JPS6355147A - Electroconductive body made from carbon and clay - Google Patents

Electroconductive body made from carbon and clay

Info

Publication number
JPS6355147A
JPS6355147A JP61197840A JP19784086A JPS6355147A JP S6355147 A JPS6355147 A JP S6355147A JP 61197840 A JP61197840 A JP 61197840A JP 19784086 A JP19784086 A JP 19784086A JP S6355147 A JPS6355147 A JP S6355147A
Authority
JP
Japan
Prior art keywords
carbon
conductor
clay
sintered body
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61197840A
Other languages
Japanese (ja)
Inventor
▲隆▼一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61197840A priority Critical patent/JPS6355147A/en
Publication of JPS6355147A publication Critical patent/JPS6355147A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Conductive Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は粘土と炭素類の混合物を焼結して得られるとこ
ろの導電体とその電極、濾材、電磁波の遮蔽材、電気又
は磁気の作用により発熱する発熱体としての使用法に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to conductors obtained by sintering a mixture of clay and carbon, their electrodes, filter media, electromagnetic wave shielding materials, and electric or magnetic effects. The invention relates to a method for using it as a heating element that generates heat.

[従来技術とその問題点] 多孔質電気導電体としては従来より炭素類を多孔質状に
固めたもの(たとえば、日本カーボン(株)製多孔質炭
素P−140)等があり、これらのいくつかは亜鉛−塩
素電池の電極や電解における電極として用いられてきた
。しかし、炭素類を用いて得られる従来品は (イ)強度が十分とは言えない。
[Prior art and its problems] Conventionally, there are porous electrical conductors made of carbon solidified into a porous state (for example, porous carbon P-140 manufactured by Nippon Carbon Co., Ltd.). It has been used as an electrode in zinc-chlorine batteries and in electrolysis. However, conventional products obtained using carbons (a) cannot be said to have sufficient strength.

(ロ)成型が困難である。(b) It is difficult to mold.

(ハ)湿式燃料電池用電極のように高温で用いる場合の
化学的安定性が十分とは言えない。
(c) It cannot be said that the chemical stability is sufficient when used at high temperatures like electrodes for wet fuel cells.

(ニ)水性電解液とのなじみが良くない。(d) Poor compatibility with aqueous electrolyte.

(ホ)一般に高価である。(e) Generally expensive.

等の欠点を有している。It has the following disadvantages.

[問題点を解決するための手段] 粘土(あるいは陶土)は通常1000度ぐらいの温度で
容易に焼結体を形成することができる。この焼結体は比
較的安価に製造され、日常生活において広範に用いられ
ている。従って、この粘土と比較的少量の炭素類の混合
物を焼結することによって強度を有する多孔質導電体を
得ることができれば、このものは従来の多孔質導電体の
欠点のいくつかを補うことができる。たとえば、粘土焼
結体は一般に成型が容易で安価であり、強度もあり、水
とのぬれが良い性質を有する。
[Means for solving the problem] Clay (or china clay) can be easily formed into a sintered body at a temperature of about 1000 degrees Celsius. This sintered body is produced relatively inexpensively and is widely used in daily life. Therefore, if a porous conductor with strength can be obtained by sintering a mixture of this clay and a relatively small amount of carbon, this material can compensate for some of the drawbacks of conventional porous conductors. can. For example, clay sintered bodies are generally easy to mold, inexpensive, strong, and have good wettability with water.

しかし、粘土の焼結体は一般に絶縁体であり、比較的少
量の炭素類の混合によって、このような目的を達成する
ための材料を得ることは困難であるとも考えられる。し
かし、実験に基づく発見により、特に多孔質炭素を炭素
類として用いる場合には、炭素類と粘土の混合物を焼結
することによって、上記の目的を達成する多孔質導電体
が得られることが分った。そして、このような多孔質物
質は当然濾材としての使用も可能であると考えられる。
However, sintered clay is generally an insulator, and it is considered difficult to obtain a material that can achieve this purpose by mixing a relatively small amount of carbon. However, experimental findings have shown that porous conductors that achieve the above objectives can be obtained by sintering a mixture of carbon and clay, especially when porous carbon is used as the carbon. It was. Naturally, such porous materials can also be used as filter media.

又、本発明の導電体を燃料電池用電極等として用いる場
合には必要に応じて触媒又はその前駆体を焼結前又は焼
結後に炭素類、粘土又は焼結体に含浸させ必要な処理を
行なう。又、上記の発見を基に、粘土と炭素の混合物か
ら、多孔体に限ることなく、一般的に、種々の用途を持
つ有用な導電体焼結体が得られることが分った。以下に
実施例を用途を示す。
In addition, when the conductor of the present invention is used as an electrode for a fuel cell, etc., a catalyst or its precursor may be impregnated into carbon, clay, or a sintered body before or after sintering, and any necessary treatments may be carried out. Let's do it. Furthermore, based on the above discovery, it has been found that a mixture of clay and carbon can be used not only for porous bodies but also for general conductive sintered bodies that are useful for various purposes. Examples of applications are shown below.

[実施例1] 粉上の粘土と炭素粉と水を乳鉢中ですりつぶして混合し
た後に、押型を用いて直径13mmの円盤状に成型した
。この円盤状混合物を室温で大気中に放置し乾燥した。
[Example 1] Powdered clay, carbon powder, and water were ground and mixed in a mortar, and then molded into a disk shape with a diameter of 13 mm using a press mold. This disk-shaped mixture was left to dry in the air at room temperature.

乾燥後、電気炉を用いアルゴン気流下に加熱して焼結さ
せた。電気炉への試料投入後、室温より通常1時間当り
300度の割合で昇温し、所定の温度に達した後1時間
その温度に保つことにより焼結を行なった。粘土として
は愛知県西加茂郡猿投町産出木節粘土(以下、猿投木節
粘土と略称)又は広島県庄原市矢野勝光山産出ろう石(
以下、勝光山ろう石と略称)を用いた。
After drying, it was heated and sintered in an argon stream using an electric furnace. After the sample was placed in the electric furnace, the temperature was raised from room temperature at a rate of 300 degrees per hour, and after reaching a predetermined temperature, the sample was maintained at that temperature for 1 hour to perform sintering. The clay used is Kibushi clay produced in Sanage Town, Nishikamo District, Aichi Prefecture (hereinafter referred to as "Sanage Kibushi Clay"), or Rouseki produced in Yano Katsumitsuyama, Shobara City, Hiroshima Prefecture (hereinafter referred to as "Sanage Kibushi Clay").
Hereinafter, Katsumitsuzan Rouseki (abbreviated as Katsumitsuzan Rouseki) was used.

これらの粘土は粉砕後、水簸処理されたものである。猿
投木節粘土を用いる場合には800度において1時間保
つことにより焼結させ、勝光山ろう石を用いる場合には
1100度で1時間保つことにより焼結させた。
These clays are ground and then elutriated. When Sanage Kibushi clay was used, it was sintered by keeping it at 800 degrees for 1 hour, and when Katsumitsuzan Rouseki was used, it was sintered by keeping it at 1100 degrees for 1 hour.

炭素類としてはケッチェンブラックEC(ライオン株式
会社販売)、ケッチェンブラックEC−DJ600(ラ
イオン株式会社販売)、又はトーカブラック#5500
(東海カーボン(株)商品)を用いた。前二者は代表的
な多孔質炭素類であり1g当り約950mg以上のヨウ
素を吸収し、BET法によるN2吸着面積としては1g
当り約930m2以上の値を示す。これに対して、トー
カブラック#5500は1g当り約260mgのヨウ素
を吸収し、BET法によるN2吸着面積としては1g当
り役210m2の値を示す。
Examples of carbon include Ketjenblack EC (sold by Lion Corporation), Ketjenblack EC-DJ600 (sold by Lion Corporation), or Toka Black #5500.
(Tokai Carbon Co., Ltd. product) was used. The former two are typical porous carbons that absorb approximately 950 mg or more of iodine per gram, and the N2 adsorption area according to the BET method is 1 gram.
This indicates a value of approximately 930 m2 or more per area. On the other hand, Toka Black #5500 absorbs about 260 mg of iodine per gram, and exhibits a value of 210 m2 per gram of N2 adsorption area according to the BET method.

上記の粘土及び炭素類の組合せにより、以下のタイプの
焼結体を得た。
The following types of sintered bodies were obtained using the above combination of clay and carbon.

タイプA:猿投木節粘土とケッチェンブラック    
 ECの組合せ。
Type A: Sanage Kibushi clay and Ketjen black
EC combination.

タイプB:猿投木節粘土とケッチェンブラック    
 EC−DJの組合せ。
Type B: Sanage Kibushi clay and Ketjen Black
EC-DJ combination.

タイプC:猿投木節粘土とトーカブラック#5500 
    の組合せ。
Type C: Sanage Kibushi clay and Touka Black #5500
A combination of

タイプD:勝光山ろう石とケッチェンブラック    
 ECの組合せ。
Type D: Katsumitsuzan wax stone and Ketjen black
EC combination.

これらのタイプの焼結体について、(イ)多孔度、(ロ
)導伝率、(ハ)強度、(ニ)熱重量分析等の測定を行
ない、下記の結果を得た。
These types of sintered bodies were subjected to measurements such as (a) porosity, (b) conductivity, (c) strength, and (d) thermogravimetric analysis, and the following results were obtained.

(イ)多孔度: 焼結体を水中に浸し、減圧下に焼結体中の空気を放出さ
せることにより焼結体に水を含ませた。
(a) Porosity: The sintered body was immersed in water and the air in the sintered body was released under reduced pressure to impregnate the sintered body with water.

そして、焼結体の外見上の体積と上記の操作により焼結
体に含まれた水の体積の比から多孔度を算出した。その
結果、焼結体中の炭素含有率と多孔度の間に以下の関係
が認められた(多孔度=焼結体に含まれた水の体積÷焼
結体の外見上の体積)。
Then, the porosity was calculated from the ratio of the apparent volume of the sintered body to the volume of water contained in the sintered body by the above operation. As a result, the following relationship was found between the carbon content in the sintered body and the porosity (porosity = volume of water contained in the sintered body ÷ apparent volume of the sintered body).

すなわち、いずれのタイプの焼結体についても、焼結体
の炭素含有率が増加するにつれて焼結体の多孔度は上昇
する傾向が見られた。ここで、炭素含有率は焼結体中の
炭素の分析値(したがって、炭素の重量割合)を示し、
粘土と炭素類の混合比によって変化する。以下、炭素含
有率について、この定義を用いる。猿投木節粘土、勝光
山ろう石を、炭素類を混合することなく、おのおの80
0度、1100度で1時間焼結して得られる焼結体の多
孔度はおのおの約38%、43%であった。
That is, for any type of sintered body, the porosity of the sintered body tended to increase as the carbon content of the sintered body increased. Here, the carbon content indicates the analytical value of carbon in the sintered body (therefore, the weight percentage of carbon),
It changes depending on the mixing ratio of clay and carbon. This definition will be used below regarding carbon content. Sanage Kibushi clay and Katsumitsuyama Rouseki are each made of 80% without mixing carbon.
The porosity of the sintered bodies obtained by sintering at 0 degrees and 1100 degrees for 1 hour was about 38% and 43%, respectively.

タイプAの焼結体は炭素含有率が約5%、10%、15
%、20%、22%において、おのおの約45%、51
%、55%、58%、62%の多孔度を示した。
Type A sintered bodies have a carbon content of approximately 5%, 10%, and 15%.
%, 20%, and 22%, respectively, approximately 45% and 51%.
%, 55%, 58%, and 62%.

タイプBの焼結体は炭素含有率が約3%、5%、10%
、15%、20%において、おのおの約47%、54%
、58%、62%、65%の多孔度を示した。
Type B sintered bodies have a carbon content of approximately 3%, 5%, and 10%.
, 15% and 20%, approximately 47% and 54%, respectively.
, 58%, 62%, and 65% porosity.

タイプCの焼結体は、炭素含有率が約5%、10%、1
5%、18%において、おのおの約43%、48%、5
1%、54%の多孔度を示した。
Type C sintered bodies have a carbon content of approximately 5%, 10%, 1
Approximately 43%, 48%, and 5% at 5% and 18%, respectively.
It showed a porosity of 1% and 54%.

タイプDの焼結体は、炭素含有率が約1%で約58%の
多孔度を示した。粘土の焼結体は一般に焼結温度を上げ
ることにより多孔度が減少し強度が増加するので、サン
プルについてさらに焼結温度を上げることにより適当な
多孔度とより大きな強度や導伝率などを持つ物を得るこ
とができる。
The type D sintered body had a carbon content of about 1% and a porosity of about 58%. In general, the porosity of clay sintered bodies decreases and the strength increases by increasing the sintering temperature, so by further increasing the sintering temperature of the sample, it is possible to obtain a suitable porosity, higher strength, conductivity, etc. can get things.

なお、多孔度の測定には通常水銀多孔度計がよく用いら
れるが、この方法による場合の方が加圧下における測定
であるために上記の多孔度よりも大きな多孔度を与える
と考えられる。
Note that a mercury porosimeter is commonly used to measure porosity, but this method is thought to give a larger porosity than the above-mentioned porosity because the measurement is performed under pressure.

(ロ)導伝率 室温における焼結体の導伝率を測定して、導伝率と炭素
含有率の間に下記の関係を認めた。
(b) Conductivity The conductivity of the sintered body at room temperature was measured, and the following relationship was observed between the conductivity and carbon content.

すなわち、いずれのタイプの焼結体についても、炭素含
有率の増加とともに導伝率が増加する傾向が認められた
。導伝率は主に2点法により求めた。
That is, for all types of sintered bodies, there was a tendency for the conductivity to increase as the carbon content increased. The conductivity was mainly determined by the two-point method.

タイプAの焼結体は、炭素含有率が約2%、3%、7%
、10%、15%、20%、22%において、おのおの
約10−10Scm−1(ジーメンス毎センチメートル
)、10−6Scm−1、10−1.7Scm−1、1
0−0.7Scm−1、10−0.2Scm−1、10
0.1Scm−1、100.1Scm−1の導伝率を示
した。
Type A sintered bodies have a carbon content of approximately 2%, 3%, and 7%.
, 10%, 15%, 20%, and 22%, respectively, approximately 10-10Scm-1 (Siemens per centimeter), 10-6Scm-1, 10-1.7Scm-1, 1
0-0.7Scm-1, 10-0.2Scm-1, 10
The conductivity was 0.1 Scm-1 and 100.1 Scm-1.

タイプBの焼結体は、炭素含有率が約3%、5%、10
%、15%、20%において、おのおの約10−4Sc
m−1、10−2Scm−1、10−0.4Scm−1
、10−0.2Scm−1、100.2Scm−1の導
伝率を示した。
Type B sintered bodies have carbon contents of approximately 3%, 5%, and 10
%, 15%, 20%, each about 10-4Sc
m-1, 10-2Scm-1, 10-0.4Scm-1
, 10-0.2 Scm-1, and 100.2 Scm-1.

タイプCの焼結体は、炭素含有率が約3%、5%、10
%、15%、19%において、おのおの約10−9Sc
m−1、10−5Scm−1、10−1Scm−1、1
0−0.5Scm−1、10−0.2Scm−1の導伝
率を示した。
Type C sintered bodies have a carbon content of approximately 3%, 5%, and 10%.
%, 15%, 19%, each about 10-9Sc
m-1, 10-5Scm-1, 10-1Scm-1, 1
The conductivity was 0-0.5 Scm-1 and 10-0.2 Scm-1.

タイプDの焼結体は、炭素含有率が約2%、5%、9%
において、おのおの約10−6Scm−1、10−2.
3Scm−1、10−1Scm−1の導伝率を示した。
Type D sintered bodies have a carbon content of approximately 2%, 5%, and 9%.
, respectively about 10-6 Scm-1, 10-2.
The conductivity was 3 Scm-1 and 10-1 Scm-1.

タイプDの焼結体については、炭素含有率が約10%以
上のサンプルについては、その機械的強度が十分でない
ために、導伝率の測定が困難であった。
Regarding type D sintered bodies, it was difficult to measure the conductivity of samples with a carbon content of about 10% or more because their mechanical strength was insufficient.

(ハ)強度 本実施例記載の上記の方法により得られた焼結体は約1
0mmの直径を有する円盤状のものである。この円盤状
焼結体について、厚さ約2.5mmのサンプルを調製し
た。このサンプルを堅い平面上に置き、サンプルの上部
からサンプルのほぼ中央に直径5mmの金属製円筒を当
てた。この後、金属製円筒に荷重をかけて、焼結体の破
壊荷重値を求めた。破壊荷重値は、焼結体の破壊が始ま
った時に金属製円筒にかけられた荷重を金属製円筒の断
面積(0.196cm2)で割ることによって計算した
。その結果、タイプAの焼結体について、炭素含有率が
約3.5%、5.5%、10.5%、14%、19%の
ときに破壊荷重値は各各1200kg/cm2、900
kg/cm2、430kg/cm2、170kg/cm
2、130kg/cm2であり、この焼結体が大きな機
械的強度を有することが分った。このことは、この焼結
体を電極、濾材等に用いる上での利点となっている。タ
イプB及びタイプCの焼結体についても、その多孔度が
タイプAの焼結体とほぼ同じ場合には、タイプAの焼結
体とほぼ同様の機械的強度を持つことが手による折りま
げ強度の検査によって分った。タイプDの焼結体は炭素
含有率が約0.5%、2.5%、6%の時に、前述の測
定法により各各150kg/cm2、60kg/cm2
、50kg/cm2の破壊荷重値を示した。
(c) Strength The sintered body obtained by the above method described in this example has a strength of approximately 1
It is disc-shaped with a diameter of 0 mm. A sample with a thickness of about 2.5 mm was prepared for this disc-shaped sintered body. This sample was placed on a hard flat surface, and a metal cylinder with a diameter of 5 mm was applied from the top of the sample to approximately the center of the sample. Thereafter, a load was applied to the metal cylinder, and the fracture load value of the sintered body was determined. The fracture load value was calculated by dividing the load applied to the metal cylinder when the sintered body began to fracture by the cross-sectional area of the metal cylinder (0.196 cm2). As a result, for type A sintered bodies, when the carbon content was approximately 3.5%, 5.5%, 10.5%, 14%, and 19%, the fracture load values were 1200 kg/cm2 and 900 kg/cm2, respectively.
kg/cm2, 430kg/cm2, 170kg/cm
2,130 kg/cm2, indicating that this sintered body has high mechanical strength. This is an advantage in using this sintered body for electrodes, filter media, etc. For type B and type C sintered bodies, if their porosity is almost the same as that of type A sintered body, they can be folded by hand and have almost the same mechanical strength as type A sintered body. This was determined by testing the strength. Type D sintered bodies have a carbon content of approximately 0.5%, 2.5%, and 6%, respectively, and have a weight of 150 kg/cm2 and 60 kg/cm2, respectively, according to the measurement method described above.
, showed a breaking load value of 50 kg/cm2.

なお、上記の破壊荷重値を求める際に用いた金属製円筒
は十分な堅さと機械的強度を有していた。又、円盤状焼
結体はその平面を堅い平面に接するようにして堅い平面
上に置かれて破壊荷重値を測定された。測定用焼結体サ
ンプルとしては、より大きな焼結体から上述と同様の直
径10mm厚さ約2.5mmの円盤状サンプルを切出し
てこれを用いてもよい。
In addition, the metal cylinder used when calculating the above-mentioned breaking load value had sufficient hardness and mechanical strength. Further, the disc-shaped sintered body was placed on a hard flat surface with its flat surface in contact with a hard flat surface, and the fracture load value was measured. As the sintered body sample for measurement, a disk-shaped sample having a diameter of 10 mm and a thickness of about 2.5 mm similar to that described above may be cut out from a larger sintered body and used.

(ニ)熱重量分析 本実施例中上記の焼結体中の炭素類の空気中の酸素に対
する化学的安定性を調べるために、空気中でタイプA、
タイプB、及びタイプCの焼結体の熱重量分析を行なっ
た。その結果、焼結体中の炭素類は、原料の炭素類にく
らべて加熱時の酸化分解に対してより大きな抵抗を示す
ことが分った。たとえば、タイプAの焼結体は空気中で
の熱重量分析において、原料のケッチェンブラックの空
気中における熱重量分析において空気酸化により重量減
少が始まる温度よりも約100度高い温度において初め
て焼結体中の炭素の空気酸化に伴う重量減少が起こるこ
とが分った。このような高い熱安定性は、本焼結体を高
温下で作動する湿式燃料電池の電極や発熱体として用い
る上での利点を示している。タイプB、タイプCの焼結
体についても、相当する炭素類よりも各各約50度、1
5度空気中での熱安定性が向上していることが分った。
(d) Thermogravimetric analysis In order to investigate the chemical stability of the carbon in the above sintered body against oxygen in the air, type A,
Thermogravimetric analysis of Type B and Type C sintered bodies was conducted. As a result, it was found that the carbon in the sintered body exhibited greater resistance to oxidative decomposition during heating than the carbon in the raw material. For example, type A sintered bodies are first sintered at a temperature approximately 100 degrees higher than the temperature at which weight loss begins due to air oxidation in thermogravimetric analysis of the raw material Ketjenblack in air. It was found that weight loss occurs due to air oxidation of carbon in the body. Such high thermal stability indicates an advantage in using the present sintered body as an electrode or heating element of a wet fuel cell that operates at high temperatures. Type B and type C sintered bodies are also about 50 degrees and 1
It was found that the thermal stability in air at 5 degrees Celsius was improved.

[実施例2及び用途] 実施例1に示すようにタイプAの焼結体は導電性と十分
な機械的強度及び化学的安定性を有するので、電池の電
極や電気分解用電極として適している。以下にタイプA
の焼結体を電極とする電池の例を示す。タイプB及びタ
イプCの焼結体を用いた場合においても同様の電池が得
られた。
[Example 2 and Applications] As shown in Example 1, the type A sintered body has electrical conductivity, sufficient mechanical strength, and chemical stability, so it is suitable as a battery electrode or an electrolysis electrode. . Type A below
An example of a battery using a sintered body of as an electrode is shown below. Similar batteries were obtained also when type B and type C sintered bodies were used.

直径約10mm、厚さ約2.5mmのタイプAの焼結体
に2.5mol/lのZnI2水溶液0.11mlをし
み込ませて正極とする。集電体としての白金板、この正
極、2.5mol/lのZnI2水溶液0.07mlを
しみ込ませたガラス繊維製マット(東洋濾紙(株)製G
A−100濾紙製、直径10mm)、負極としての亜鉛
板をこの順序に重ねて二次電池を作製した。この二次電
池を10mAの定電流(直流)で約80分間充電して正
極にヨウ素を負極に亜鉛を析出させる。この後、充電を
止めて10mAの定電流で放電させると、放電電圧が0
.8Vに低下するまで約60分間放電を行なうことがで
きた。このような充放電サイクルを50回以上繰返すこ
とができた。又、正極と負極の間に陽イオン交換膜を置
く工夫を行なうことにより、同様の二次電池の電流効率
をほぼ100%とすることができた。なお、これらの二
次電池は電解液中の水の蒸発を妨ぐために密閉して用い
られた。
A type A sintered body having a diameter of about 10 mm and a thickness of about 2.5 mm is impregnated with 0.11 ml of a 2.5 mol/l ZnI2 aqueous solution to form a positive electrode. A platinum plate as a current collector, this positive electrode, a glass fiber mat (G manufactured by Toyo Roshi Co., Ltd.) impregnated with 0.07 ml of a 2.5 mol/l ZnI2 aqueous solution
A-100 filter paper, diameter 10 mm) and a zinc plate as a negative electrode were stacked in this order to prepare a secondary battery. This secondary battery is charged with a constant current (direct current) of 10 mA for about 80 minutes to deposit iodine on the positive electrode and zinc on the negative electrode. After this, when charging is stopped and discharged at a constant current of 10 mA, the discharge voltage becomes 0.
.. Discharge could be performed for about 60 minutes until the voltage dropped to 8V. Such charge/discharge cycles could be repeated over 50 times. Furthermore, by placing a cation exchange membrane between the positive electrode and the negative electrode, the current efficiency of a similar secondary battery could be made nearly 100%. Note that these secondary batteries were used in a sealed manner to prevent water in the electrolyte from evaporating.

以上の例は、本発明の導電体で多孔質のものが電極材料
として用いることができることを示している。この様な
多孔質導電体は、その中をガスが通過する場合に大きな
接触面積を有するので、水素、酸素、塩素などのガス状
活物質を用いる電池の電極として特に適している。又、
本発明の導電体は比較的高い導伝率を有するので、電磁
波の遮蔽材や電気又は磁気の作用により発熱する発熱体
として用いることができる。電磁波の遮蔽材や発熱体と
しての使用目的においては、導電体は多孔質である必要
は必ずしもなく、実施例1に示した温度よりも高い温度
で得られる多孔度の小さな導電性焼結体でもよい。前述
のように、粘土の焼結体はある温度以上では焼結温度が
高いほど多孔度が小さくなるかわりに機械的強度、堅さ
が増加する傾向があり、本発明の粘土と炭素の混合物か
ら得られる焼結体の場合にも同様の傾向が認められるの
で、機械的強度の観点からはむしろより高温側で得られ
る多孔度の小さな焼結体の方が電磁波の遮蔽材や発熱体
としてより良い場合も多い。
The above examples show that porous conductors of the present invention can be used as electrode materials. Such porous conductors have a large contact area when gases pass through them, and are therefore particularly suitable as electrodes in batteries using gaseous active materials such as hydrogen, oxygen, chlorine, etc. or,
Since the conductor of the present invention has relatively high conductivity, it can be used as a shielding material for electromagnetic waves or as a heating element that generates heat by the action of electricity or magnetism. When used as an electromagnetic wave shielding material or a heating element, the conductor does not necessarily have to be porous, and a conductive sintered body with small porosity obtained at a temperature higher than that shown in Example 1 may also be used. good. As mentioned above, above a certain temperature, the higher the sintering temperature, the smaller the porosity of clay sintered bodies, but the mechanical strength and hardness tend to increase. A similar tendency is observed in the case of the obtained sintered bodies, so from the viewpoint of mechanical strength, sintered bodies with small porosity obtained at higher temperatures are better as electromagnetic wave shielding materials and heating elements. There are many cases where it is good.

又、より高い温度において得られるより多孔度の小さな
焼結体中では、炭素類の塊の間の距離が短くなり又炭素
類間の接触が良くなり導伝率が大きくなると考えられる
。事実、実施例1で得られた種々のタイプの焼結体につ
いて、公表されている炭素類の粒径、炭素含有率及び多
孔度から焼結体中に分散している炭素類間の平均の隔離
されている距離を計算し、この距離に対して焼結体の導
伝率をプロットすると、どのタイプの焼結体についても
この距離が短くなるほど導伝率が大きくなり両者の関係
を表わす曲線はどの焼結体についてもかなり似ているこ
とが分った。この事実によっても、電磁波の遮蔽材や上
記発熱体のように優れた機械強度と適切な導伝率を有す
ることが必要とされるものを得る場合には、焼結温度を
上げるなどの工夫によりむしろ多孔度が小さくより密な
焼結体を得た方が良い場合も多い。又、炭素類間の隔離
距離を減少させその電気的接触を良くし、かつ粘土粒子
の焼結をスムースに行なわせて焼結体に機械的強度を与
えるためには、用いる炭素類としてはケッチェンブラッ
クEC、トーカブラック#5500、アセチレンブラッ
ク等の微粒子状又は細い繊維状であるものが望しく、又
、一般に多孔質炭素の方がこのような目的に合致する場
合が多い。
It is also believed that in a sintered body with smaller porosity obtained at a higher temperature, the distance between the carbon clusters becomes shorter and the contact between the carbon particles becomes better, resulting in higher conductivity. In fact, for the various types of sintered bodies obtained in Example 1, the average of the carbons dispersed in the sintered bodies was determined from the published particle size, carbon content, and porosity of the carbons. If you calculate the separation distance and plot the conductivity of the sintered body against this distance, the conductivity will increase as the distance becomes shorter for any type of sintered body, and a curve representing the relationship between the two will be obtained. was found to be quite similar for all sintered bodies. Due to this fact, when obtaining materials that require excellent mechanical strength and appropriate conductivity, such as electromagnetic wave shielding materials and the above-mentioned heating elements, it is necessary to increase the sintering temperature. In fact, it is often better to obtain a denser sintered body with smaller porosity. In addition, in order to reduce the separation distance between carbons and improve their electrical contact, and to smoothly sinter the clay particles and provide mechanical strength to the sintered body, the carbons to be used are Fine particles or thin fibers such as Chen Black EC, Toka Black #5500, and acetylene black are desirable, and porous carbon is generally more suitable for such purposes.

[発明の効果] 本発明により、安価な粘土を原料の主成分として用い、
簡便な方法により機械的強度と熱的及び化学的安定性を
有する導電体を得ることができる。
[Effect of the invention] According to the present invention, inexpensive clay is used as the main component of the raw material,
A conductor having mechanical strength and thermal and chemical stability can be obtained by a simple method.

得られた導電体は電極、濾材、電磁波の遮蔽材、電気又
は磁気の作用により発熱する発熱体などに用いることが
できる。
The obtained conductor can be used for electrodes, filter media, electromagnetic wave shielding materials, heating elements that generate heat by electric or magnetic action, and the like.

Claims (7)

【特許請求の範囲】[Claims] (1)粘土と炭素類の混合物を焼結して得られ、かつ1
0^−^4Scm^−^1(ジーメンス毎センチメート
ル)以上の導伝率を有する導電体。
(1) Obtained by sintering a mixture of clay and carbon, and
A conductor having a conductivity of 0^-^4Scm^-^1 (Siemens per centimeter) or more.
(2)炭素類が多孔質炭素であることを特徴とする特許
請求の範囲第1項に記載の導電体。
(2) The conductor according to claim 1, wherein the carbon is porous carbon.
(3)40%以上の多孔度を有することを特徴とする特
許請求の範囲第1項又は第2項に記載の導電体。
(3) The conductor according to claim 1 or 2, which has a porosity of 40% or more.
(4)炭素類の含有割合が25重量パーセント以下であ
る特許請求の範囲第1項から第3項までのいずれかに記
載の導電体。
(4) The conductor according to any one of claims 1 to 3, wherein the content of carbon is 25% by weight or less.
(5)直径10mmで厚さが2.5mmの円盤状導電体
試料について、当該試料をその平面が接するようにして
堅い平面上に置き、反対側より直径5mmの堅い円筒状
物質を通して当該円盤状試料の中央に荷重をかけた場合
において、導電体の破壊荷重値が50kg/cm^2以
上であることを特徴とする特許請求の範囲第1項から第
4項までのいずれかに記載の導電体。
(5) For a disk-shaped conductor sample with a diameter of 10 mm and a thickness of 2.5 mm, place the sample on a hard plane with the flat surfaces touching, and pass the disk-shaped conductor sample through a hard cylindrical material with a diameter of 5 mm from the opposite side. The electrical conductor according to any one of claims 1 to 4, wherein the electrical conductor has a breaking load value of 50 kg/cm^2 or more when a load is applied to the center of the sample. body.
(6)当該導電体中の炭素類が原料に用いた炭素類より
も高い空気中での熱安定性を有することを特徴とする特
許請求の範囲第1項から第5項までのいずれかに記載の
導電体。
(6) Any one of claims 1 to 5, characterized in that the carbon in the conductor has higher thermal stability in air than the carbon used as a raw material. The electrical conductor described.
(7)特許請求の範囲第1項から第6項までのいずれか
に記載の導電体を電極、濾材、電磁波の遮蔽材、又は電
気又は磁気の作用により発熱する発熱体として用いる使
用法。
(7) A method of using the conductor according to any one of claims 1 to 6 as an electrode, a filter medium, an electromagnetic wave shielding material, or a heating element that generates heat by the action of electricity or magnetism.
JP61197840A 1986-08-23 1986-08-23 Electroconductive body made from carbon and clay Pending JPS6355147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61197840A JPS6355147A (en) 1986-08-23 1986-08-23 Electroconductive body made from carbon and clay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61197840A JPS6355147A (en) 1986-08-23 1986-08-23 Electroconductive body made from carbon and clay

Publications (1)

Publication Number Publication Date
JPS6355147A true JPS6355147A (en) 1988-03-09

Family

ID=16381213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61197840A Pending JPS6355147A (en) 1986-08-23 1986-08-23 Electroconductive body made from carbon and clay

Country Status (1)

Country Link
JP (1) JPS6355147A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120825A1 (en) * 2011-03-04 2012-09-13 パナソニック株式会社 Carbon rod, method for producing same, and manganese dry battery
JP2012204080A (en) * 2011-03-24 2012-10-22 Mitsubishi Pencil Co Ltd Carbon collector for dry cell and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144115A (en) * 1974-10-02 1976-04-15 Mitsubishi Cement Asbestos Yanezaino seizohoho
JPS5347514A (en) * 1976-10-06 1978-04-28 Hisamitsu Pharmaceut Co Inc Hot pack
JPS6037561A (en) * 1983-08-11 1985-02-26 Hitachi Chem Co Ltd Electrophotographic sensitive body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144115A (en) * 1974-10-02 1976-04-15 Mitsubishi Cement Asbestos Yanezaino seizohoho
JPS5347514A (en) * 1976-10-06 1978-04-28 Hisamitsu Pharmaceut Co Inc Hot pack
JPS6037561A (en) * 1983-08-11 1985-02-26 Hitachi Chem Co Ltd Electrophotographic sensitive body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120825A1 (en) * 2011-03-04 2012-09-13 パナソニック株式会社 Carbon rod, method for producing same, and manganese dry battery
JP2012204080A (en) * 2011-03-24 2012-10-22 Mitsubishi Pencil Co Ltd Carbon collector for dry cell and method for producing the same

Similar Documents

Publication Publication Date Title
JP3719570B2 (en) Electric double layer capacitor
US3634736A (en) Electrolytic capacitor employing paste electrodes
Volfkovich et al. The method of standard porosimetry 2. Investigation of the formation of porous structures
JP4273215B2 (en) Electrode material for redox capacitor comprising metal fine particles coated with carbon, redox capacitor electrode comprising the same, and redox capacitor provided with the electrode
CN109638289A (en) A kind of preparation method and application of new type lithium ion battery conductive additive carbonization silk
JP4941623B2 (en) Electrode material for electrochemical device, method for producing the same, electrode for electrochemical device, and electrochemical device
JPS6355147A (en) Electroconductive body made from carbon and clay
JP2993965B2 (en) Electric double layer capacitor
Kalpana et al. Effects of temperature and pore structure on high surface area-activated carbon obtained from peanut shells
Beck et al. Fluorine-free binders for carbon black based electrochemical supercapacitors
Suryani et al. Ag nanoparticles effect on BaTiO3-Graphite-AC/Aluminum foil symmetric supercapacitor
JPH0346965B2 (en)
Tashima et al. Performance of electric double layer capacitors using nanocarbons produced from nanoparticles of resorcinol–formaldehyde polymers
CN112768751B (en) Sodium ion conductor and sodium ion solid battery
Micka et al. Plastic-bonded electrodes for nickel—cadmium accumulators IV. Some specific problems of the positive active layer
CN110739464B (en) Porous carbon nano diamond composite structure air electrode of oxygen-metal battery
JPS59169069A (en) Electrode for fuel cell
JP3446393B2 (en) Electric double layer capacitor and method of manufacturing the same
JP3070796B2 (en) Manufacturing method of polarized electrode
JPH02239572A (en) Polyaniline battery
JPH0213453B2 (en)
JPH02148654A (en) Nonaqueous electrolytic battery
JPS5940468A (en) Multilayer electrodes stepwisely divided in grain size and component weight ratio
JPS63121256A (en) Manganese dry cell
JP3365642B2 (en) Anode body of nickel-hydride battery