JPS63121256A - Manganese dry cell - Google Patents

Manganese dry cell

Info

Publication number
JPS63121256A
JPS63121256A JP61266908A JP26690886A JPS63121256A JP S63121256 A JPS63121256 A JP S63121256A JP 61266908 A JP61266908 A JP 61266908A JP 26690886 A JP26690886 A JP 26690886A JP S63121256 A JPS63121256 A JP S63121256A
Authority
JP
Japan
Prior art keywords
manganese dioxide
positive electrode
carbon material
energy density
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61266908A
Other languages
Japanese (ja)
Inventor
Yoshiaki Nitta
芳明 新田
Shigeo Kobayashi
茂雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61266908A priority Critical patent/JPS63121256A/en
Publication of JPS63121256A publication Critical patent/JPS63121256A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the high-energy density by forming a thin film layer made of a carbon material on the surface of manganese dioxide grains used as a positive electrode material. CONSTITUTION:A thin film layer made of a carbon material is formed on the surface of manganese dioxide grains used as a positive electrode material. If the manganese dioxide quantity is made a fixed value and the packing density of the positive electrode black mix 1 is made the fixed value of the normal black mix reference, a volume gain is obtained for the deposition-processed manganese dioxide 1. That is, if the positive electrode electric capacity is made a fixed value, the deposition-processed manganese dioxide can output electric energy with a volume smaller than that of the normal black mix. Accordingly, the energy density for the unit volume is increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、マンガン乾電池およびアルカリマンガン電池
の特に正極活物質である二酸化マンガンの改良に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to improvements in manganese dioxide, particularly the positive electrode active material of manganese dry batteries and alkaline manganese batteries.

従来の技術 従来この種のマンガン乾電池およびアルカリマンガン電
池では、通常正極活物質として電解二酸化マンガン粉末
、導電材として炭素粉末を混合したものが正極合剤とし
て用いられている。導電材が必要な理由は、二酸化マン
ガン単独では比導電率が10−4〜10−3s/cmの
オーダーで非常に低い値を示すからである。従って個々
の二酸化マンガン粒子に電子導電性を与えて充分な還元
反応を促進させるには、正極合剤の比導電率を100〜
101s/cmのオーダーにする必要があシ、そのため
に導電材として炭素材が全合剤に対し、重量比で15〜
20チ、体積比で20〜25チ必要である。
BACKGROUND ART Conventionally, in this type of manganese dry battery and alkaline manganese battery, a mixture of electrolytic manganese dioxide powder as a positive electrode active material and carbon powder as a conductive material is usually used as a positive electrode mixture. The reason why a conductive material is necessary is that manganese dioxide alone exhibits a very low specific conductivity on the order of 10-4 to 10-3 s/cm. Therefore, in order to impart electronic conductivity to individual manganese dioxide particles and promote a sufficient reduction reaction, the specific conductivity of the positive electrode mixture must be 100 to 100.
It is necessary to make it on the order of 101 s/cm, and for that purpose, the carbon material as a conductive material has a weight ratio of 15 to 15 to the total mixture.
20 inches, 20 to 25 inches by volume is required.

ところで電池の正極放電容量を決定するのは、もっばら
正極合剤の充填量であるが、上述したように合剤体積に
対する炭素材の比率が少なくとも20〜26チ必要であ
ることから、電池の放電容量あるいは体積あたシのエネ
ルギー密度を更に向上させることは極めて困難である。
By the way, what determines the positive electrode discharge capacity of a battery is the filling amount of the positive electrode mix, but as mentioned above, the ratio of carbon material to the mix volume needs to be at least 20 to 26 inches, so the battery's positive electrode discharge capacity is It is extremely difficult to further improve the discharge capacity or the energy density per volume.

これは、一般的には炭素材が持つ嵩密度が大きいためで
あり、これを少しでも軽減させるために、従来では二酸
化マンガンの重質化や導電炭素材の低減化を行い、体積
あたりのエネルギー密度の向上を図ってきた。
This is because carbon materials generally have a large bulk density, and in order to reduce this as much as possible, conventional methods have been to make manganese dioxide heavier and to reduce the amount of conductive carbon material. We have been trying to improve the density.

しかし、導電材として炭素材を使用する方法では、僅か
な改良はみられても炭素材の充填密度を大幅に改善しな
ければ本質的なエネルギー密度の改良にはつながらなか
った。
However, in the method of using a carbon material as a conductive material, even if a slight improvement was observed, it would not lead to a substantial improvement in energy density unless the packing density of the carbon material was significantly improved.

発明が解決しようとする問題1点 このような従来の方法では、たとえ二酸化マンガンの重
質化が行なわれたとしても炭素材がもつ充填密度が更に
増大しない限り高エネルギー密度化は達成できない。
One Problem to be Solved by the Invention In such conventional methods, even if manganese dioxide is made heavier, high energy density cannot be achieved unless the packing density of the carbon material is further increased.

あるいは導電炭素材量の大幅な削減が実施されなければ
達成できない0 このように正極合剤内で二酸化マンガン含有率を大きく
できないのは導電材の充填密度が低いことと充分な電子
電導性を得るためにどうしても規定量の炭素材を添加し
なければならないためであり、これらを本質的に改善す
る必要があるという問題があった。
Alternatively, this cannot be achieved unless the amount of conductive carbon material is drastically reduced.The reason why it is not possible to increase the manganese dioxide content in the positive electrode mixture is because the packing density of the conductive material is low and it is difficult to obtain sufficient electronic conductivity. This is because it is necessary to add a specified amount of carbon material, and there is a problem in that it is necessary to essentially improve these.

この問題点を解決するために、本発明は二酸化マンガン
粒子表面に単位体積あたりの充填密度が高い炭素材の薄
膜層を形成し優れた導電性と高エネルギー密度を有した
正極合剤を提供することを目的とするものである0 問題点を解決するための手段 この問題点を解決するため本発明は、マンガン乾電池お
よびアルカリマンガン電池の正極活物質である二酸化マ
ンガン粒子の表面に炭素材料からなる薄膜層を形成させ
た二酸化マンガンを用いるものである。
In order to solve this problem, the present invention forms a thin film layer of carbon material with high packing density per unit volume on the surface of manganese dioxide particles to provide a positive electrode mixture having excellent conductivity and high energy density. Means for solving the problem In order to solve this problem, the present invention provides a method for solving the problem by adding carbon material to the surface of manganese dioxide particles, which are the positive electrode active material of manganese dry batteries and alkaline manganese batteries. This method uses manganese dioxide formed into a thin film layer.

作  用 この構成により、正極合剤は、二酸化マンガン粒子と炭
素材が極めて良好に接着しており、成膜後の膜厚は約1
5μm、比導電率は10°〜101B/rmのオーダー
で良好な電子電導性を示した。また導電剤が占める体積
比率は4チ以下となり、二酸化マンガン充填量を増大さ
せる可能性を示した。このように導電性が優れているこ
と、炭素材配合比が低いことなどの利点は薄膜化された
炭素材がより緻密でかつ二酸化マンガンと炭素材が良好
に接着していることを意味している。
Effect With this configuration, in the positive electrode mixture, the manganese dioxide particles and the carbon material adhere extremely well, and the film thickness after formation is approximately 1.
5 μm, and the specific conductivity was on the order of 10° to 101 B/rm, showing good electronic conductivity. Furthermore, the volume ratio occupied by the conductive agent was 4 or less, indicating the possibility of increasing the amount of manganese dioxide filled. These advantages, such as excellent conductivity and low carbon material blending ratio, mean that the thin carbon material is more dense and the manganese dioxide and carbon material bond well. There is.

そしてこのような合剤を用いると従来の合剤に充填され
ている二酸化マンガン量よシも体積比で約18%も充填
量を増量することが可能となり、エネルギー密度も相当
量改善されることが可能になった。
By using such a mixture, it is possible to increase the amount of manganese dioxide filled in conventional mixtures by about 18% by volume, and the energy density is also improved by a considerable amount. is now possible.

本発明はこのような事実に基づいて提案されたものであ
り、以下その実施例について説明する。
The present invention has been proposed based on such facts, and examples thereof will be described below.

実施例 〈実施例1〉 二酸化マンガン表面に炭素材を成膜させる一つの方法と
してカーボンロッドのアーク放電を利用した真空蒸着法
がある。この種の蒸着法では試料が高温にさらされるこ
とがなく、また結着材等の影響を受けることもなく、水
溶液系で用いる二酸化マンガンの特性をほとんど損わな
い良好な方法である。
Examples (Example 1) One method for forming a carbon material film on the surface of manganese dioxide is a vacuum evaporation method using arc discharge of a carbon rod. This type of vapor deposition method does not expose the sample to high temperatures, is not affected by binders, etc., and is a good method that hardly impairs the properties of manganese dioxide used in an aqueous solution system.

真空蒸着装置のペルジャー内において予め予備乾燥を施
した電解二酸化マンガン粉末を微振動が可能な試料ホル
ダーに乗せ、ロータリーポンプと拡散ポンプを用いて減
圧を行い、ペルジャー内圧力をB x 10−6Tor
r にする。カーボンロッドとしては東海カーボン■製
の直径6叫、長さ100mmのロッドを試料ホルダー上
に配置し、アーク放電用の電極とした。アーク放電を行
う前に試料ホルダーを微振動させ、二酸化マンガン粉末
の攪拌を行う。
Place the pre-dried electrolytic manganese dioxide powder on a sample holder that can vibrate slightly in the Pel jar of a vacuum evaporation device, reduce the pressure using a rotary pump and a diffusion pump, and bring the pressure inside the Pel jar to B x 10-6 Torr.
Make it r. As the carbon rod, a rod with a diameter of 6 mm and a length of 100 mm manufactured by Tokai Carbon ■ was placed on the sample holder and used as an electrode for arc discharge. Before performing arc discharge, the sample holder is slightly vibrated to stir the manganese dioxide powder.

アーク放電の条件としては、電圧を50〜60v。The conditions for arc discharge are a voltage of 50 to 60V.

電流を約30Aとし、およそ5分間アーク放電させた。The current was about 30 A, and arc discharge was performed for about 5 minutes.

カーボン材成膜後の膜厚は、同時にペルジャー内に配備
しておいたガラス基板を触針式の膜厚測定装置で別途測
定した。
The film thickness after the carbon material film was formed was measured separately using a stylus-type film thickness measuring device on a glass substrate placed in a Pelger at the same time.

またペルジャー内の温度は熱電対を試料ホルダーに配置
してちく次記録し、50℃〜80℃であることを確認し
た。このような条件で得られた二酸化マンガンは、カー
ボン材がち密に接着しており、平均膜厚は約15μmと
なった。また電子電導性は、実際のマンガン電池正極合
剤が有する10°〜101s/cm となり、本来の二
酸化マンガンが持つ1O−3s/cm を大幅に改善す
ることが可能となった。
Furthermore, the temperature inside the Pelger was repeatedly recorded by placing a thermocouple on the sample holder, and it was confirmed that the temperature was between 50°C and 80°C. The manganese dioxide obtained under these conditions was closely adhered to the carbon material, and the average film thickness was about 15 μm. Further, the electronic conductivity was 10° to 101 s/cm 2 which is the property of an actual manganese battery positive electrode mixture, and it has become possible to significantly improve the 1O-3 s/cm 2 which is the property of original manganese dioxide.

又結晶性は、基本的にγ−M n O2の結晶形を示す
が、一部カーボン材料によると考えられる面間隔3.3
6人のピークがX線回折図にみられた。その他、MnO
工に示すX値は1.96であり、水分は重量比で1.4
係であった。
In addition, the crystallinity basically shows the crystal form of γ-M n O2, but the lattice spacing is 3.3, which is thought to be partly due to the carbon material.
Six peaks were seen in the X-ray diffraction diagram. Others, MnO
The X value shown for the engineering is 1.96, and the water content is 1.4 by weight.
He was in charge.

次に得られた蒸着処理二酸化マンガンに対する炭素材が
占める重量%を求めたところ約8係となシ、これが充分
な電子電導性を与えることはいうまでもない。また、炭
素材が合剤体積に占める比率を求める方法としては蒸着
処理を施した二酸化マンガンと未処理の二酸化マンガン
に10%の炭素材を混合した正極合剤の各々一定量を直
径10朋のペレットに成形し、このペレットの厚みを精
密に測定し、比較検討した。
Next, the weight percentage of the carbon material relative to the vapor-deposited manganese dioxide obtained was determined to be about 8 parts, which obviously provides sufficient electronic conductivity. In addition, as a method for determining the ratio of carbon material to the volume of the mixture, a certain amount of each of the positive electrode mixture, which is made by mixing 10% carbon material with vapor-deposited manganese dioxide and untreated manganese dioxide, is placed in a diameter of 10 mm. The material was molded into pellets, and the thickness of the pellets was precisely measured and compared.

その結果、導電材の比率は、通常正極合剤では約20%
であったのに対して、蒸着処理二酸化マンガンでは約4
%となり、それだけ二酸化マンガンの充填量を増大させ
得る可能性があることを示した。
As a result, the ratio of conductive material is usually about 20% in the positive electrode mixture.
On the other hand, with vapor-deposited manganese dioxide, it was about 4
%, indicating that it is possible to increase the amount of manganese dioxide filled accordingly.

以上のようにして得られた蒸着処理二酸化マンガンを正
極、亜鉛を負極とし、電解液に塩化亜鉛を主とした中性
電解液を用いて第1図に示すマンガン乾電池のモデルセ
ルを構成し、二酸化マンガンの利用率ならびにエネルギ
ー密度を検討した0図において1は本発明による正極合
剤、即ち蒸着処理を施した二酸化マンガンである02は
正極集電体で白金板を用いている。3はセパレータ、4
は負極活物質で亜鉛板を用いている。5は正・負極のリ
ード線、6はセルを固定するためのネジ、7.8は樹脂
製のセル容器である。放電条件は、電流密度9 mA 
/adの定電流連続放電試験とし、環境周囲温度は20
″Cとした。二酸化マンガン量を一定とし、かつ正極合
剤の充填密度を通常合剤基準の一定値とすると、蒸着処
理二酸化マンガンでは体積利得が生じてぐる。
A model cell of a manganese dry battery shown in FIG. 1 was constructed by using the vapor-deposited manganese dioxide obtained as described above as a positive electrode, zinc as a negative electrode, and a neutral electrolyte mainly containing zinc chloride as an electrolyte. In Figure 0, which examines the utilization rate and energy density of manganese dioxide, 1 is the positive electrode mixture according to the present invention, that is, manganese dioxide subjected to vapor deposition treatment, and 02 is the positive electrode current collector, using a platinum plate. 3 is a separator, 4
uses a zinc plate as the negative electrode active material. 5 is a lead wire for positive and negative electrodes, 6 is a screw for fixing the cell, and 7.8 is a resin cell container. The discharge conditions are a current density of 9 mA.
/ad constant current continuous discharge test, and the ambient temperature was 20
"C. If the amount of manganese dioxide is constant and the filling density of the positive electrode mixture is a constant value based on the normal mixture, a volume gain will occur in the vapor-deposited manganese dioxide.

即ち、正極電気容量を一定とした場合、蒸着処理二酸化
マンガンでは通常合剤よシも少ない体積で電気エネルギ
ーを出力することができる。従って単位体積あたりのエ
ネルギー密度はそれだけ増大することになる。その様子
を第2図に示す。
That is, when the positive electrode capacitance is kept constant, vapor-deposited manganese dioxide can output electrical energy with a smaller volume than a normal mixture. Therefore, the energy density per unit volume increases accordingly. The situation is shown in Figure 2.

第2図のAは二酸化マンガンの利用率を比較したもので
あり、Bはエネルギー密度を比較して示している。いず
れの図も通常合剤を用いた時を指数100として表現し
ている。図から明らかなように、利用率の点では通常合
剤および蒸着処理二酸化マンガン共に大きな違いはない
が、後者の方が若干良くなっている。これは、二酸化マ
ンガンと炭素材の接着性が強固であり、双方の接触抵抗
が通常合剤よりも小さくなったためと考えられる。
A in FIG. 2 shows a comparison of utilization rates of manganese dioxide, and B shows a comparison of energy densities. In both figures, the time when a normal mixture is used is expressed as an index of 100. As is clear from the figure, there is no big difference between the normal mixture and vapor-deposited manganese dioxide in terms of utilization, but the latter is slightly better. This is thought to be because the adhesion between manganese dioxide and the carbon material is strong, and the contact resistance between the two is smaller than that of a normal mixture.

またエネルギー密度の点では、蒸着処理二酸化マンガン
の方が良好で通常合剤のそれよりも約20係改善されて
いる。これは、導電材の体積比率が通常合剤の約〆であ
ることが、大きく反映していることによると考えられる
Also, in terms of energy density, vapor-deposited manganese dioxide is better, with an improvement of about 20 times compared to that of the ordinary mixture. This is thought to be largely due to the fact that the volume ratio of the conductive material is approximately the same as that of the normal mixture.

〈実施例2〉 次に実施例1で示したモデルセルを用いて酸化亜鉛を飽
和したアルカリ電解液中で同様の試験を行った。
<Example 2> Next, a similar test was conducted using the model cell shown in Example 1 in an alkaline electrolyte saturated with zinc oxide.

アルカリ電解液を用いても中性電解液中でみられた体積
利得によるエネルギー密度の改善が明らかとなった。第
3図A、Bは第2図と同様、二酸化マンガンの利用率と
エネルギー密度を従来合剤との対比で示したものである
0図から明らかなように、アルカリ電解液を用いても中
性電解液と同様の傾向がみられ、エネルギー密度は通常
合剤よりも約18チ改善されることが判かった。
Even when an alkaline electrolyte was used, the improvement in energy density due to the volume gain observed in a neutral electrolyte was revealed. Figures 3A and 3B, similar to Figure 2, show the utilization rate and energy density of manganese dioxide in comparison with conventional mixtures. It was found that the energy density was improved by about 18 times compared to the normal mixture.

以上のことから、本発明による蒸着処理二酸化マンガン
を用いると1.中性・アルカリ性電解液のいずれにおい
ても、体積利得が通常合剤よシも上回り、それだけエネ
ルギー密度の改善につながることを示した。
From the above, it can be seen that using the vapor-deposited manganese dioxide according to the present invention: 1. In both neutral and alkaline electrolytes, the volume gain exceeded that of the normal mixture, indicating that this led to an improvement in energy density.

発明の効果 以上のように、本発明による炭素材を成膜処理した二酸
化マンガンを用いれば、高エネルギー密度を有したマン
ガン乾電池あるいはアルカリマンガン電池を提供し得る
と云う効果が得られる。
Effects of the Invention As described above, the use of manganese dioxide treated to form a film of carbon material according to the present invention provides the effect that a manganese dry battery or an alkaline manganese battery having a high energy density can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例におけるモデルセルの断面図、
第2図A、Bは中性電解液中における通常合剤と本発明
の蒸着処理二酸化マンガンの利用率、ならびにエネルギ
ー密度を比較した図、第3図A、Bはアルカリ電解液中
における通常合剤と本発明の蒸着処理二酸化マンガンの
利用率ならびにエネルギー密度を比較した図である。 1・・・・・・正極合剤、3・・・・・・セパレータ、
4・・・・・・負極、6・・・・・・リード線、7,8
・・・・・・セル容器。 /−Z極舎刑 2− 正極集電体 3− でパレータ 4−一  負    1i 第2図 ?I   ff 第3図 酸 化 マ ガ 、201 [ 1cIo[ 8D[
FIG. 1 is a cross-sectional view of a model cell in an embodiment of the present invention;
Figures 2A and B are comparisons of the utilization rate and energy density of a normal mixture in a neutral electrolyte and the vapor-deposited manganese dioxide of the present invention. FIG. 3 is a diagram comparing the utilization rate and energy density of the vapor-deposited manganese dioxide and the vapor-deposited manganese dioxide of the present invention. 1... Positive electrode mixture, 3... Separator,
4... Negative electrode, 6... Lead wire, 7, 8
...Cell container. /-Z Gokusha 2- Positive electrode current collector 3- and parator 4-1 Negative 1i Fig. 2? I ff Figure 3 Oxide Maga, 201 [ 1cIo [ 8D [

Claims (1)

【特許請求の範囲】[Claims] 正極活物質である二酸化マンガン粒子の表面に、炭素材
料よりなる薄膜層を形成したことを特徴とするマンガン
乾電池。
A manganese dry battery characterized in that a thin film layer made of a carbon material is formed on the surface of manganese dioxide particles that are a positive electrode active material.
JP61266908A 1986-11-10 1986-11-10 Manganese dry cell Pending JPS63121256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61266908A JPS63121256A (en) 1986-11-10 1986-11-10 Manganese dry cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61266908A JPS63121256A (en) 1986-11-10 1986-11-10 Manganese dry cell

Publications (1)

Publication Number Publication Date
JPS63121256A true JPS63121256A (en) 1988-05-25

Family

ID=17437331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61266908A Pending JPS63121256A (en) 1986-11-10 1986-11-10 Manganese dry cell

Country Status (1)

Country Link
JP (1) JPS63121256A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5938798A (en) * 1993-09-30 1999-08-17 Mitsui Mining & Smelting Co., Ltd. Cathodic active material composition for dry cells, method for preparing the same, and alkaline battery
JP2010251221A (en) * 2009-04-20 2010-11-04 Tosoh Corp Electrolytic manganese dioxide composition having superior high rate property

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5938798A (en) * 1993-09-30 1999-08-17 Mitsui Mining & Smelting Co., Ltd. Cathodic active material composition for dry cells, method for preparing the same, and alkaline battery
JP2010251221A (en) * 2009-04-20 2010-11-04 Tosoh Corp Electrolytic manganese dioxide composition having superior high rate property

Similar Documents

Publication Publication Date Title
TW385562B (en) Lithium ion electrochemical cell
Li et al. A High‐Rate, High‐Capacity, Nanostructured Tin Oxide Electrode
KR100754421B1 (en) Paste electrolyte and rechargeable lithium battery containing the same
US20150333307A1 (en) High capacity solid state composite cathode, solid state composite separator, solid-state rechargeable lithium battery and methods of making same
US5556720A (en) Sealed zinc secondary battery and zinc electrode therefor
US4197366A (en) Non-aqueous electrolyte cells
US20090280405A1 (en) Process for modifying the interfacial resistance of a metallic lithium electrode
EP0021735B1 (en) Zinc electrode for secondary electrochemical cells and electrochemical cells including said electrode
JP2017124951A (en) Water barrier sodium ion conductive film and sodium battery
JPH0896799A (en) Carbon / polymer combination electrode for rechargeable electrochemical lithium battery
US5004657A (en) Battery
EP0459451B1 (en) Solid-state voltage storage cell
JPH0437553B2 (en)
JPH1131534A (en) Nonaqueous electrolyte secondary battery, and manufacture of electrode plate used for the nonaqueous electrolyte secondary battery
JPH1131508A (en) Nonaqueous electrolyte secondary battery
JP2002203603A (en) Gel electrolyte battery
JPS63121256A (en) Manganese dry cell
US3844838A (en) Alkaline cells with anodes made from zinc fibers and needles
JP2545216B2 (en) Electric double layer capacitor
US5681672A (en) Alkali-zinc secondary battery
GB2056756A (en) Solid-state lithium-iodine primary battery
Amlie et al. Adsorption of Hydrogen and Oxygen on Electrode Surfaces
JP2001068116A (en) Lithium battery and method of manufacturing therefor
JP2000049052A (en) Manufacture of electric double layer capacitor
JPS5978451A (en) Battery