JPS6355018B2 - - Google Patents

Info

Publication number
JPS6355018B2
JPS6355018B2 JP57167067A JP16706782A JPS6355018B2 JP S6355018 B2 JPS6355018 B2 JP S6355018B2 JP 57167067 A JP57167067 A JP 57167067A JP 16706782 A JP16706782 A JP 16706782A JP S6355018 B2 JPS6355018 B2 JP S6355018B2
Authority
JP
Japan
Prior art keywords
stress
data
average value
test material
straight line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57167067A
Other languages
Japanese (ja)
Other versions
JPS5956145A (en
Inventor
Kenzo Sugihara
Kenji Oomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP16706782A priority Critical patent/JPS5956145A/en
Publication of JPS5956145A publication Critical patent/JPS5956145A/en
Publication of JPS6355018B2 publication Critical patent/JPS6355018B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】 本発明は、供試材料に引張荷重を与え、その耐
力を自動的に検出する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device that applies a tensile load to a test material and automatically detects its yield strength.

一般に、非鉄金属等の降伏点の測定が困難な材
料においては、材料に一定の永久ひずみ(通常
0.2%)を与える応力を耐力として降伏点と対応
させるが、従来、その耐力の測定は、供試材料の
応力−ひずみ線図を作成し、その線図上におい
て、直線部を概略的に求めその直線に平行にひず
み0.2%分だけずらした直線を引き、その直線が
応力−ひずみ線図と交わる点を求めてその応力を
耐力としていた。あるいは、自動的に応力−ひず
み線図上の直線部を求める装置にあつては、応力
−ひずみ線上にあらかじめ設定された2点間の荷
重および伸びのデータを用いて最小二乗法によつ
て直線式を算出し、その直線式に基づいて耐力を
求めていた。前者の従来の方法によつては、求め
られた値が作図によるものである為高い精度を追
求することは不可能で、更に人為的誤差が生ずる
ことを禁じ得ない。後者の従来の装置において
は、直線式を求める為の設定区間が固定されてい
る為、例えば引張試験機の荷重レンジの切換によ
る応力−ひずみ線図の形状変化に充分対応でき
ず、従つて常に正確な直線式が算出できるとは言
い難い。また、荷重および伸びのデータの中に
は、外乱振動やその他の外的要因によつて、必ず
しも全てが正確なデータとはならず、このような
データを用いて直線部の式を算出したのでは例え
最小二乗法を採用し、かつ、設定区間が正しく直
線部の一部に対応していたとしても、その式は正
確なものであるという保証はない。
In general, for materials whose yield points are difficult to measure, such as non-ferrous metals, a certain amount of permanent strain (usually
0.2%) is regarded as proof stress and corresponds to the yield point. Conventionally, the proof stress is measured by creating a stress-strain diagram of the test material and roughly finding the straight line part on the diagram. A straight line shifted by 0.2% strain was drawn parallel to that straight line, the point where the straight line intersected with the stress-strain diagram was found, and that stress was determined as the yield strength. Alternatively, in the case of a device that automatically calculates the straight line part on the stress-strain diagram, a straight line is calculated using the least squares method using load and elongation data between two points set in advance on the stress-strain line. A formula was calculated and the yield strength was determined based on the linear formula. In the former conventional method, since the determined values are based on drawings, it is impossible to pursue high accuracy, and furthermore, it is inevitable that human errors will occur. In the latter type of conventional equipment, because the set interval for determining the linear equation is fixed, it cannot adequately respond to changes in the shape of the stress-strain diagram due to switching of the load range of a tensile tester, for example, and therefore, it is not always possible to It is difficult to say that an accurate linear equation can be calculated. In addition, some of the load and elongation data may not necessarily be accurate due to disturbance vibrations and other external factors, so it is difficult to calculate the equation for the straight section using such data. Even if the least squares method is used and the set interval correctly corresponds to a part of the straight line, there is no guarantee that the equation is accurate.

本発明は、上記に鑑みなされたものであつて、
応力−ひずみ線図の形状変化に応じて自動的に直
線式算出区間を設定するとともに、外的要因によ
る誤差を排除して、常に正確な直線式を算出して
耐力を求め得る耐力測定装置の提供を目的とす
る。
The present invention has been made in view of the above, and includes:
This is a proof stress measuring device that automatically sets the linear formula calculation interval according to changes in the shape of the stress-strain diagram, eliminates errors caused by external factors, and always calculates an accurate linear formula to determine proof stress. For the purpose of providing.

本発明の特徴とするところは、荷重および伸び
の測定データを所定時間ごとにサンプリングして
記憶し、そのデータの荷重値が測定レンジのフル
スケールに対して所定の率に達した時点を直線部
の開始点とし、その開始点以後のサンプリングデ
ータについて連続する所定個によつて移動平均法
により順次平均値を算出し、その各平均値とその
直前の有効平均値(下記)との差分勾配を算出
し、その各差分勾配があらかじめ設定された供試
材料の上限ヤング率と下限ヤング率の間の範囲内
にあるか否かを判別して、範囲内にある場合に限
つてこの差分勾配を算出した後側の平均値を有効
平均値として採用し、また、差分勾配が上述の下
限ヤング率を所定回数連続して下回つたことを検
出して直線部の終了とし、上記の開始点とこの終
了点間の有効平均値を用いて直線部の式を算出
し、その直線部の式に基づいて耐力を求めるよう
構成したことにある。
A feature of the present invention is that measurement data of load and elongation is sampled and stored at predetermined time intervals, and the point in time when the load value of the data reaches a predetermined ratio with respect to the full scale of the measurement range is detected in the linear section. As the starting point, calculate the average value sequentially using the moving average method for a predetermined number of continuous sampling data after that starting point, and calculate the difference gradient between each average value and the immediately preceding effective average value (below). It is determined whether or not each differential gradient is within a preset range between the upper limit Young's modulus and the lower limit Young's modulus of the test material, and this differential gradient is calculated only if it is within the range. The calculated average value on the rear side is adopted as the effective average value, and when it is detected that the differential slope has fallen below the above-mentioned lower limit Young's modulus a predetermined number of times in a row, the straight line section is terminated, and the straight line section is determined to be the end of the linear section, and the difference slope is determined to be the end of the straight line section. The present invention is configured to calculate the formula for the straight line part using the effective average value between the end points, and calculate the proof stress based on the formula for the straight line part.

以下、図面に基づいて本発明の実施例を説明す
る。
Embodiments of the present invention will be described below based on the drawings.

第1図は本発明実施例の構成を示すブロツク図
である。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.

供試材料に引張荷重を付与する材料試験機1か
らは、荷重測定信号および伸び測定信号のデジタ
ル変換データがインターフエース回路2に所定時
間間隔で順次出力され、インターフエース回路2
はバスライン3によつて演算処理装置に接続され
ている。演算処理装置4は、また、バスライン3
によつて上述のデータおよび演算結果等を逐次記
憶するメモリ5、演算結果等を表示するCRTデ
イスフレイ6およびタイプライタ装置7と接続さ
れている。なお、メモリ5には、後述する耐力検
出プログラムが記憶されている。また演算処理装
置4から材料の引張を開始するスタート命令信号
がインターフエース回路2を介して材料試験機1
に供給され、材料試験機1からは材料が破断した
ときに破断信号を演算処理装置4に供給して試験
の終了信号としている。
A material testing machine 1 that applies a tensile load to a test material sequentially outputs digital conversion data of a load measurement signal and an elongation measurement signal to an interface circuit 2 at predetermined time intervals.
is connected to the arithmetic processing unit by a bus line 3. The arithmetic processing unit 4 also connects the bus line 3
It is connected to a memory 5 for sequentially storing the above-mentioned data, calculation results, etc., a CRT display 6 for displaying calculation results, etc., and a typewriter device 7. Note that the memory 5 stores a strength detection program to be described later. In addition, a start command signal to start pulling the material is sent from the arithmetic processing unit 4 to the material testing machine 1 via the interface circuit 2.
When the material breaks, the material testing machine 1 supplies a break signal to the arithmetic processing unit 4 as a test end signal.

次に、第2図に示す本発明実施例の耐力検出プ
ログラムのフローチヤートに従つて、作用を説明
する。
Next, the operation will be explained according to the flowchart of the proof stress detection program according to the embodiment of the present invention shown in FIG.

測定に先立つて、応力−ひずみ線図の直線部開
始点P1を設定する為の荷重レンジのフルスケー
ルに対する率p(%)、材料の種類に応じて設定さ
れる上限ヤング率EU、下限ヤング率EL、および
平均値算出の為のデータ数Nを設定して入力する
(ST1)。直線部開始点P1は、荷重値によつて設定
され、この値は上述の試験機の荷重レンジのフル
スケールに対する率pで(例えば10%)設定され
る。このP1は、第3図に応力−ひずみ線図を示
す如く、負荷直後の線図の不安定領域の除去の為
に設けられたもので、またフルスケールに対する
率で設定する理由は、荷重レンジ切換に対応して
P1点を変動設定し得るようにした為である。次
に材料試験機1によつて供試材料に引張荷重の付
与を開始するとともに、その荷重測定値およびそ
の荷重に対応する伸びの測定値のデジタル変換デ
ータを所定の時間間隔で次々と取り込んで記憶す
る(ST2)。その荷重値がP1点に達すると、N個
のデータを用いて平均値G1を算出する(ST3、
ST4)。そしてそのG1を求めたN個のデータの各
値のうちG1に対してある一定の偏差を越えるも
のがあればそのデータを除いて再度平均値G1
算出しなおす(ST5、ST6)。ST7では上述の
ST4からST6と同様なる手順で次のN個による平
均値G2を算出する。このとき、G1なる平均値を
算出したN個のデータからなる第1のデータグル
ープの後半のN/2個のデータは、G2を算出す
るN個のデータからなる第2のデータグループの
前半のN/2個と重複する、いわゆる移動平均法
を採用している。この移動平均法の採用並びに
ST5、ST6での動作は、サンプリングデータの外
的要因による乱れを吸収することを目的としてい
る。ST8においては、G1とG2を結んだ線分の勾
配(差分勾配)g2を算出し、ST9でその勾配g2
が、供試材料の種類等に応じてあらかじめ設定さ
れている上限ヤング率EUおよび下限ヤング率EL
の範囲内に入つているかどうか判断し、その範囲
内である場合にのみG2を有効データとする
(ST10)。この有効、無効のデータを取捨選択す
る理由は、材料の物性値であるヤング率に対する
所定のレンジ内に入らないデータは、本来の真の
値でなく、移動平均法およびST5、ST6での動作
にも拘らず、比較的周期の長い外乱等の外的要因
やその他に起因して例えば連続的なデータの測定
誤差が含まれているものと判断する為である。
ST11においては、ST7からST10においてG2およ
びg2を求めたのと同様にして順次G3、…、Gi、
…およびg3、…、gi、…を求めてゆく。ST12で
勾配giが所定回数(例えば3回)連続して下限ヤ
ング率ELを下回つたとき、応力−ひずみ線図の
直線部が終了して曲線部に移行したと判断し(終
了点P2)、ST13で平均値の算出等を停止し、
ST14において平均値の有効データのみを使用し
て最小二乗法によつて直線式を算出する。なお、
この時点においても、材料試験機は引き続いて引
張荷重を供試材料に付与するとともに、その荷重
および伸びのデータを出力し、メモリ5は引き続
いてそのデータを格納する。この状態は、材料が
破断するまで続行される。ST15では、第4図に
示す如くST14で得られた直線(直線a)をひず
み軸上0.2%だけ右方に平行移動し(直線b)、応
力−ひずみ線図との交点の応力値を求め、ST16
ではその値を耐力として表示する。
Prior to measurement, the ratio p (%) to the full scale of the load range, the upper limit Young's modulus EU, and the lower limit Young's modulus are set according to the type of material to set the starting point P 1 of the straight line part of the stress-strain diagram. Set and input the rate EL and the number of data N for calculating the average value (ST1). The straight line section starting point P1 is set by a load value, and this value is set at a ratio p (for example, 10%) to the full scale of the load range of the test machine mentioned above. As shown in the stress-strain diagram in Figure 3, this P 1 was provided to remove the unstable area in the diagram immediately after loading, and the reason why it is set as a percentage of the full scale is that the load Compatible with range switching
This is because P 1 point can be set to fluctuate. Next, the material testing machine 1 starts applying a tensile load to the test material, and the digital conversion data of the load measurement value and the elongation measurement value corresponding to the load is successively imported at a predetermined time interval. Memorize (ST2). When the load value reaches P 1 point, the average value G 1 is calculated using N pieces of data (ST3,
ST4). Then, if there is any value that exceeds a certain deviation from G 1 among the N data values for which G 1 was calculated, that data is removed and the average value G 1 is calculated again (ST5, ST6). . In ST7, the above
The average value G 2 of the next N values is calculated using the same procedure as ST4 to ST6. At this time, the latter N/2 data of the first data group consisting of N data for which the average value of G 1 was calculated is the second data group consisting of N data for which G 2 is calculated. The so-called moving average method, which overlaps with the first half of N/2, is adopted. Adoption of this moving average method and
The operations in ST5 and ST6 are intended to absorb disturbances in sampling data caused by external factors. In ST8, the slope (difference slope) g 2 of the line connecting G 1 and G 2 is calculated, and in ST9, the slope g 2
However, the upper limit Young's modulus EU and lower limit Young's modulus EL are set in advance according to the type of test material, etc.
2 is within the range, and only if it is within that range, G 2 is considered valid data (ST10). The reason for selecting valid and invalid data is that data that does not fall within the predetermined range for Young's modulus, which is a physical property value of the material, is not the original true value, but is based on the moving average method and the operation in ST5 and ST6. Nevertheless, this is because it is determined that, for example, measurement errors in continuous data are included due to external factors such as relatively long-period disturbances or other factors.
In ST11, G 3 , ..., Gi ,
...and g 3 , ..., gi, .... In ST12, when the slope gi falls below the lower limit Young's modulus EL a predetermined number of times (for example, 3 times) in a row, it is determined that the straight line part of the stress-strain diagram has ended and the transition has occurred to the curved part (ending point P 2 ), stop calculating the average value, etc. in ST13,
In ST14, a linear equation is calculated by the least squares method using only the valid data of the average value. In addition,
At this point, the material testing machine continues to apply a tensile load to the test material and outputs data on the load and elongation, and the memory 5 continues to store the data. This condition continues until the material breaks. In ST15, as shown in Figure 4, the straight line obtained in ST14 (straight line a) is translated to the right by 0.2% on the strain axis (straight line b), and the stress value at the intersection with the stress-strain diagram is determined. ,ST16
Then, display that value as proof stress.

なお、ST14における直線式の算出は、有効デ
ータとなつた平均値Giに係る差分勾配giを相加平
均して直線の傾きを求めてもよい。
Note that in calculating the linear equation in ST14, the slope of the straight line may be determined by arithmetic averaging of the difference gradients gi related to the average value Gi that has become valid data.

以上説明したように、本発明によれば、直線部
の開始点を荷重値が荷重フルスケールの所定の率
に到達した点とするとともに、終了点を材料の物
性値である下限ヤング率に基づいて実際の曲線部
への移行点を検出することによつて決定するか
ら、荷重レンジの切換等による応力−ひずみ線図
の形状変化に関係なく、しかも実際の直線部の終
了点までの可及的に長い区間を直線部と見なして
その式を算出することになり、式の正確さを向上
させることができる。
As explained above, according to the present invention, the starting point of the straight line section is the point at which the load value reaches a predetermined rate of the full load scale, and the ending point is based on the lower limit Young's modulus, which is the physical property value of the material. Since it is determined by detecting the transition point to the actual curved section, it is determined by detecting the transition point to the actual curved section, regardless of changes in the shape of the stress-strain diagram due to changes in the load range, etc. Since the equation is calculated by considering the longer section as a straight line, the accuracy of the equation can be improved.

しかも、直線部の式の算出に当つては、移動平
均法による平均値のうち、直前の有効平均値との
差分勾配が同じく材料の物性値たる上限ヤング率
と下限ヤング率の間の範囲内にあるものに限つて
有効平均値として採用するから、種々の外的要因
等に起因するデータの測定誤差が直線部の式に影
響を及ぼすことがなくなり、常に保証された正確
な耐力を検出することができる。
Moreover, when calculating the equation for the straight line part, among the average values obtained by the moving average method, the difference slope from the immediately preceding effective average value is within the range between the upper limit Young's modulus and the lower limit Young's modulus, which are also physical property values of the material. Since only those within the range are used as effective average values, measurement errors in data caused by various external factors will not affect the formula for the straight line section, and a guaranteed accurate yield strength can always be detected. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の構成を示すブロツク
図、第2図はその耐力検出プログラムを示すフロ
ーチヤート、第3図は本発明実施例における応力
−ひずみ線図上の直線部開始点P1の説明図、第
4図は本発明実施例における耐力検出の作用説明
図である。 1……材料試験機、2……インターフエース回
路、3……バスライン、4……演算処理装置、5
……メモリ、6……CRTデイスプレイ、7……
タイプライタ装置。
Fig. 1 is a block diagram showing the configuration of the embodiment of the present invention, Fig. 2 is a flowchart showing the proof stress detection program, and Fig. 3 is the starting point P 1 of the straight line section on the stress-strain diagram in the embodiment of the present invention. FIG. 4 is an explanatory diagram of the operation of proof stress detection in the embodiment of the present invention. 1...Material testing machine, 2...Interface circuit, 3...Bus line, 4...Arithmetic processing unit, 5
...Memory, 6...CRT display, 7...
Typewriter device.

Claims (1)

【特許請求の範囲】[Claims] 1 供試材料に作用する引張荷重およびその荷重
に対する供試材料の伸びの測定値のデジタル変換
データを所定時間間隔でサンプリングして記憶す
る手段と、そのサンプリングデータの荷重値が荷
重測定レンジのフルスケールに対して所定の率に
達したことを検出して供試材料の応力−ひずみ線
図上の直線部の開始点とする直線部開始点決定手
段と、その開始点より以後にサンプリングされた
データの連続する所定個数を用いて順次移動平均
法によつて平均値を算出するデータ平均化手段
と、その各平均値とその直前の有効平均値との差
分勾配を順次算出する差分勾配算出手段と、その
算出された差分勾配があらかじめ設定された供試
材料の上限ヤング率と下限ヤング率の間の範囲内
にあるか否かを判別して、範囲内にある場合に限
つて当該差分勾配を算出した後側の平均値を有効
平均値として採用するデータ弁別手段と、上記差
分勾配が上記下限ヤング率を所定回数連続して下
回つたことを検出して直線部の終了点と判定する
直線部終了点判定手段と、上記開始点と終了点間
の上記有効平均値を用いて直線部の式を算出する
直線式算出手段と、その算出された直線式を上記
応力−ひずみ線図上において右方に所定ひずみ分
だけ平行移動して得られた直線と上記応力−ひず
み線図との交点を求める交点検出手段を有し、そ
の求められた交点の応力を耐力として報知するよ
う構成された耐力検出装置。
1. A means for sampling and storing digital conversion data of the tensile load acting on the test material and the measured value of the elongation of the test material with respect to the load at predetermined time intervals, and a means for storing the digital conversion data of the measured value of the tensile load acting on the test material and the elongation of the test material with respect to the load, and the load value of the sampling data is means for determining the starting point of the straight line section on the stress-strain diagram of the test material by detecting that a predetermined rate with respect to the scale has been reached; Data averaging means that sequentially calculates an average value by a moving average method using a predetermined number of continuous data, and a difference gradient calculation means that sequentially calculates a difference slope between each average value and the immediately preceding effective average value. Then, it is determined whether the calculated differential gradient is within a preset range between the upper limit Young's modulus and the lower limit Young's modulus of the test material, and only if it is within the range, the differential gradient is calculated. a data discriminator that employs the calculated rear average value as an effective average value, and detects that the differential slope falls below the lower limit Young's modulus a predetermined number of times in succession and determines that it is the end point of the straight line portion. linear section end point determining means; linear equation calculating means for calculating a linear section equation using the effective average value between the starting point and the ending point; and applying the calculated linear equation on the stress-strain diagram. has an intersection detection means for determining the intersection of the stress-strain diagram and a straight line obtained by translating the line by a predetermined strain to the right, and is configured to notify the stress at the determined intersection as proof stress. proof stress detection device.
JP16706782A 1982-09-24 1982-09-24 Yield strength detector Granted JPS5956145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16706782A JPS5956145A (en) 1982-09-24 1982-09-24 Yield strength detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16706782A JPS5956145A (en) 1982-09-24 1982-09-24 Yield strength detector

Publications (2)

Publication Number Publication Date
JPS5956145A JPS5956145A (en) 1984-03-31
JPS6355018B2 true JPS6355018B2 (en) 1988-11-01

Family

ID=15842785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16706782A Granted JPS5956145A (en) 1982-09-24 1982-09-24 Yield strength detector

Country Status (1)

Country Link
JP (1) JPS5956145A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119672B2 (en) * 1987-07-21 1995-12-20 株式会社島津製作所 Data processing equipment of material testing machine
JPH0288942A (en) * 1988-09-26 1990-03-29 Shimadzu Corp Recorder for fatigue test result

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5455491A (en) * 1977-10-12 1979-05-02 Sumitomo Metal Ind Method of measuring mechanical material resistance having elastic area

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5455491A (en) * 1977-10-12 1979-05-02 Sumitomo Metal Ind Method of measuring mechanical material resistance having elastic area

Also Published As

Publication number Publication date
JPS5956145A (en) 1984-03-31

Similar Documents

Publication Publication Date Title
JPS6355018B2 (en)
JP2822502B2 (en) Material testing machine
JPH0213822A (en) Automatic range switching device for measuring apparatus
JP2744606B2 (en) Breaking point detection method in material testing machine
JPS62228118A (en) Electronic balance
RU2163005C2 (en) Technique measuring quantity of fuel in tank of motor vehicle
JPS593326A (en) Display of electronic balance
JPH10325787A (en) Material-testing machine
JPH0348132A (en) Automatic rankford tester
JPS60170740A (en) Method and device for measuring flection characteristic of club shaft
JP3299800B2 (en) Elongation measurement method in tensile test
JPH10239012A (en) Contour shape measuring method and contour shape measuring machine
JPS6382340A (en) Material tester
JPH0387631A (en) Material testing machine
JP4249881B2 (en) J1C test equipment
JPH0552724A (en) Proof-stress measuring apparatus
JP3189504B2 (en) Electronic balance
JPH0221347B2 (en)
JPH1137827A (en) Measuring device of load
JP3266947B2 (en) Tensile testing machine
EP3875940A1 (en) Material testing machine
JPH07104238B2 (en) Material testing machine
JPH0566182A (en) Method for detecting breaking point of test piece
JP2517576Y2 (en) Material testing machine
JPS6217698Y2 (en)