JP4033119B2 - Material testing method, material testing machine - Google Patents

Material testing method, material testing machine Download PDF

Info

Publication number
JP4033119B2
JP4033119B2 JP2003412181A JP2003412181A JP4033119B2 JP 4033119 B2 JP4033119 B2 JP 4033119B2 JP 2003412181 A JP2003412181 A JP 2003412181A JP 2003412181 A JP2003412181 A JP 2003412181A JP 4033119 B2 JP4033119 B2 JP 4033119B2
Authority
JP
Japan
Prior art keywords
load
strain
output
time change
change characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003412181A
Other languages
Japanese (ja)
Other versions
JP2005172589A (en
Inventor
忠興 瀧井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2003412181A priority Critical patent/JP4033119B2/en
Publication of JP2005172589A publication Critical patent/JP2005172589A/en
Application granted granted Critical
Publication of JP4033119B2 publication Critical patent/JP4033119B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、試験片に負荷を与えて材料特性を計測する試験法に関し、特に、高速度で引張荷重を加える高速引張試験における材料特性を演算するに好適な技術に関する。   The present invention relates to a test method for measuring material properties by applying a load to a test piece, and more particularly to a technique suitable for calculating material properties in a high-speed tensile test in which a tensile load is applied at a high speed.

引張試験は一般に、試験片に引張荷重を加えてその試験片の伸びと荷重を刻々と計測し、材料の機械的特性を調べるものである。引張試験を行う引張試験機は、通常、試験片の両端を治具によって把持し、一方の治具を他方から離隔させることで試験片を引っ張る。試験片に作用する引張荷重は、治具に装着されたロードセルによって測定され、また、試験片の伸びは、試験片に装着した変位計などで測定する。   In general, a tensile test is a method in which a tensile load is applied to a test piece, and the elongation and load of the test piece are measured every moment to examine the mechanical properties of the material. A tensile testing machine for performing a tensile test usually holds both ends of a test piece with a jig and pulls the test piece by separating one jig from the other. The tensile load acting on the test piece is measured by a load cell attached to the jig, and the elongation of the test piece is measured by a displacement meter attached to the test piece.

ところで近年、試験片に高速度で引張荷重を加える高速引張試験が行われるようになっている。これは、自動車等の衝突時において材料が高速変形する際の特性等を正確に評価し、高精度な設計を行うニーズが高まっているからである。例えば、油圧サーボ方式の高速引張試験機では、助走空間を用いてアクチュエータを静止状態から高速域にまで加速させた後、その高速域内の一定の速度で試験片を引っ張る。例えば、1〜20m/sの速度で引っ張ることが多い。   By the way, in recent years, a high-speed tensile test in which a tensile load is applied to a test piece at a high speed has been performed. This is because there is an increasing need to accurately evaluate characteristics and the like when a material is deformed at high speed in the event of a collision with an automobile or the like and to design with high accuracy. For example, in a hydraulic servo type high-speed tensile testing machine, an actuator is accelerated from a stationary state to a high-speed range using a running space, and then a test piece is pulled at a constant speed within the high-speed range. For example, it is often pulled at a speed of 1 to 20 m / s.

特開平10−318894号公報JP-A-10-318894

しかし、高速引張試験では、アクチュエータや治具等の慣性力・衝撃によって機械全体に振動が発生し、ロードセルの出力にも振動現象が現れる結果、荷重の計測精度が悪化するという問題があった。   However, in the high-speed tensile test, there is a problem that vibration is generated in the entire machine due to inertial force / impact of an actuator or a jig, and a vibration phenomenon appears in the output of the load cell, resulting in deterioration of load measurement accuracy.

そこで試験片に歪みゲージを直接貼り付けて、この歪みゲージによって荷重を計測する手法が提案されている。しかしながら、歪みゲージ自体は荷重を計測する機能を有しないので、予備試験を実施し、歪みゲージの歪み出力とロードセルの荷重出力の変換係数を算出してから、実際の引張試験で歪みゲージによって荷重を計測するものであった。従って、計測に約2倍の時間が必要となり、計測効率が悪いという問題と、予備試験時と本試験時で歪みゲージの貼り方に差があると誤差を生じるという問題があった。   Therefore, a technique has been proposed in which a strain gauge is directly attached to a test piece and a load is measured by the strain gauge. However, since the strain gauge itself does not have a function to measure the load, a preliminary test is performed, the conversion coefficient between the strain gauge's strain output and the load output of the load cell is calculated, and then the load is loaded by the strain gauge in the actual tensile test. Was to measure. Therefore, about twice as much time is required for the measurement, there is a problem that the measurement efficiency is poor, and there is a problem that an error occurs if there is a difference in the way of attaching the strain gauge between the preliminary test and the main test.

(1)請求項1の発明は、試験片に負荷を与えて材料特性を計測する試験方法において、一の試験片に負荷を与えながら、一の試験片に作用する力を検出する荷重測定手段による荷重出力の時間変化特性、および試験片に貼り付けた歪みゲージによる歪み出力の時間変化特性を取得し、一の試験片に負荷を与えたときに取得した塑性域における荷重出力の時間変化特性と歪み出力の時間変化特性との関係に基づいて変換係数を算出し、変換係数を用いて、一の試験片に負荷を与えたときに取得した歪み出力の時間変化特性の歪み値を実荷重に変換して一の試験片に作用する実荷重の時間変化特性を算出することを特徴とする。
(2)請求項2の発明は、請求項1の試験方法において、荷重出力の時間変化特性の塑性域における特定時間tの移動平均荷重F(t)を算出すると共に、歪み出力の時間変化特性の塑性域における特定時間tの移動平均歪みε(t)を算出し、移動平均荷重F(t)と移動平均歪みε(t)から、変換係数としてのばね定数kをF(t)=k×ε(t)の関係から算出し、ばね定数kを用いて歪み出力の時間変化特性における歪み値を実荷重に変換するようにしたことを特徴とする。
(3)請求項3の発明は、請求項2の試験方法において、移動平均荷重F(t)および移動平均歪みε(t)に代えて、フーリエ変換を行って高周波成分を除去することにより平準化した平均荷重F´(t)および平均歪みε´(t)を用いることを特徴とする。
(4)請求項4の発明は、試験片に負荷を与えて材料特性を計測する材料試験機において、試験片に作用する荷重を測定する荷重測定手段と、試験片に貼り付けた歪みゲージの出力により試験片の歪みを測定する歪み測定手段と、一の試験片に負荷を与えながら、荷重測定手段の測定値により荷重出力の時間変化特性を、歪み測定手段の測定値により歪み出力の時間変化特性をそれぞれ取得し、取得した両時間変化特性のうち、塑性域における荷重出力の時間変化特性と歪み出力の時間変化特性との関係に基づき一の試験片について変換係数を算出し、算出した変換係数を用いて、歪み出力の時間変化特性における歪み値を実荷重に変換し、一の試験片における実荷重の時間変化特性を算出する実荷重演算装置と、を備えることを特徴とする。
(1) A first aspect of the present invention is a test method for measuring a material property by applying a load to a test piece, and a load measuring means for detecting a force acting on the one test piece while applying the load to the one test piece. The time change characteristics of load output due to the strain and the time change characteristics of strain output by the strain gauge attached to the test piece, and the time change characteristic of load output in the plastic region obtained when a load is applied to one test piece The conversion coefficient is calculated based on the relationship between the strain output and the time variation characteristic of the strain output, and the strain value of the time variation characteristic of the strain output obtained when a load is applied to one test piece using the conversion coefficient is the actual load. It is characterized in that the time change characteristic of the actual load acting on one test piece is calculated.
(2) According to the invention of claim 2, in the test method of claim 1, the moving average load F (t) at a specific time t in the plastic region of the time change characteristic of the load output is calculated and the time change characteristic of the strain output is calculated. The moving average strain ε (t) at a specific time t in the plastic region is calculated, and the spring constant k as a conversion coefficient is calculated from the moving average load F (t) and the moving average strain ε (t) as F (t) = k. It is calculated from the relationship of xε (t), and the strain value in the time change characteristic of the strain output is converted into the actual load using the spring constant k.
(3) According to the invention of claim 3, in the test method of claim 2, in place of the moving average load F (t) and the moving average strain ε (t), leveling is performed by performing Fourier transform to remove high frequency components. The average load F ′ (t) and the average strain ε ′ (t) are used.
(4) The invention of claim 4 is a material testing machine for measuring a material property by applying a load to a test piece, a load measuring means for measuring a load acting on the test piece, and a strain gauge attached to the test piece. The strain measurement means for measuring the strain of the test piece by the output, the time change characteristic of the load output by the measurement value of the load measurement means while applying a load to one test piece, and the time of the strain output by the measurement value of the strain measurement means Each change characteristic was acquired, and the conversion coefficient was calculated for one test piece based on the relationship between the time change characteristic of the load output and the time change characteristic of the strain output in the plastic region among the acquired time change characteristics. An actual load computing device that converts the strain value in the time change characteristic of the strain output into an actual load using the conversion coefficient, and calculates the time change characteristic of the actual load in one test piece.

本発明によれば、予備試験を必要とせずに、歪みゲージの出力値から試験片に作用する荷重を算出することが可能になり、計測効率を高めることが可能になる。   According to the present invention, it is possible to calculate the load acting on the test piece from the output value of the strain gauge without requiring a preliminary test, and it is possible to increase the measurement efficiency.

以下図面を参照しながら本発明の最良の実施形態について詳細に説明する。
図1には、本実施の形態に係る油圧サーボ方式の高速引張試験機10が示されている。この高速引張試験機10は、アクチュエータ11と流量制御弁12、油圧源13、ロードセル14、つかみ装置15、変位検出器16等を備えている。試験片1の両端側のつかみ部をつかみ装置15が把持することで、試験片1が高速引張試験機10に固定されるようになっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the best embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a hydraulic servo type high-speed tensile testing machine 10 according to the present embodiment. The high-speed tensile testing machine 10 includes an actuator 11, a flow control valve 12, a hydraulic pressure source 13, a load cell 14, a gripping device 15, a displacement detector 16, and the like. The gripping device 15 grips the grips on both ends of the test piece 1 so that the test piece 1 is fixed to the high-speed tensile testing machine 10.

特にロードセル14側のつかみ装置15はロードセル14と略一体構造となっており、ロードセル14とつかみ装置15を含めた測定系の固有振動数が高く設定されている。これにより試験片1に作用する荷重を高い精度で計測可能となっている。   In particular, the gripping device 15 on the load cell 14 side has a substantially integrated structure with the load cell 14, and the natural frequency of the measurement system including the load cell 14 and the gripping device 15 is set high. As a result, the load acting on the test piece 1 can be measured with high accuracy.

試験片1がつかみ装置15に把持される端部近傍、換言すると、試験片1が破断するくびれ部以外の部位に歪みゲージ20が貼り付けられている。歪みゲージ20は試験片の歪みを線形に検出することができる。すなわち、引張荷重により試験片1の中央くびれ部は塑性変形して破断に至るが、試験片端部の塑性変形しない部位に歪みゲージ20が貼り付けられている。   The strain gauge 20 is affixed in the vicinity of the end where the test piece 1 is gripped by the gripping device 15, in other words, other than the constricted part where the test piece 1 breaks. The strain gauge 20 can detect the strain of the test piece linearly. In other words, the central constricted portion of the test piece 1 is plastically deformed due to the tensile load and breaks, but the strain gauge 20 is attached to a portion of the end portion of the test piece that is not plastically deformed.

更に高速引張試験機10は、歪みゲージ20やロードセル14からの検出信号を入力して荷重−歪み特性を演算するとともに、試験機全体の動作を制御すると演算装置17を備えている。   Furthermore, the high-speed tensile testing machine 10 is provided with a calculation device 17 for calculating the load-strain characteristics by inputting detection signals from the strain gauge 20 and the load cell 14 and controlling the operation of the entire testing machine.

演算装置17は、ロードセル14からの荷重信号を所定のサンプリング間隔で取得して荷重の時間変化特性を記憶する。同時に、歪みゲージ20からの歪み信号を所定のサンプリング間隔で取得して歪みの時間変化特性を記憶する。すなわち、演算装置17は、試験片1に引張荷重を加える過程で得られる歪みゲージ20およびロードセル14からの出力信号から、荷重出力−時間変化特性と、歪み出力−時間変化特性を同時取得する。なお、本明細書における同時取得という意味は、一度の引張試験過程で取得することを意味している。つまり、予備試験と本試験等を別々に行う必要が無く、一度の引張試験で両特性を得る。   The arithmetic unit 17 acquires the load signal from the load cell 14 at a predetermined sampling interval and stores the time change characteristic of the load. At the same time, a strain signal from the strain gauge 20 is acquired at a predetermined sampling interval, and the strain time change characteristic is stored. That is, the arithmetic unit 17 simultaneously acquires a load output-time change characteristic and a strain output-time change characteristic from output signals from the strain gauge 20 and the load cell 14 obtained in the process of applying a tensile load to the test piece 1. In addition, the meaning of simultaneous acquisition in this specification means acquiring in a single tensile test process. That is, it is not necessary to perform the preliminary test and the main test separately, and both characteristics are obtained by a single tensile test.

演算装置17は、これらの荷重の時間変化特性と歪みの時間変化特性の関係に基づいて演算処理し、歪みの時間変化特性における歪み出力を実荷重に変換して、試験片1における実荷重の時間変化特性を得る。   The calculation device 17 performs calculation processing based on the relationship between the time change characteristics of these loads and the time change characteristics of the strain, converts the strain output in the time change characteristics of the strain into an actual load, and calculates the actual load of the test piece 1. Get time-varying characteristics.

演算装置17にはモニタ18が接続され、モニタ18には、荷重の時間変化特性、歪みの時間変化特性、あるいは荷重−歪み特性のグラフを表示する。   A monitor 18 is connected to the arithmetic unit 17, and the monitor 18 displays a graph of a load time change characteristic, a strain time change characteristic, or a load-strain characteristic.

次に、図2のフローチャート等を参照して高速引張試験機10を用いた引張試験を説明する。
まず、ステップS30において、アクチュエータ11によって試験片1に引張荷重を加える。それと同時に、ステップS32において、ロードセル14と歪みゲージ20から出力信号を得る。ステップ34では、荷重出力−時間変化特性(図3(a)参照:荷重の時間変化特性とも呼ぶ)と歪み出力−時間変化特性(図3(b)参照:歪みの時間変化特性とも呼ぶ)を生成する。
Next, a tensile test using the high-speed tensile tester 10 will be described with reference to the flowchart of FIG.
First, in step S <b> 30, a tensile load is applied to the test piece 1 by the actuator 11. At the same time, output signals are obtained from the load cell 14 and the strain gauge 20 in step S32. In step 34, load output-time change characteristics (see FIG. 3A: also referred to as load time change characteristics) and strain output-time change characteristics (see FIG. 3B: also referred to as strain time change characteristics). Generate.

なお、図3(a)に示されるように、高速引張試験においては、仮に高固有振動数のロードセル14を用いたとしても、試験の衝撃や引っ張り試験機10の慣性力によって荷重出力に振動が発生する場合があることは避けられない。特にA部のように、弾性限界近辺のグラフの傾きが大きく変化する領域において振動の影響が大きい。一方、図3(b)に示されるように、歪み出力には振動の影響は殆ど発生しない。   As shown in FIG. 3A, in the high-speed tensile test, even if the load cell 14 having a high natural frequency is used, vibration is generated in the load output due to the impact of the test or the inertial force of the tensile testing machine 10. It is inevitable that it may occur. In particular, the influence of vibration is large in a region where the slope of the graph in the vicinity of the elastic limit greatly changes, such as in the portion A. On the other hand, as shown in FIG. 3B, the influence of vibration hardly occurs in the strain output.

その後、ステップS36において、同時に得られた荷重出力−時間特性と歪み出力−時間特性との関係に基づいて、歪み出力−時間変化特性における歪み出力を実荷重に変換し、試験片における実荷重−時間変化特性を算出する。特に、塑性域の関係に基づいて、歪み出力−時間変化特性の歪み出力を実荷重に変換するようにしている。   Thereafter, in step S36, based on the relationship between the load output-time characteristic and the strain output-time characteristic obtained simultaneously, the strain output in the strain output-time change characteristic is converted into an actual load, and the actual load in the test piece- Calculate time-varying characteristics. In particular, the strain output of the strain output-time change characteristic is converted into an actual load based on the relationship between the plastic regions.

このステップS36について、図4のフローチャートを参照して更に具体的に説明する。
まず、ステップS361において、図3(a)の荷重出力−時間特性の塑性域Bにおける特定時間t1の移動平均荷重F(t1)と特定時間t2の移動平均荷重F(t2)を算出する。次に、ステップS362において、同様に、図3(b)の歪み出力−時間特性の塑性域Cにおける特定時間t1、t2の移動平均歪みε(t1)、ε(t2)を算出する。
Step S36 will be described more specifically with reference to the flowchart of FIG.
First, in step S361, a moving average load F (t1) at a specific time t1 and a moving average load F (t2) at a specific time t2 in the plastic region B of the load output-time characteristic of FIG. Next, in step S362, similarly, moving average strains ε (t1) and ε (t2) at specific times t1 and t2 in the plastic region C of the strain output-time characteristic of FIG. 3B are calculated.

なお、これらの移動平均は、この塑性域B、Cを微小区間で細分割して各微小区間の荷重出力・歪み出力をそれぞれ算出し、特定時間t1、t2において、その時間前(或いはその時間後)の所定区間分の出力平均値を求めることによって算出される。なお、ここでの塑性域B、Cは上記弾性限界近辺の領域Aを除いた部分であることが望ましい。   Note that these moving averages are obtained by subdividing the plastic zones B and C into minute sections and calculating the load output and strain output of each minute section, respectively, and at the specific times t1 and t2, the time before (or the time) It is calculated by obtaining an output average value for a predetermined section of (after). The plastic regions B and C here are preferably portions excluding the region A in the vicinity of the elastic limit.

次に、ステップS363で、移動平均F(t1)と移動平均歪みε(t1)から、ばね定数k1をF(t1)=k1×ε(t1)の関係から算出し、同様に、移動平均F(t2)と移動平均歪みε(t2)から、ばね定数k2をF(t2)=k2×ε(t2)の関係から算出する。その後、ステップS364において、これらの複数のばね定数k1、k2の平均値kを算出する。なお、ここでは2つの特定時間のばね定数k1、k2を算出するようにしたが、3以上のばね定数を用いても良く、反対に1つでも構わない。また、複数の移動平均、例えばF(t1)F、(t2)を更に平均化して1つの値F(t)を得、その後にばね定数を求めても良い。   Next, in step S363, the spring constant k1 is calculated from the relationship of F (t1) = k1 × ε (t1) from the moving average F (t1) and the moving average strain ε (t1). The spring constant k2 is calculated from the relationship of F (t2) = k2 × ε (t2) from (t2) and the moving average strain ε (t2). Thereafter, in step S364, an average value k of the plurality of spring constants k1 and k2 is calculated. Although the spring constants k1 and k2 for two specific times are calculated here, three or more spring constants may be used, or one spring constant may be used. Further, a plurality of moving averages, for example, F (t1) F and (t2) may be further averaged to obtain one value F (t), and then the spring constant may be obtained.

次にステップS365で、歪み出力に上記ばね定数kを乗算することで、図3(b)の歪み出力−時間特性の縦軸、即ち歪み出力を実荷重に変換する。この実荷重は、引張試験の衝撃振動の影響が除去されて試験片に実際に加わっている荷重と想定できる。   In step S365, the vertical axis of the strain output-time characteristic in FIG. 3B, that is, the strain output is converted into an actual load by multiplying the strain output by the spring constant k. This actual load can be assumed to be a load actually applied to the test piece after the influence of the impact vibration of the tensile test is removed.

すなわち、この実施の形態の引張試験装置では、荷重の時間変化特性と歪みの時間変化特性との関係に基づいて、取得した歪みの時間変化特性の歪みを実荷重に変換して試験片に作用する実荷重の時間変化特性を算出している。   That is, in the tensile test apparatus according to this embodiment, based on the relationship between the time change characteristic of the load and the time change characteristic of the strain, the strain of the acquired time change characteristic is converted into an actual load and acts on the test piece. The time change characteristic of the actual load is calculated.

図5には、実際の高速引張試験でロードセル14から直接得た荷重出力−時間特性(H)と、本引張試験装置10による演算によって得られた実荷重−時間特性(M)を示す。実荷重−時間特性(M)では振動の影響は排除され、安定した特性が得られていることが分かる。この実荷重−時間特性は演算装置17の記憶部に記憶されるとともに表示装置18に表示される。   FIG. 5 shows a load output-time characteristic (H) directly obtained from the load cell 14 in an actual high-speed tensile test, and an actual load-time characteristic (M) obtained by calculation by the tensile test apparatus 10. It can be seen that in the actual load-time characteristic (M), the influence of vibration is eliminated and a stable characteristic is obtained. This actual load-time characteristic is stored in the storage unit of the arithmetic unit 17 and displayed on the display unit 18.

本引張試験装置10によれば、1度の高速引張試験で得られるデータから高精度な実荷重−時間特性を得ることができるので、予備試験等をする必要が無くなり、簡単且つ効率的に精度のよい計測が可能になる。なお、荷重出力と歪み出力の塑性域のデータを平坦化(なまし処理)してから比較しているのは、塑性域(特の後半の塑性域)では、振動成分を除くと荷重出力と歪み出力の挙動が非常に近似している点と、塑性域の方が弾性変形域よりも大きな出力値で比較でき、比較精度が高い点に着目したからである。これら合理的に組合わせることで相乗的に高精度の変換結果が得られるようになっている。   According to the present tensile test apparatus 10, since high-accuracy actual load-time characteristics can be obtained from data obtained by a single high-speed tensile test, it is not necessary to perform a preliminary test or the like, and the accuracy is simple and efficient. Measurement is possible. In addition, the data of the plastic area of load output and strain output are flattened (smoothed), and the comparison is made in the plastic area (special second-stage plastic area). This is because the strain output behavior is very close to that of the plastic region and the plastic region can be compared with a larger output value than the elastic deformation region, and the comparison accuracy is high. By combining these rationally, a highly accurate conversion result can be obtained synergistically.

なお、本実施形態では、ばね定数を求める際に移動平均値を用いたが、この移動平均に代えて、荷重信号と歪み信号に対してフーリエ変換処理を行って高周波成分を除去することにより得られた平均荷重等を用いても構わない。またこれらを組み合わせても構わない。要はデータ(特に荷重出力データ)をなまし処理して振動の影響を小さくできれば十分である。   In this embodiment, the moving average value is used when obtaining the spring constant. Instead of this moving average, the moving constant value is obtained by performing a Fourier transform process on the load signal and the strain signal to remove high frequency components. The average load or the like may be used. Moreover, you may combine these. In short, it is sufficient if data (especially load output data) is smoothed to reduce the influence of vibration.

また本実施形態では、好ましい形態として塑性域のデータ、特に弾性限界近辺の大きな変動を除いた塑性域のデータを用いてばね定数を決定する場合を示したが、本発明はそれに限定されず、同時に計測される荷重出力と歪み出力から所定の関係を求め、それを変換係数に用いることができれば他の領域でも構わない。   Further, in the present embodiment, the case where the spring constant is determined using the plastic region data, particularly the plastic region data excluding large fluctuations in the vicinity of the elastic limit, as a preferred form is shown, but the present invention is not limited thereto, Other regions may be used as long as a predetermined relationship is obtained from the load output and strain output measured at the same time and can be used as a conversion coefficient.

さらに、高速引張試験機について説明したが、荷重検出信号に振動成分がノイズとなって現れるような速度で材料を負荷して特性を評価する試験機であれば、圧縮試験機、疲労試験機、曲げ試験機など種々の材料試験機に本発明を適用できる。   Furthermore, the high-speed tensile testing machine has been described, but if it is a testing machine that evaluates characteristics by loading a material at a speed at which the vibration component appears as noise in the load detection signal, a compression testing machine, a fatigue testing machine, The present invention can be applied to various material testing machines such as a bending testing machine.

本実施形態に係る引張試験機を示す全体構成図Overall configuration diagram showing a tensile testing machine according to the present embodiment 引張試験機による引張試験の工程を示すフローチャートFlow chart showing the tensile test process using a tensile tester 引張試験によって得られるデータの概念図Conceptual diagram of data obtained by tensile test 引張試験における詳細工程を示すフローチャートFlow chart showing detailed process in tensile test 引張試験によって得られる実荷重−時間特性を示す図The figure which shows the actual load-time characteristic obtained by the tensile test

符号の説明Explanation of symbols

1 試験片 10 引張試験機
11 アクチュエータ 12 流量制御弁
13 油圧源 14 ロードセル
15 つかみ装置 16 変位計測器
17 演算装置 18 表示装置
20 歪みゲージ
DESCRIPTION OF SYMBOLS 1 Test piece 10 Tensile tester 11 Actuator 12 Flow control valve 13 Hydraulic source 14 Load cell 15 Grasp device 16 Displacement measuring device 17 Arithmetic device 18 Display device 20 Strain gauge

Claims (4)

試験片に負荷を与えて材料特性を計測する試験方法において、
一の試験片に負荷を与えながら、前記試験片に作用する力を検出する荷重測定手段による荷重出力の時間変化特性、および前記試験片に貼り付けた歪みゲージによる歪み出力の時間変化特性を取得し、
前記一の試験片に負荷を与えたときに取得した塑性域における前記荷重出力の時間変化特性と前記歪み出力の時間変化特性との関係に基づいて変換係数を算出し、
前記変換係数を用いて、前記一の試験片に負荷を与えたときに取得した歪み出力の時間変化特性の歪みを実荷重に変換して前記一の試験片に作用する実荷重の時間変化特性を算出することを特徴とする試験方法。
In a test method for measuring material properties by applying a load to a test piece,
While applying the load to one of the specimen, the acquisition time change characteristic of the load output by the load measuring means for detecting a force acting, and time change characteristic of the distortion output by pasted strain gauges on the specimen to the specimen And
Calculating a conversion factor based on a relationship between time variation characteristic of the distortion output and time variation characteristics of the load output in the acquired plastic zone when given load to the one test piece,
Using the conversion coefficient, the time change of the actual load acting on the one test piece by converting the strain value of the time change characteristic of the strain output acquired when the load is applied to the one test piece into an actual load. A test method characterized by calculating characteristics.
請求項の試験方法において、
前記荷重出力の時間変化特性の塑性域における特定時間tの移動平均荷重F(t)を算出すると共に、前記歪み出力の時間変化特性の塑性域における前記特定時間tの移動平均歪みε(t)を算出し、
前記移動平均荷重F(t)と移動平均歪みε(t)から、前記変換係数としてのばね定数kをF(t)=k×ε(t)の関係から算出し、
前記ばね定数kを用いて前記歪み出力の時間変化特性における歪みを実荷重に変換するようにしたことを特徴とする試験方法。
The test method of claim 1 ,
The moving average load F (t) at a specific time t in the plastic region of the time change characteristic of the load output is calculated, and the moving average strain ε (t) of the specific time t in the plastic region of the time change characteristic of the strain output. To calculate
From the moving average load F (t) and the moving average strain ε (t), the spring constant k as the conversion coefficient is calculated from the relationship of F (t) = k × ε (t),
A test method characterized by converting a strain value in the time change characteristic of the strain output into an actual load by using the spring constant k.
請求項の試験方法において、
移動平均荷重F(t)および移動平均歪みε(t)に代えて、フーリエ変換を行って高周波成分を除去することにより平準化した平均荷重F´(t)および平均歪みε´(t)を用いることを特徴とする試験方法。
The test method of claim 2 ,
Instead of the moving average load F (t) and moving average strain epsilon (t), the average load F'was leveled by removing high frequency components by performing a Fourier transform (t) and the average strain ε'a (t) A test method characterized by using.
試験片に負荷を与えて材料特性を計測する材料試験機において、
試験片に作用する荷重を測定する荷重測定手段と、
前記試験片に貼り付けた歪みゲージの出力により試験片の歪みを測定する歪み測定手段と、
一の試験片に負荷を与えながら、前記荷重測定手段の測定値により荷重出力の時間変化特性を、歪み測定手段の測定値により歪み出力の時間変化特性をそれぞれ取得し、取得した両時間変化特性のうち、塑性域における前記荷重出力の時間変化特性と歪み出力の時間変化特性との関係に基づき前記一の試験片について変換係数を算出し、前記算出した変換係数を用いて、前記歪み出力の時間変化特性における歪みを実荷重に変換し、前記一の試験片における実荷重の時間変化特性を算出する実荷重演算装置と、を備えることを特徴とする材料試験機。
In a material testing machine that applies load to a specimen and measures material properties,
Load measuring means for measuring the load acting on the test piece;
And distortion measuring means for measuring the distortion of the test piece by the output of the strain gauge affixed to the test strip,
While applying the load to one of the specimen, the time change characteristic of the load output by the measurement value of the load measuring means, respectively to get the temporal change characteristics of the strain output by measurement of the strain measuring means, obtained both time variation characteristics of, and calculates the time change characteristic and group Hazuki transform coefficients for said one specimen in relation to the time change characteristic of the strain output of the load output in plastic zone, using the conversion coefficients the calculated, the strain output A material tester comprising: an actual load calculation device that converts a strain value in the time change characteristic of the actual load into an actual load and calculates a time change characteristic of the actual load in the one test piece.
JP2003412181A 2003-12-10 2003-12-10 Material testing method, material testing machine Expired - Lifetime JP4033119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003412181A JP4033119B2 (en) 2003-12-10 2003-12-10 Material testing method, material testing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003412181A JP4033119B2 (en) 2003-12-10 2003-12-10 Material testing method, material testing machine

Publications (2)

Publication Number Publication Date
JP2005172589A JP2005172589A (en) 2005-06-30
JP4033119B2 true JP4033119B2 (en) 2008-01-16

Family

ID=34732703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003412181A Expired - Lifetime JP4033119B2 (en) 2003-12-10 2003-12-10 Material testing method, material testing machine

Country Status (1)

Country Link
JP (1) JP4033119B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4620956B2 (en) * 2004-03-01 2011-01-26 新日本製鐵株式会社 High-precision tensile or compressive load measuring device for strain rate of high-speed deformation
JP4899061B2 (en) * 2005-03-18 2012-03-21 国立大学法人北海道大学 Sensing device, sensing apparatus, and sensing method
KR101525134B1 (en) * 2013-10-21 2015-06-03 경상대학교산학협력단 Simulation apparatus and simulation method
JP6930240B2 (en) * 2017-06-16 2021-09-01 株式会社島津製作所 Impact test evaluation method and impact tester
JP6794936B2 (en) * 2017-06-16 2020-12-02 株式会社島津製作所 Impact test evaluation method and impact tester
JP7026901B2 (en) * 2018-01-26 2022-03-01 株式会社島津製作所 Strike device and natural frequency measuring device
JP6911783B2 (en) 2018-02-01 2021-07-28 株式会社島津製作所 Test result evaluation method and material testing machine
JP7135932B2 (en) * 2019-02-26 2022-09-13 株式会社島津製作所 TENSILE TESTER AND CONTROL METHOD FOR TENSILE TESTER

Also Published As

Publication number Publication date
JP2005172589A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
CN100458389C (en) Method for controlling tensile stress of a bolt shank such as a screw or dowel pin and device for carrying out said method
JP4693516B2 (en) Weight measurement method
US11085840B2 (en) Apparatus and method for measuring axial force of bolt
US11320354B2 (en) Material tester and natural vibration determination-noise elimination thereof
JP4033119B2 (en) Material testing method, material testing machine
Piana et al. Experimental modal analysis of straight and curved slender beams by piezoelectric transducers
JP6314787B2 (en) Material testing machine
JP3874490B2 (en) Measurement method in high-speed tensile test
Mousavi et al. Non-equilibrium split Hopkinson pressure bar procedure for non-parametric identification of complex modulus
JP4697433B2 (en) Material testing machine
CN104913988A (en) Hopkinson principle-based concrete axial tensile strength measuring method
US7131340B2 (en) Device for low-vibration force measurement in rapid dynamic tensile experiments on material samples
RU2545781C1 (en) Method for experimental determination of static-dynamic characteristics of concrete
JP5033739B2 (en) Stress measuring method and apparatus
JP3447212B2 (en) Material testing machine
JPH09269268A (en) Method for detecting looseness of bolt by strain wave analysis
JPH01301163A (en) Diagnosis method and apparatus for deterioration of article
CN214373034U (en) Torque sensor for detecting force frequency characteristic of piezoelectric material
US11624687B2 (en) Apparatus and method for detecting microcrack using orthogonality analysis of mode shape vector and principal plane in resonance point
JP3554445B2 (en) Abnormal noise judgment device
RU2547348C1 (en) Method of experimental determination of static-dynamic characteristics of concrete under conditions of cyclic loading
CN116481746A (en) Test method for identifying attribute parameters of wind power blade
CN114002092B (en) Real-time compensation method for measuring error of load sensor in fatigue experiment
CN116625610A (en) Test method for identifying attribute parameters of wind power blade
KR20020074615A (en) System and method for testing heating motor of vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4033119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

EXPY Cancellation because of completion of term