use this type of hydrogen storage alloy or hydride as the negative electrode, oxygen gas generated at the positive electrode reacts with hydrogen stored in the negative electrode to turn it into water. A method of maintaining a sealed state has been devised. In this case, the oxygen gas needs to undergo a reduction reaction or ionization reaction on the surface of the negative electrode to turn it into water, but the surface of the hydrogen storage alloy particles is oxidized by the oxygen gas generated at the positive electrode, and the oxygen gas is efficiently converted into water. The rate of return will be slower.

したがって、酸素ガスが発生する反応より消費する反応
がおくれると、電池内に酸素ガスが蓄積して電池内圧が
上昇することになる。とぐに急速充電においてこの現象
が顕著に現われる。
Therefore, if the reaction that consumes oxygen gas lags behind the reaction that generates oxygen gas, oxygen gas will accumulate in the battery and the internal pressure of the battery will increase. This phenomenon becomes noticeable during rapid charging.

発明が解決しようとする問題点 このような従来の構成では、密閉型金属酸化物−水素蓄
電池が過充電領域に入ると正極から酸素ガスが発生する
。この酸素ガスによる水素吸蔵合金表面の酸化は完全に
抑制することは出来ない。
Problems to be Solved by the Invention In such a conventional configuration, when a sealed metal oxide-hydrogen storage battery enters an overcharge region, oxygen gas is generated from the positive electrode. Oxidation of the surface of the hydrogen storage alloy by this oxygen gas cannot be completely suppressed.

したがって、酸素ガスが正極から発生する速度の方が負
極表面で吸収する速度より大きく、過剰の酸素ガスが電
池内に蓄積され電池内圧の上昇につながり、完全性を低
下させるという問題があった。
Therefore, the rate at which oxygen gas is generated from the positive electrode is greater than the rate at which it is absorbed on the surface of the negative electrode, and there is a problem in that excessive oxygen gas is accumulated within the battery, leading to an increase in the internal pressure of the battery and deterioration of its integrity.

本発明は、このような問題点を解決するもので負極を構
成する水素吸蔵合金の酸素ガスによる酸化の抑制と負極
表面での酸素吸収又は酸素の還元反応を効率良く行なわ
せて、電池の内圧上昇を抑制し、充・放電サイクルの伸
長及び電池コストの低減を図ることを目的とする。
The present invention solves these problems by suppressing the oxidation of the hydrogen storage alloy constituting the negative electrode by oxygen gas and efficiently performing oxygen absorption or oxygen reduction reaction on the negative electrode surface, thereby reducing the internal pressure of the battery. The purpose is to suppress the increase in battery life, extend charge/discharge cycles, and reduce battery costs.

問題点を解決するための手段 この問題点を解決するために本発明は、金属酸化物正極
と、水素吸蔵合金又は水素化物からなる負極と、セパレ
ータ及びアルカリ電解液を備え、前記正極側に接する負
極の表面に導電性ウィスカーからなる酸素触媒層を設け
、この導電性ウィスカーがチタン酸カリウム(K2O−
nTiO2)からなり、さらに、該表面に少量の触媒を
担持し、負極に融媒作用と酸化抑制機能を持たせたもの
である。
Means for solving the problem In order to solve this problem, the present invention comprises a metal oxide positive electrode, a negative electrode made of a hydrogen storage alloy or a hydride, a separator and an alkaline electrolyte, which are in contact with the positive electrode side. An oxygen catalyst layer made of conductive whiskers is provided on the surface of the negative electrode, and the conductive whiskers are made of potassium titanate (K2O-
Furthermore, a small amount of catalyst is supported on the surface, and the negative electrode has a melting medium function and an oxidation suppressing function.

作用 このような構成により過充電時に正極から発生する酸素
ガスを水素を吸蔵している水素吸蔵合金と直接接触させ
ることなく、負極表面に達した酸素ガスは導電性ウィス
カーまたは触媒担持の導電性ウィスカーからなる酸素触
媒層で還元反応によシイオン化される。また、酸素ガス
が水素吸蔵合金の粒子近くに達する前に、先の反応が優
先して起こるため、直接水素吸蔵合金の酸化反応を抑制
する。従って、過充電において、正極から発生する酸素
ガスを負極表面で還元し、消費することができるので電
池内圧の上昇を抑制すると共に、水素吸蔵合金の酸化を
防止し、電池のサイクル寿命を伸長することとなる。
Function: With this structure, the oxygen gas generated from the positive electrode during overcharging does not come into direct contact with the hydrogen storage alloy that stores hydrogen, and the oxygen gas that reaches the surface of the negative electrode is transferred to the conductive whiskers or catalyst-supported conductive whiskers. is ionized by a reduction reaction in an oxygen catalyst layer consisting of Furthermore, since the previous reaction occurs preferentially before the oxygen gas reaches near the particles of the hydrogen storage alloy, the oxidation reaction of the hydrogen storage alloy is directly suppressed. Therefore, during overcharging, the oxygen gas generated from the positive electrode can be reduced and consumed on the negative electrode surface, which suppresses the rise in battery internal pressure, prevents oxidation of the hydrogen storage alloy, and extends the battery cycle life. That will happen.

以下、その詳細は実施例によシ説明する。The details will be explained below using examples.

実施例 市販のMm (ミツシュメタル)1.La、Ni、G。Example Commercially available Mm (Mitshu Metal) 1. La, Ni, G.

から構成される試料を一定の組成比になるように秤量し
て混合し、アーク溶解法により加熱溶解させた。−例と
して、合金組成がMmo、5Lao、5Ni5,5C0
15になるように選択し、負極用の水素吸蔵合金とした
。この水素吸蔵合金をボールミルなどで387zm以下
の微粉末とし、適量のポリビニルアルコール樹脂水溶液
とよく混練し、このペースト状合金を一定の大きさに切
断しである発泡状ニッケル多孔体内に充てんし、その両
面に耐食性のある導電性ウィスカーをフッ素樹脂の分散
液のような結着剤と共にペースト状態で塗着した後、加
圧と乾燥を行なって酸素触媒層を形成し、リード板を取
付は負極とした。また、必要に応じて合金を水素化物に
して用いることもできる。本実施例では、導電性ウィス
カーとして商品名デントールBK−200,300など
で市販されている繊維状チタン酸カリウム(K2O・n
Ti02)を用いた。
Samples consisting of were weighed and mixed to a constant composition ratio, and heated and melted using an arc melting method. - For example, the alloy composition is Mmo, 5Lao, 5Ni5, 5C0
15 and used as a hydrogen storage alloy for negative electrode. This hydrogen storage alloy is made into a fine powder of 387 zm or less using a ball mill, etc., and thoroughly kneaded with an appropriate amount of polyvinyl alcohol resin aqueous solution.This paste-like alloy is cut into a certain size and filled into a foamed nickel porous body. Corrosion-resistant conductive whiskers are applied to both sides in a paste state along with a binder such as a fluororesin dispersion, and then pressurized and dried to form an oxygen catalyst layer, and the lead plate is attached to the negative electrode. did. Further, if necessary, the alloy can be used as a hydride. In this example, fibrous potassium titanate (K2O・n
Ti02) was used.

この繊維の平均長さは10〜20μmであシ、平均直径
は0.2〜○、571mである。この負極の構成と断面
を第1図に示す。第1図Aにおいて、集電体を兼ねる発
泡状ニッケル多孔体1の空孔部に水素吸蔵合金2を内蔵
し、その両表面に酸素触媒層3を形成して負極4を構成
する。Bは負極4の断面を表わしたものである。
The average length of the fibers is 10 to 20 μm, and the average diameter is 0.2 to ○, 571 m. The structure and cross section of this negative electrode are shown in FIG. In FIG. 1A, a hydrogen storage alloy 2 is built into the pores of a foamed nickel porous body 1 which also serves as a current collector, and an oxygen catalyst layer 3 is formed on both surfaces thereof to constitute a negative electrode 4. B represents the cross section of the negative electrode 4.

水素吸蔵合金粉末15pを用いて負極を構成し、公知の
方法で製造した発泡状ニッケル正極をセパレータを介し
て組合わせて、試験に用いた単2サイズの密閉型アルカ
リ蓄電池の構成を第2図に示す。第2図において、水素
吸蔵合金からなる負極板4と酸化ニッケル正極6はセパ
レータ6を介して渦巻き状に巻回され、負極端子を兼ね
るケースγ内に挿入される。なお、極板群の上・下は絶
縁板8.9が蟲てがわれ、安全弁10のある封口板11
でケース7の開口部は密閉化されている。12は封口板
11を介して正極り一ド13と接続しているキャップ状
の正極端子である。なお、充電時に負極からの水素発生
を抑制するために正極容量   ゛より負極容量を大き
くし、正極律則とした。電池の充・放電条件として0.
2 G (電流400m人 )で乙5時間充電(150
%充電)し、0.2 G (電流400m人 )で放電
した。試験温度はすべて20°Cとし、150%まで過
充電した時の電池内圧を測定した。とくに10サイクル
後における電池内圧の挙動を比較した。ここで、従来型
電池として酸素触媒層を設けない負極を用いて電池人を
構成する。一方、本発明型電池として、酸素触媒に導電
性ウィスカーとして細かい繊維状のチタン酸カリウムを
水素吸蔵合金負極の表面に形成したものを電池Bとする
。さらに、導電性ウィスカーの表面にパラジウム触媒を
0.1wt%程担持させた酸化触媒層を水素吸蔵合金負
極の表面に形成したものを電池Cとする。また、従来型
電池人と本発明型電池B、Cにおける充電中の電池内圧
を第3図に示す。第3図かられかるように、従来型電池
人の電池内圧の上昇は充電率100%以前からおこり、
しかも150チ充電率になると電池内圧はekq/ci
までに達する。実用上安全性の観点から電池内圧は5 
kq/c!以下が好ましいとされているので、この値は
安全性の面から問題となる。この現象の理由として、充
電率100%以前から負極から水素ガスが発生すると共
に充電中に正極から発生する酸素ガスを負極で完全に吸
収することが出来ず、一部の水素ガスに加えて酸素ガス
が徐々に電池内に蓄積されて電池内圧が上昇している。
Figure 2 shows the structure of the AA-sized sealed alkaline storage battery used in the test, in which the negative electrode was constructed using hydrogen storage alloy powder 15p, and the foamed nickel positive electrode manufactured by a known method was combined with a separator interposed therebetween. Shown below. In FIG. 2, a negative electrode plate 4 made of a hydrogen storage alloy and a nickel oxide positive electrode 6 are spirally wound with a separator 6 in between, and inserted into a case γ which also serves as a negative electrode terminal. Note that the insulating plates 8 and 9 are torn off above and below the electrode group, and the sealing plate 11 with the safety valve 10 is
The opening of case 7 is sealed. Reference numeral 12 denotes a cap-shaped positive terminal connected to the positive electrode gate 13 via the sealing plate 11. In addition, in order to suppress hydrogen generation from the negative electrode during charging, the negative electrode capacity was made larger than the positive electrode capacity, and a positive electrode rule was adopted. 0.0 as battery charging/discharging conditions.
Charging for 5 hours at 2G (current 400m) (150m)
% charge) and discharged at 0.2 G (current 400 m). The test temperature was 20°C in all cases, and the internal pressure of the battery was measured when the battery was overcharged to 150%. In particular, the behavior of the battery internal pressure after 10 cycles was compared. Here, as a conventional battery, a battery is constructed using a negative electrode without an oxygen catalyst layer. On the other hand, as a battery of the present invention, a battery B is one in which fine fibrous potassium titanate is formed as an oxygen catalyst and a conductive whisker on the surface of a hydrogen storage alloy negative electrode. Furthermore, a battery C was obtained in which an oxidation catalyst layer in which about 0.1 wt % of palladium catalyst was supported on the surface of conductive whiskers was formed on the surface of the hydrogen storage alloy negative electrode. Further, FIG. 3 shows the internal pressure of the conventional battery and the batteries B and C of the present invention during charging. As can be seen from Figure 3, the internal pressure of conventional batteries begins to rise before the charging rate reaches 100%.
Moreover, when the charging rate reaches 150ch, the battery internal pressure becomes ekq/ci.
reach up to. From a practical safety point of view, the internal pressure of the battery is 5.
kq/c! Since it is said that the following is preferable, this value poses a problem from a safety perspective. The reason for this phenomenon is that hydrogen gas is generated from the negative electrode before the charging rate reaches 100%, and oxygen gas generated from the positive electrode during charging cannot be completely absorbed by the negative electrode. Gas is gradually accumulating inside the battery and the internal pressure of the battery is rising.

即ち、負極の表面において水素の吸蔵作用と酸素触媒の
機能が不足していると考えられる。
That is, it is considered that the hydrogen storage function and oxygen catalyst function are insufficient on the surface of the negative electrode.

これに対して本発明型電池B、Cの電池内圧の上昇は充
電率100%附近からおこり、しかも150%充電率に
なっても電池内圧は電池Bで2.6kg/(14、電池
Cで1.5kg1〜である。これゆ、充電率100%附
近になるまで負極から水素ガスの発生が殆んどなく、過
充電時においても正極から発生する酸素ガスを負極表面
の触媒作用によって殆んど吸収しているために、電池内
に水素と酸素ガスの蓄積が少なく、電池内圧の上昇が低
く押えられている。
On the other hand, the increase in the internal pressure of batteries B and C of the present invention occurs from around 100% charging rate, and even when the charging rate reaches 150%, the internal pressure of battery B is 2.6 kg/(14, and battery C is 2.6 kg/(14). 1.5kg1~.This means that almost no hydrogen gas is generated from the negative electrode until the charging rate approaches 100%, and even during overcharging, the oxygen gas generated from the positive electrode is almost completely absorbed by the catalytic action of the negative electrode surface. Because hydrogen and oxygen gas are absorbed into the battery, there is little accumulation of hydrogen and oxygen gas within the battery, and the rise in battery internal pressure is kept low.

この酸素触媒として作用する導電性ウィスカーは繊維の
長さ210〜20μm 、直径二0.2〜0.5μmを
有し、非常に細かい繊維状をしているから、表面積も大
きい上に炭素粉末の抵抗(1Ω・α)より小さい値(0
,1〜o、5Ω・(7))を持っているために、負極表
面での抵抗も小さく、酸素ガスに対して活性であシ、酸
素ガスを高率よく麿元する作用を有しているものと考え
られる。この導電性ウィスカーの表面に触媒を担持させ
るとさらにその効果が助長されることからも理解できる
These conductive whiskers, which act as oxygen catalysts, have a fiber length of 210 to 20 μm and a diameter of 20.2 to 0.5 μm, and are very fine fibers, so they have a large surface area and have a large surface area. A value smaller than the resistance (1Ω・α) (0
, 1~o, 5Ω・(7)), the resistance on the surface of the negative electrode is small, it is active against oxygen gas, and has the effect of converting oxygen gas at a high rate. It is thought that there are. This can be understood from the fact that the effect is further enhanced when a catalyst is supported on the surface of the conductive whiskers.

一方、これら電池のサイクル寿命試験を行なったところ
、従来型電池人は充・放電サイクル1oO回において初
期容量の30係以上程低下している。
On the other hand, when a cycle life test was conducted on these batteries, the conventional battery capacity decreased by more than 30 times the initial capacity after 100 charge/discharge cycles.

この電池は電池内圧が上昇し過ぎて安全弁の作動をおこ
し、安全弁からの漏液現象が見られ、電解液の減少によ
る内部抵抗の上昇で容量の低下が主におきているが、酸
素ガスによる水素吸蔵合金の酸化によって負極容量の減
少も考えられる。100回サイクル試験を行なった電池
を分解し、負極容量を調べると初期容量と比較して約3
0%程の容量低下がある事を確めている。
In this battery, the internal pressure of the battery rose too much, causing the safety valve to operate, and a phenomenon of liquid leakage from the safety valve was observed.The decrease in capacity mainly occurred due to an increase in internal resistance due to a decrease in electrolyte, but due to oxygen gas. It is also possible that the negative electrode capacity decreases due to oxidation of the hydrogen storage alloy. When we disassembled the battery that had been cycled 100 times and examined the negative electrode capacity, it was approximately 3% compared to the initial capacity.
It has been confirmed that there is a capacity drop of about 0%.

これに対し本発明型電池B、Cは充・放電サイクル10
0回においても初期容量と殆んど変化なく推移した。安
全弁からの漏液現象も観察されない。念のために100
回サイクル試験した後の電池を分解して負極容量を調べ
たが、初期容量と比べて数チ程度しか容量の低下がなか
った。この事から、本発明型電池は酸素触媒の作用の他
に、酸素ガスによる酸化を抑制する機能もあり、負極の
長寿命にも有効に働く事がわかる。
On the other hand, batteries B and C of the present invention have a charge/discharge cycle of 10
Even in the 0th cycle, the capacity remained almost unchanged from the initial capacity. No leakage phenomenon from the safety valve was observed. 100 just in case
After the battery had been cycled twice, the battery was disassembled and the capacity of the negative electrode was examined, but it was found that the capacity had decreased by only a few inches compared to the initial capacity. From this, it can be seen that the battery of the present invention has a function of suppressing oxidation due to oxygen gas in addition to the action of an oxygen catalyst, and is effective in extending the life of the negative electrode.

ここで用いる導電性のウィスカーは王としてチタン酸カ
リウム(K2O・nTio、、 )の様に導電性を有す
る酸化物である事が特徴であり、化学的にも、物理的に
も極めて安定な材料である。この様に導電性ウィスカー
は酸素ガスに対して安定であり、しかも酸素ガスを水素
吸蔵合金と直接接触する前に一度導電性ウイスカーの表
面に吸着保持した後、還元するために水素吸蔵合金表面
の酸化を防止するものと考えられる。
The conductive whiskers used here are characterized by being an oxide with conductivity, such as potassium titanate (K2O・nTio, ), which is an extremely stable material both chemically and physically. It is. In this way, conductive whiskers are stable against oxygen gas, and after adsorbing and retaining oxygen gas on the surface of the conductive whisker before it comes into direct contact with the hydrogen storage alloy, the conductive whisker is then reduced to the surface of the hydrogen storage alloy. It is thought to prevent oxidation.

導電性ウィスカーは、細かい繊維状であるために結合剤
として、繊維状のフッ素樹脂を用いると各繊維がからみ
合ってよシ機械的強度を保持すると共に、水素吸蔵合金
粒子との密若性をよくし、極板自体の強度を高めること
も出来る。このfl維の長さが5μmより小さいものを
均質に製造する事は困難であるのでコスト高になる。し
たがって、安価に製造できる5μm以上が好ましい。ま
た、40μm以上になるとセパレータを介して微少短絡
の可能性があるので、5〜40μmの範囲が最適である
。一方、直径として0.1μm以下はやはり製造工程上
困難であり、品質を保障するためにコスト高となシ実用
的でない。安価に製造できる0、1μm以上が実用的で
ある。しかし、1μm以上になると表面積が小さくなる
ために、酸素触媒作用が減少する。したがって、酸素触
媒作用と低コスト化を考えると0.1〜1μmの範囲が
最適である。
Since conductive whiskers are in the form of fine fibers, when fibrous fluororesin is used as a binder, the individual fibers are intertwined and maintain mechanical strength, as well as maintain tightness with hydrogen-absorbing alloy particles. It can also improve the strength of the electrode plate itself. It is difficult to homogeneously manufacture fl fibers having a length of less than 5 μm, resulting in high costs. Therefore, the thickness is preferably 5 μm or more because it can be manufactured at low cost. Further, if the thickness is 40 μm or more, there is a possibility of a slight short circuit through the separator, so a range of 5 to 40 μm is optimal. On the other hand, a diameter of 0.1 μm or less is still difficult in terms of manufacturing process and is not practical due to high costs to ensure quality. A thickness of 0.1 μm or more is practical because it can be manufactured at low cost. However, when the thickness is 1 μm or more, the surface area becomes small, so that the oxygen catalytic effect decreases. Therefore, in consideration of oxygen catalytic action and cost reduction, a range of 0.1 to 1 μm is optimal.

ここでは導電性ウィスカーの表面にパラジウム触媒を用
いたが他の貴金属触媒、金属酸化物触媒を用いてもよい
。また、酸素触媒層として一例としてチタン酸カリウム
を用いたが他の組成の導電性ウィスカーでもよく、他の
無機・金属粉末と混合して用いることもできる。
Although a palladium catalyst was used on the surface of the conductive whiskers here, other noble metal catalysts or metal oxide catalysts may be used. Further, although potassium titanate is used as an example of the oxygen catalyst layer, conductive whiskers having other compositions may be used, and they may be mixed with other inorganic or metal powders.

発明の効果 以上のように、本発明によれば過充電における電池内の
圧力上昇が少なく安全性に優れ、しかも充・放電サイク
ル寿命が長く、低コストで品質の安定した密閉型アルカ
リ蓄電池が得られるという効果が得られる。
Effects of the Invention As described above, according to the present invention, a sealed alkaline storage battery with low pressure increase inside the battery during overcharging, excellent safety, long charge/discharge cycle life, low cost, and stable quality can be obtained. You can get the effect of being able to

【図面の簡単な説明】[Brief explanation of drawings]

第1図A、Bは本発明における負極の構成を示す側面図
及び断面図、第2図は本発明の実施例に用いた密閉型ア
ルカリ蓄電池の構造を示す断面図、第3図は本発明の負
極と従来の負極を用いた密閉型アルカリ蓄電池の充電率
における電池内圧の変化を示す図である。 1・・・・・・発泡状ニッケル多孔体、2・・・・・・
水素吸蔵合金、3・・・・・・酸素触媒層、4・・・・
・・負極板。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名l−
発泡状ニッケル今jL体 2−0−水素咀、?y:会金・木米化初3− 酸 米 
b  様 1 4−負 糧 悪 第1図 A      B 第2図 正jtン寸又
Figures 1A and B are side views and cross-sectional views showing the structure of the negative electrode according to the present invention, Figure 2 is a cross-sectional view showing the structure of a sealed alkaline storage battery used in an example of the present invention, and Figure 3 is a cross-sectional view showing the structure of the negative electrode according to the present invention. FIG. 2 is a diagram showing changes in battery internal pressure with respect to charging rates of sealed alkaline storage batteries using negative electrodes and conventional negative electrodes. 1... Foamed nickel porous body, 2...
Hydrogen storage alloy, 3...Oxygen catalyst layer, 4...
...Negative electrode plate. Name of agent: Patent attorney Toshio Nakao and one other person
Foamed nickel now jL body 2-0-hydrogen chew,? y: Kaikin/Mokubeika first 3-acid rice
Mr. b 1 4-Negative food Bad Figure 1 A B Figure 2 Positive jt Dimensions

Claims (3)

【特許請求の範囲】[Claims] (1)金属酸化物正極と、水素吸蔵合金又は水素化物か
らなる負極と、セパレータ及びアルカリ電解液を備え、
前記正極側に接する負極の表面に導電性ウィスカーから
なる酸素触媒層を設けたことを特徴とする密閉型アルカ
リ蓄電 池。
(1) comprising a metal oxide positive electrode, a negative electrode made of a hydrogen storage alloy or hydride, a separator and an alkaline electrolyte,
A sealed alkaline storage battery characterized in that an oxygen catalyst layer made of conductive whiskers is provided on the surface of the negative electrode in contact with the positive electrode side.
(2)酸素触媒層を形成する導電性ウィスカーがチタン
酸カリウム(K_2O・nTiO_2)からなり、その
平均の長さと直径が各々6〜40μmと0.1〜1μm
である特許請求の範囲第1項記載の密閉型アルカリ蓄電
池。
(2) The conductive whiskers forming the oxygen catalyst layer are made of potassium titanate (K_2O・nTiO_2), and their average length and diameter are 6 to 40 μm and 0.1 to 1 μm, respectively.
A sealed alkaline storage battery according to claim 1.
(3)酸素触媒層を形成する導電性ウィスカーの表面に
触媒を担持している特許請求の範囲第1項記載の密閉型
アルカリ蓄電池。
(3) The sealed alkaline storage battery according to claim 1, wherein a catalyst is supported on the surface of the conductive whiskers forming the oxygen catalyst layer.
JP61200918A 1986-08-27 1986-08-27 Sealed alkaline storage battery Expired - Lifetime JPH0795443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61200918A JPH0795443B2 (en) 1986-08-27 1986-08-27 Sealed alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61200918A JPH0795443B2 (en) 1986-08-27 1986-08-27 Sealed alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS6355858A true JPS6355858A (en) 1988-03-10
JPH0795443B2 JPH0795443B2 (en) 1995-10-11

Family

ID=16432438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61200918A Expired - Lifetime JPH0795443B2 (en) 1986-08-27 1986-08-27 Sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH0795443B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163157A (en) * 1982-03-23 1983-09-27 Toshiba Corp Metal oxide-hydrogen cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163157A (en) * 1982-03-23 1983-09-27 Toshiba Corp Metal oxide-hydrogen cell

Also Published As

Publication number Publication date
JPH0795443B2 (en) 1995-10-11

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
US6171727B1 (en) Alkaline secondary battery and method of manufacturing the same
JPS6355858A (en) Enclosed type alkaline storage battery
JPH04212269A (en) Alkaline storage battery
JPH0568828B2 (en)
JPS63195960A (en) Sealed alkaline storage battery
JP2861057B2 (en) Alkaline secondary battery
JPS62295352A (en) Enclosed type alkaline storage battery
JPH01267960A (en) Hydrogen absorption alloy electrode and its manufacture
JP3118930B2 (en) Hydrogen storage electrode
JPH0831314B2 (en) Sealed alkaline storage battery
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH044574A (en) Secondary battery
JPS62295353A (en) Enclosed type nickel-hydrogen storage battery
JPH03145058A (en) Paste type nickel positive electrode
JP3876960B2 (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery using the same
JPS62296365A (en) Sealed alkaline storage battery
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPS6199277A (en) Metal-hydrogen alkaline storage battery
JPH04196057A (en) Metal hydride sealed secondary battery
JPH0715815B2 (en) Method for producing paste type cadmium cathode plate for alkaline storage battery
JP3241441B2 (en) Cadmium negative electrode for alkaline storage batteries
JP2562640B2 (en) Cadmium electrode for alkaline storage battery
JPH10275619A (en) Paste type cadmium electrode
JPH03274676A (en) Nickel-hydrogen battery