JPH09269268A - Method for detecting looseness of bolt by strain wave analysis - Google Patents

Method for detecting looseness of bolt by strain wave analysis

Info

Publication number
JPH09269268A
JPH09269268A JP10430496A JP10430496A JPH09269268A JP H09269268 A JPH09269268 A JP H09269268A JP 10430496 A JP10430496 A JP 10430496A JP 10430496 A JP10430496 A JP 10430496A JP H09269268 A JPH09269268 A JP H09269268A
Authority
JP
Japan
Prior art keywords
bolt
strain
spectrum
looseness
tightening force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10430496A
Other languages
Japanese (ja)
Inventor
Chiyoubin Makabe
朝敏 真壁
Takayuki Yonekura
隆行 米倉
Norihisa Isomura
紀久 磯村
Chikayuki Urashima
親行 浦島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10430496A priority Critical patent/JPH09269268A/en
Publication of JPH09269268A publication Critical patent/JPH09269268A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for detecting looseness of a bolt by an analysis of strain waveform with which it is possible to detect early, accurately and reliably looseness of a bolt and detect looseness of any bolt without specially processing the bolt, and which may be widely used and does not deteriorate clamping force of a bolt. SOLUTION: Strain wave data is measured in two orthogonal directions by means of a strain gage sticked to the head side face 11a of a bolt 11 for which measurement should be performed and after a resultant strain function obtained from the two strain wave data is calculated, a cross-correlation function of the strain function is derived. Fourier analysis is executed for the cross- correlation function to calculate a spectrum varying according to the frequency and then, the clamping force of the bolt 11 is determined by analysing the behavior of the spectrum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ボルトにより固定
された橋梁や鉄筋構造物又は装置機器等において、ボル
トの締め付け状態をボルトに加わる振動に応答する歪み
波形の変化により検知する歪み波形解析によるボルト緩
み検知方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is based on a strain waveform analysis for detecting a tightened state of a bolt in a bridge, a reinforcing bar structure, a device or the like fixed by a bolt by a change in a strain waveform in response to vibration applied to the bolt. Bolt loosening detection method.

【0002】[0002]

【従来の技術】近年、橋梁や鉄筋構造物又は基礎に固定
された装置機器等の事故予防の観点からボルトの締め付
け状態を確認する作業がメンテナンス作業として頻繁に
行われている。しかしながら、ボルトの緩みは外観上は
変化が少なく、その検知には種々の工夫がなされてい
る。例えば、特開平6−34464号公報には、マグ
ネシウム合金の締め付け状態の応力緩和を計測するに際
して、表面に歪みゲージを貼った高張力鋼ボルトで、被
締め付け材であるマグネシウム合金試験材を締め付け、
歪みゲージでマグネシウム合金の応力緩和挙動を計測す
ることにより、マグネシウム合金の応力緩和挙動を簡便
な方法で計測可能とし、さらに一度に多数の試験材の試
験と長時間の試験を、容易に、しかも安価に行うことが
できるボルト緩み試験方法が開示されている。
2. Description of the Related Art In recent years, a work for confirming a tightened state of bolts has been frequently performed as a maintenance work from the viewpoint of preventing accidents such as equipments fixed to a bridge, a reinforced structure or a foundation. However, the looseness of the bolt has little change in appearance, and various measures have been taken to detect it. For example, in Japanese Unexamined Patent Publication No. 6-34464, when measuring stress relaxation of a magnesium alloy in a tightened state, a high-tensile steel bolt having a strain gauge on its surface is used to tighten a magnesium alloy test material to be tightened,
By measuring the stress relaxation behavior of a magnesium alloy with a strain gauge, it is possible to measure the stress relaxation behavior of a magnesium alloy by a simple method, and it is also possible to easily test a large number of test materials at once and for a long time. A bolt looseness test method that can be performed at low cost is disclosed.

【0003】また、特開平6−331468号公報に
は、所定の間隔でインパルスハンマーを落下させ、締結
ボルトの応答を加速度ピックアップで検出した後に、加
振信号と応答加速信号をFFTアナライザで解析するこ
とにより、軌道レール締結装置における締結ボルトのゆ
るみを、迅速かつ正確に検出することのできる締結ボル
ト緩み検査方法が開示されている。更に、特開昭59
−200957号公報には、パルス波の定められた減衰
量とボルトから検出された衝撃応答振動の減衰量とを比
較し、それらが一致した時間の変化からボルトのゆるみ
の有無を検出することにより、ボルトのゆるみを精度よ
く検出するボルト緩み検出方法が開示されている。
Further, in Japanese Patent Laid-Open No. 6-331468, an impulse hammer is dropped at a predetermined interval, a response of a fastening bolt is detected by an acceleration pickup, and then a vibration signal and a response acceleration signal are analyzed by an FFT analyzer. Accordingly, there is disclosed a fastening bolt looseness inspection method capable of quickly and accurately detecting looseness of the fastening bolt in the track rail fastening device. Furthermore, JP-A-59
In Japanese Patent Publication No.-200957, a predetermined attenuation amount of a pulse wave is compared with an attenuation amount of a shock response vibration detected from a bolt, and the presence or absence of a bolt is detected from a change in time when they match. , A bolt looseness detection method for accurately detecting looseness of a bolt is disclosed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記従
来のボルト緩み検知方法においては、未だ、以下の解決
すべき課題を有していた。すなわち、前記の特開平6
−34464号公報に記載のボルト緩み試験方法では、
ボルトの軸部に歪みゲージを貼着させる必要があるた
め、歪みゲージからの配線を外部に導くために、ボルト
への穴加工が必要とされる。従って、特に多数のボルト
の緩みを検知する場合は作業性に劣ると共に、ボルト自
身の強度が若干低下することとなり、ボルトの信頼性に
欠けるという問題がある。また、被締結物のボルト穴は
歪みゲージを損傷しない程度の隙間が必要で、ばか穴と
しなければならないので、リーマボルト等は使用でき
ず、使用可能なボルトの種類が限定されるという問題が
ある。また、前記の特開平6−331468号公報に
記載の締結ボルト緩み検査方法では、ボルト頭部に衝撃
を与える必要があり、その衝撃力によりボルトが緩む危
険性があり信頼性に欠けると共に、衝撃力を加えるハン
マー等が配置できる空間を必要とし、緩みを検知できる
ボルト位置が限定される可能性があるという問題があ
る。更に、前記の特開昭59−200957号公報に
記載のボルト緩み検出方法では、前記の特開平6−3
31468号公報に記載の締結ボルト緩み検査方法と同
様に、ボルトに衝撃力を加える必要があり、ボルトの締
め付けに対する信頼性に欠けると共に、適用できるボル
ト位置が限定され、汎用性に劣るという問題がある。更
に、パルス波の減衰は、ボルトの締め付け状態ばかりで
なくボルト自身の材質の経時変化にも影響されるので、
ボルトの緩みを正確に検出することができず信頼性に欠
けるという問題がある。
However, the above-mentioned conventional bolt looseness detecting method still has the following problems to be solved. That is, the above-mentioned JP-A-6
In the bolt looseness test method described in Japanese Patent Publication No. 34464/1991,
Since it is necessary to attach a strain gauge to the shaft portion of the bolt, it is necessary to form a hole in the bolt to guide the wiring from the strain gauge to the outside. Therefore, particularly when looseness of a large number of bolts is detected, workability is inferior and the strength of the bolt itself is slightly reduced, leading to a problem of lack of reliability of the bolt. Further, the bolt hole of the object to be fastened needs a clearance to the extent that the strain gauge is not damaged, and it must be a ridiculous hole. Therefore, there is a problem that a reamer bolt or the like cannot be used and the type of usable bolt is limited. . Further, in the fastening bolt looseness inspection method described in JP-A-6-331468, it is necessary to give an impact to the head of the bolt, and the impact force may loosen the bolt, leading to lack of reliability and impact. There is a problem in that there is a possibility that a bolt position that can detect looseness may be limited because it requires a space in which a hammer or the like that applies force can be placed. Furthermore, in the bolt looseness detecting method described in the above-mentioned JP-A-59-200957, the above-mentioned JP-A-6-3
Similar to the fastening bolt looseness inspection method described in Japanese Patent No. 31468, it is necessary to apply an impact force to the bolt, which lacks reliability in tightening the bolt and limits the applicable bolt position, resulting in poor versatility. is there. Furthermore, the attenuation of the pulse wave is affected not only by the tightening condition of the bolt but also by the change over time in the material of the bolt itself.
There is a problem in that the looseness of the bolt cannot be accurately detected and reliability is poor.

【0005】本発明はかかる事情に鑑みてなされたもの
で、ボルトの緩みを早期に、また正確にかつ信頼性高く
検知することができると共に、ボルトに対して特殊な加
工を必要とせず、任意のボルトの緩み検出が可能であ
り、汎用性に富み、かつ、ボルトの締め付け力を劣化さ
せることがない歪み波形解析によるボルト緩み検知方法
を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is possible to detect looseness of a bolt at an early stage, accurately and with high reliability, and without requiring any special processing for the bolt, which is optional. It is an object of the present invention to provide a bolt looseness detection method by strain waveform analysis that is capable of detecting bolt looseness and is versatile and that does not deteriorate bolt tightening force.

【0006】[0006]

【課題を解決するための手段】前記目的に沿う請求項1
記載の歪み波形解析によるボルト緩み検知方法は、測定
対象であるボルトの頭側面に貼着された歪みゲージから
直交する2つの方向の歪み波形データを測定し、該2つ
の歪み波形データから合成される歪み関数を算出した後
に、該歪み関数の相互相関関数を導出し、更に、該相互
相関関数にフーリエ解析を施し、周波数により変動する
スペクトルを算出した後に、該スペクトルの挙動により
前記ボルトの締め付け力を判定する。請求項2記載の歪
み波形解析によるボルト緩み検知方法は、請求項1記載
の歪み波形解析によるボルト緩み検知方法において、前
記歪み波形データが、前記ボルトの軸方向と該軸方向と
直交する円周方向の歪みの波形データである。請求項3
記載の歪み波形解析によるボルト緩み検知方法は、請求
項1又は2記載の歪み波形解析によるボルト緩み検知方
法において、前記スペクトルの最小強度の値の変動を所
定の周波数領域の間で観察し、該最小強度の値が小さく
なるにつれ、前記ボルトの前記締め付け力が低下すると
判定する。請求項4記載の歪み波形解析によるボルト緩
み検知方法は、請求項1又は2記載の歪み波形解析によ
るボルト緩み検知方法において、前記スペクトルを所定
の周波数領域の間で積分し、該スペクトルの積分値が小
さくなるにつれ、前記ボルトの前記締め付け力が低下す
ると判定する。請求項5記載の歪み波形解析によるボル
ト緩み検知方法は、請求項3又は4記載の歪み波形解析
によるボルト緩み検知方法において、前記周波数領域
が、10〜30Hzの領域である。
According to the present invention, there is provided a semiconductor device comprising:
The bolt loosening detection method by the described strain waveform analysis measures strain waveform data in two directions orthogonal to each other from a strain gauge attached to a head side surface of a bolt which is a measurement target, and synthesizes the strain waveform data from the two strain waveform data. After calculating the strain function, the cross-correlation function of the strain function is derived, further Fourier analysis is performed on the cross-correlation function, and a spectrum that varies with frequency is calculated, and then the bolt tightening is performed according to the behavior of the spectrum. Determine power. A bolt looseness detection method by strain waveform analysis according to claim 2 is the bolt looseness detection method by strain waveform analysis according to claim 1, wherein the strain waveform data is the circumference of the bolt in the axial direction and the circumference orthogonal to the axial direction. It is waveform data of directional distortion. Claim 3
The bolt looseness detection method by strain waveform analysis according to claim 1, wherein in the bolt looseness detection method by strain waveform analysis according to claim 1 or 2, the fluctuation of the minimum intensity value of the spectrum is observed between predetermined frequency regions, It is determined that the tightening force of the bolt decreases as the value of the minimum strength decreases. A bolt looseness detecting method by strain waveform analysis according to claim 4 is the bolt loosening detecting method by strain waveform analysis according to claim 1 or 2, wherein the spectrum is integrated in a predetermined frequency range, and an integrated value of the spectrum is obtained. Is determined to decrease, the tightening force of the bolt decreases. A bolt looseness detection method by strain waveform analysis according to a fifth aspect is the bolt looseness detection method by strain waveform analysis according to the third or fourth aspect, wherein the frequency region is a region of 10 to 30 Hz.

【0007】[0007]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。ここに、図1は本発明の一実施の形
態に係る歪み波形解析によるボルト緩み検知方法を適用
したボルト緩み検知装置の装置ブロック図、図2は測定
対象となるボルト11の締め付け状態を表す要部正面
図、図3(a)及び(b)は歪みゲージ12を貼着した
ボルト11の要部正面図である。図1に示すように、本
発明の一実施の形態に係る歪み波形解析によるボルト緩
み検知方法を適用したボルト緩み検知装置Aにおいて
は、測定対象となるボルト11の頭側面11aに、直交
する2方向の歪みを測定する歪みゲージ12が貼着され
る。歪みゲージ12とは歪みが加わって変形すると電気
抵抗値が変動する材料から構成され、歪みを電気特性の
変化として測定できるものをいう。測定する歪みの方向
は歪みゲージ12の貼着方向により決定され、例えば、
図3(a)や(b)に示すように、軸方向と径方向、又
は、それらをそれぞれ45°回転させた方向等に配置さ
れる。歪み波形データは配線13を介して動歪みアンプ
14に転送され、動歪みアンプ14で増幅される。増幅
された歪み波形データはA−Dコンバータ15におい
て、アナログデータからデジタルデータに変換され、演
算装置16に転送される。
BEST MODE FOR CARRYING OUT THE INVENTION Next, referring to the attached drawings, an embodiment in which the present invention is embodied will be described to provide an understanding of the present invention. Here, FIG. 1 is a device block diagram of a bolt looseness detection device to which a bolt looseness detection method by strain waveform analysis according to an embodiment of the present invention is applied, and FIG. 2 shows a tightened state of a bolt 11 to be measured. 3A and 3B are front views of relevant parts of the bolt 11 to which the strain gauge 12 is attached. As shown in FIG. 1, in a bolt looseness detection device A to which a bolt looseness detection method by strain waveform analysis according to an embodiment of the present invention is applied, a head side surface 11a of a bolt 11 to be measured is orthogonal to a head side surface 11a. A strain gauge 12 for measuring strain in a direction is attached. The strain gauge 12 is made of a material whose electric resistance value changes when strained and deformed, and the strain can be measured as a change in electrical characteristics. The strain direction to be measured is determined by the sticking direction of the strain gauge 12, and for example,
As shown in FIGS. 3 (a) and 3 (b), they are arranged in the axial direction and the radial direction, or in the directions in which they are each rotated by 45 °. The strain waveform data is transferred to the dynamic strain amplifier 14 via the wiring 13, and is amplified by the dynamic strain amplifier 14. The amplified distortion waveform data is converted from analog data to digital data in the A / D converter 15 and transferred to the arithmetic unit 16.

【0008】演算装置16は、デジタル化された歪み波
形データを受け入れる入力インターフェース17と、入
力された歪み波形データやその演算結果、さらに演算手
順を記述したプログラム等を格納する記憶装置18と、
各種のデータや動作状況を表示するCRT等からなる表
示装置19と、動作指令や設定条件等を入力するキーボ
ード20と、歪み波形データの演算や、歪み関数、相互
相関関数の算出や、相互相関関数のフーリエ解析や、各
構成の制御を行う中央処理装置21とを備えている。緩
み検知の対象となるボルト11は橋梁や鉄筋構造物又は
各種の装置機器等に締め付けられるものである。ここで
は、締め付け力の変動による歪み波動の挙動を観察する
ため、疲労試験機にボルト11を装着して繰り返し荷重
を加えた場合の歪み波形解析によるボルト緩み検知方法
について説明する。図2はボルト11を装着した疲労試
験機の要部正面図である。図2において、上下に対とな
るチャック22に連結された固定治具23間に、歪みゲ
ージ12を貼着したボルト11が挿入され、ボルト11
はナット24により固定治具23間に締め付けられてい
る。ボルト11の周囲には、ボルト11の軸方向と疲労
試験機の加重方向又は除荷方向とを常に平行に維持する
補助部材25が配置されている。
The arithmetic unit 16 includes an input interface 17 for receiving the digitized distortion waveform data, a storage unit 18 for storing the input distortion waveform data, the calculation result thereof, and a program describing the calculation procedure.
A display device 19 such as a CRT for displaying various data and operating conditions, a keyboard 20 for inputting operation commands and setting conditions, calculation of distortion waveform data, calculation of distortion function, cross-correlation function, cross-correlation It has a central processing unit 21 for performing Fourier analysis of functions and control of each component. The bolt 11 that is the object of looseness detection is fastened to a bridge, a reinforcing bar structure, various types of devices, or the like. Here, in order to observe the behavior of the strain wave due to the variation of the tightening force, a bolt looseness detection method by strain waveform analysis when the bolt 11 is mounted on the fatigue tester and a repeated load is applied will be described. FIG. 2 is a front view of a main part of the fatigue testing machine equipped with the bolt 11. In FIG. 2, the bolts 11 to which the strain gauges 12 are attached are inserted between the fixing jigs 23 connected to the chucks 22 that form a pair vertically.
Are fastened between fixing jigs 23 by nuts 24. An auxiliary member 25 is disposed around the bolt 11 to keep the axial direction of the bolt 11 and the loading direction or the unloading direction of the fatigue tester always parallel to each other.

【0009】以上のように構成されたボルト緩み検知装
置Aを用いて、本発明の一実施の形態に係る歪み波形解
析によるボルト緩み検知方法について、図1〜図7を参
照して説明する。まず、上、下の固定治具23に亘って
挿通され、一端部にナット24が締め付けられて、疲労
試験機に固定されたボルト11に、引っ張り及び圧縮の
繰り返し荷重を加える。繰り返し荷重は正弦波を用いる
が、正弦波に限定されるものではなく、橋梁や鉄筋構造
物又は各種の装置機器等に加わる振動を用いてもよい。
従って、実際のボルト緩み検知においては、測定対象で
あるボルトに改めて衝撃波や繰り返し荷重を加える必要
はなく、通常の使用状態で受ける振動に起因する歪み波
形データを解析すればよい。この繰り返し荷重に応答し
て、ボルト11内に歪みが発生するが、歪みゲージ12
を用いてこの歪みを測定し、歪み波形データとして出力
する。歪みゲージ12では、直交する2つの方向の歪み
εx 、εy (なお、歪みεx は、図2中、x矢視するボ
ルト11の軸方向の歪みであり、歪みεy は、図2中、
y矢視する前記軸方向と直交する径方向の歪みである)
を測定する。次に、演算装置16を用いて、動歪みアン
プ14で増幅され、A−Dコンバータ15でデジタル化
された2つの歪みεx 、εy から歪み関数h1 (t)、
2(t)を合成する。歪み関数h1 (t)、h
2 (t)は下記数1で定義される。
A bolt looseness detection method by strain waveform analysis according to an embodiment of the present invention using the bolt looseness detection device A configured as described above will be described with reference to FIGS. First, the bolt 11 is inserted through the upper and lower fixing jigs 23, and the nut 24 is tightened at one end thereof, and a repetitive tensile and compression load is applied to the bolt 11 fixed to the fatigue tester. Although the sine wave is used as the repetitive load, the sine wave is not limited to the sine wave, and vibration applied to a bridge, a reinforcing bar structure, various types of devices or the like may be used.
Therefore, in the actual bolt looseness detection, it is not necessary to apply shock waves or repeated loads to the bolt to be measured again, and it is sufficient to analyze the strain waveform data due to the vibration received in the normal use state. Although strain is generated in the bolt 11 in response to the repeated load, the strain gauge 12
Is used to measure this distortion and output as distortion waveform data. In the strain gauge 12, strains ε x and ε y in two directions orthogonal to each other (note that the strain ε x is the strain in the axial direction of the bolt 11 viewed in the direction of the arrow x in FIG. 2, and the strain ε y is the strain in FIG. During,
y It is a strain in the radial direction orthogonal to the axial direction viewed from the arrow)
Is measured. Next, using the arithmetic unit 16, from the two distortions ε x and ε y amplified by the dynamic distortion amplifier 14 and digitized by the AD converter 15, the distortion function h 1 (t),
Synthesize h 2 (t). Distortion function h 1 (t), h
2 (t) is defined by the following mathematical expression 1.

【0010】[0010]

【数1】 [Equation 1]

【0011】歪み波形データから導き出した歪み関数h
1 (t)の例を図4(a)、(b)に示す。図4(a)
はボルト11が緩んでない場合の歪み関数h1 (t)の
値を示すグラフ、図4(b)はボルト11が緩んだ場合
の歪み関数h1 (t)の値を示すグラフである。図4
(a)及び図4(b)に示すように、ボルト11が緩ん
でいない場合は、ボルト11に加えられた正弦波と相似
の波形を得るが、ボルト11が緩むと、歪み関数h
1 (t)に周波数の短い波動が重畳され、明らかに波形
が変化することが判明する。次に、歪み関数h
1 (t)、h2 (t)から相互相関関数R12(τ)を導
き出す。相互相関関数R12(τ)は下記数2で定義され
る。
Distortion function h derived from distortion waveform data
An example of 1 (t) is shown in FIGS. 4 (a) and 4 (b). FIG. 4 (a)
Is a graph showing the value of the strain function h 1 (t) when the bolt 11 is not loose, and FIG. 4B is a graph showing the value of the strain function h 1 (t) when the bolt 11 is loose. FIG.
As shown in FIGS. 4A and 4B, when the bolt 11 is not loose, a waveform similar to the sine wave applied to the bolt 11 is obtained, but when the bolt 11 is loose, the distortion function h
It is found that the wave with a short frequency is superimposed on 1 (t) and the waveform obviously changes. Next, the distortion function h
A cross-correlation function R 12 (τ) is derived from 1 (t) and h 2 (t). The cross-correlation function R 12 (τ) is defined by the following Expression 2.

【0012】[0012]

【数2】 [Equation 2]

【0013】相互相関関数R12(τ)は歪み関数h
1 (t)、h2 (t)の相関を提示するもので、時系列
に従って算出することにより、波形データとなる。更
に、歪み関数h1 (t)、h2 (t)から合成した相互
相関関数R12(τ)をフーリエ解析する。フーリエ解析
とは、非常にゆるい条件を満足する周期関数が純調和振
動の重ね合わせとして表せることを用い、対象とする関
数を周波数の異なる調和振動に分解し、各周波数の調和
振動での強度分布を表示するスペクトルを提示する。相
互相関関数R12(τ)にフーリエ解析を施したスペクト
ルの例を図5(a)及び(b)に示す。図5(a)は締
め付け力が締め付け限界の0.4倍の場合の相互相関関
数R12(τ)のフーリエ解析を行ったスペクトルを示す
グラフ、図5(b)は締め付け力が締め付け限界の0.
14倍の場合の相互相関関数R12(τ)のフーリエ解析
を行ったスペクトルを示すグラフである。図5(a)や
(b)においては、歪み波形データの入力条件やフーリ
エ解析の条件を固定し、それぞれの解析においてスペク
トルの絶対値を比較できるように設定している。
The cross-correlation function R 12 (τ) is the distortion function h
It presents the correlation of 1 (t) and h 2 (t), and becomes waveform data by calculating in time series. Further, the cross-correlation function R 12 (τ) synthesized from the distortion functions h 1 (t) and h 2 (t) is subjected to Fourier analysis. Fourier analysis uses the fact that a periodic function satisfying a very loose condition can be expressed as a superposition of pure harmonic vibrations.The target function is decomposed into harmonic vibrations of different frequencies, and the intensity distribution at the harmonic vibrations of each frequency is used. The spectrum for displaying is presented. Examples of spectra obtained by subjecting the cross-correlation function R 12 (τ) to Fourier analysis are shown in FIGS. 5 (a) and 5 (b). FIG. 5A is a graph showing a spectrum obtained by Fourier analysis of the cross-correlation function R 12 (τ) when the tightening force is 0.4 times the tightening limit, and FIG. 5B is a graph showing the tightening force of the tightening limit. 0.
For 14-fold is a graph showing a spectrum subjected to Fourier analysis of the cross-correlation function R 12 (tau) of. In FIGS. 5A and 5B, the input condition of the distorted waveform data and the condition of the Fourier analysis are fixed, and the absolute values of the spectra can be compared in each analysis.

【0014】本発明の一実施の形態に係る歪み波形解析
によるボルト緩み検知方法においては、10〜30Hz
の周波数領域のスペクトルを観察するのが好ましい。周
波数領域が10Hz未満や30Hzを越えた部分のスペ
クトルでは、ボルト11の締め付け力の変動に対して適
切な変化が現れ難く、ボルト11の緩みを検知し難いの
で好ましくない。図5(a)や(b)から明らかなよう
に、ボルト11の締め付け力を小さくするにつれ、スペ
クトルの強度が低減していることが判明する。従って、
締め付け力を表す指標として、所定の周波数領域(特
に、10〜30Hzの間が好ましい)内における、最も
強度の小さいスペクトルの値(スペクトルの最小谷部の
値)を採用する。また、他の指標として所定の周波数領
域(やはり、10〜30Hzの間が好ましい)におけ
る、スペクトルの積分値も検討する。
In the bolt looseness detecting method by strain waveform analysis according to one embodiment of the present invention, 10 to 30 Hz is used.
It is preferable to observe the spectrum in the frequency domain of. In the spectrum of the part where the frequency region is less than 10 Hz or exceeds 30 Hz, it is not preferable because an appropriate change is unlikely to appear with respect to the fluctuation of the tightening force of the bolt 11, and it is difficult to detect looseness of the bolt 11. As is clear from FIGS. 5A and 5B, it is found that the intensity of the spectrum is reduced as the tightening force of the bolt 11 is reduced. Therefore,
As an index representing the tightening force, the value of the spectrum having the smallest intensity (the value of the minimum valley portion of the spectrum) in a predetermined frequency range (particularly, preferably 10 to 30 Hz) is adopted. In addition, as another index, the integral value of the spectrum in a predetermined frequency range (again, preferably between 10 and 30 Hz) is also examined.

【0015】図6はボルト11の締め付け力比とスペク
トルの最小谷部の値の関係図、図7はボルト11の締め
付け力比と所定の周波数領域におけるスペクトルの積分
値との関係図である。 図6において、横軸は最も強く
ボルト11を締め付けた時の値を1とし、以下ボルト1
1の締め付け力を低下させて行った場合のボルト締め付
け力比を示す。縦軸は各ボルト締め付け力比におけるス
ペクトルの最も小さな値(最小谷部の値)を10〜30
Hzの周波数領域内で測定しプロットしている。図6か
ら明らかなように、ボルト締め付け力比を0.14〜1
の範囲で変動させると、スペクトルの最小谷部の値は
0.2〜1.0の範囲で漸増しており、変化率はボルト
締め付け力比が小さくなるにつれ、若干大きくなってい
る。最小谷部の値はボルト締め付け力比の全変動域に渡
って変化するので、ボルト11の緩みの初期から略締め
付け力が消失する広い範囲において、緩みの検出が可能
となる。図7において、横軸は図6と同様にボルト締め
付け力比を表す。縦軸は10〜30Hzの周波数領域で
スペクトルを積分した値Aを最も締め付け力を大きくし
た場合の積分値A0 で規格化した値を示す。A、A0
下記数3で定義される。
FIG. 6 is a relationship diagram between the tightening force ratio of the bolt 11 and the value of the minimum valley portion of the spectrum, and FIG. 7 is a relationship diagram between the tightening force ratio of the bolt 11 and the integral value of the spectrum in a predetermined frequency region. In FIG. 6, the horizontal axis represents the value when the bolt 11 is tightened most strongly, and the bolt 1
The bolt tightening force ratio when the tightening force of 1 is reduced is shown. The vertical axis represents the smallest value (value of the smallest valley) of the spectrum in each bolt tightening force ratio of 10 to 30.
It is measured and plotted in the frequency range of Hz. As is clear from FIG. 6, the bolt tightening force ratio is 0.14 to 1
The value of the minimum valley portion of the spectrum gradually increases in the range of 0.2 to 1.0, and the rate of change becomes slightly larger as the bolt tightening force ratio becomes smaller. Since the value of the minimum trough changes over the entire range of fluctuation of the bolt tightening force ratio, it becomes possible to detect looseness in a wide range where the tightening force disappears from the initial stage of loosening of the bolt 11. In FIG. 7, the horizontal axis represents the bolt tightening force ratio as in FIG. The vertical axis represents the value obtained by standardizing the value A obtained by integrating the spectrum in the frequency region of 10 to 30 Hz with the integrated value A 0 when the tightening force is maximized. A and A 0 are defined by the following mathematical expression 3.

【0016】[0016]

【数3】 (Equation 3)

【0017】図7から明らかなように、ボルト締め付け
力比を0.14〜0.5に変動させると、スペクトルの
積分値A/A0 は0.7〜1.0の間を一様に増加す
る。従って、ボルト締め付け力の小さなボルト11の緩
みの末期においては、スペクトルの積分値Aの変動によ
り、緩みの程度を検知することができる。ボルト締め付
け力比が0.5を越えた場合は、図示してないが、積分
値Aの増加は殆ど観察されず、ボルト締め付け力比の増
減に対応した積分値Aの変化は観察されない。従って、
ボルト11の緩みの初期においては、スペクトルの最小
谷部の値を緩み検知の指標として用いることが好まし
い。
As is apparent from FIG. 7, when the bolt tightening force ratio is varied from 0.14 to 0.5, the integral value A / A 0 of the spectrum becomes uniform between 0.7 and 1.0. To increase. Therefore, at the end of loosening of the bolt 11 having a small bolt tightening force, the degree of loosening can be detected by the fluctuation of the integral value A of the spectrum. When the bolt tightening force ratio exceeds 0.5, although not shown, almost no increase in the integrated value A is observed, and no change in the integrated value A corresponding to the increase or decrease in the bolt tightening force ratio is observed. Therefore,
In the initial stage of loosening of the bolt 11, it is preferable to use the value of the minimum valley portion of the spectrum as an index for looseness detection.

【0018】以上、本発明を、実施の形態を参照して説
明してきたが、本発明は何ら上記した実施の形態に記載
の構成に限定されるものではなく、特許請求の範囲に記
載されている事項の範囲内で考えられるその他の実施の
形態や変容例も含むものである。
Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the configurations described in the above embodiments, but is described in the scope of claims. It also includes other embodiments and modifications that are conceivable within the scope of the matters.

【0019】[0019]

【発明の効果】以上の説明から明らかなように請求項1
〜5記載の歪み波形解析によるボルト緩み検知方法にお
いては、測定対象であるボルトの頭側面に貼着された歪
みゲージから直交する2つの方向の歪み波形データを測
定し、2つの歪み波形データから合成される歪み関数を
算出した後に、歪み関数の相互相関関数を導出し、更
に、相互相関関数にフーリエ解析を施し、周波数により
変動するスペクトルを算出した後に、スペクトルの挙動
によりボルトの締め付け力を判定するので、測定対象と
なるボルトに特別な加工を必要とせず、また、ボルト穴
に隙間等を要せず、リーマボルトでも使用が可能であ
り、準備作業が簡便で作業効率が高いと共に、測定可能
なボルトの種類が豊富で汎用性が高い。また、歪み波形
データ測定時に衝撃波等をボルトに加える必要がなく、
橋梁や鉄筋構造物又は装置機器等に自然に加わるノイズ
等の振動により、歪み波形データを測定できるので、ボ
ルト上方にハンマー等の打撃装置を配置する空間を必要
とせず、密閉された場所に位置するボルトでも緩みの検
知が可能であり、緩み検知可能範囲が広くなる。歪み波
形データを歪み関数に変換した後に、その相互相関関数
を求めフーリエ解析するので、ボルト自身の材質の変化
に余り影響されず、ボルトの締め付け状態の変化を的確
に検出でき、正確で信頼性の高いボルト緩みの検知が可
能となる。
As is apparent from the above description, claim 1
In the bolt looseness detection method by strain waveform analysis described in 1 to 5, strain waveform data in two directions orthogonal to each other are measured from a strain gauge attached to the head side surface of the bolt to be measured, and the two strain waveform data are used. After calculating the combined strain function, derive the cross-correlation function of the strain function, perform Fourier analysis on the cross-correlation function, calculate the spectrum that fluctuates with frequency, and then determine the tightening force of the bolt by the behavior of the spectrum. As it is judged, the bolt to be measured does not require any special processing, and the bolt hole does not require a gap, so it can be used even with a reamer bolt, and the preparation work is simple and the work efficiency is high. Wide variety of possible bolts and high versatility. Also, it is not necessary to add shock waves to the bolt when measuring strain waveform data,
Distortion waveform data can be measured by vibrations such as noise that is naturally applied to bridges and reinforced structures or equipment, so there is no need for a space to place a hammer or other hammering device above the bolts. It is possible to detect looseness even with a bolt, and the loosen detection range is widened. After converting the distortion waveform data to a distortion function, the cross-correlation function is calculated and Fourier analysis is performed, so changes in the bolt tightening state can be detected accurately without being significantly affected by changes in the material of the bolt itself, which is accurate and reliable. It is possible to detect high bolt looseness.

【0020】特に、請求項2記載の歪み波形解析による
ボルト緩み検知方法においては、歪み波形データが、ボ
ルトの軸方向と該軸方向に直交する方向の歪みの波形デ
ータであるので、ボルトの締め付け状態に起因する歪み
の変化を的確に反映し、正確なボルト緩みの検知が可能
であると共に、歪みゲージのボルトの頭側面への貼着が
簡便で、作業性に優れる。更に、請求項3記載の歪み波
形解析によるボルト緩み検知方法においては、スペクト
ルの最小強度の値の変動を所定の周波数領域の間で観察
し、最小強度の値が小さくなるにつれボルトの締め付け
力が低下すると判定するので、僅かな締め付け力の変化
においても、敏感にその変化を検出でき、初期のボルト
の緩みを的確に検知することができ、ボルト緩みの検知
精度を著しく向上させることができる。また、請求項4
記載の歪み波形解析による緩み検知方法においては、ス
ペクトルを所定の周波数領域の間で積分し、スペクトル
の積分値が小さくなるにつれ、ボルトの締め付け力が低
下すると判定するので、比較的末期の緩みが大きい時期
に積分値がボルトの緩みの程度に対応して変化するの
で、ボルトが大きく緩んでいる状態を的確に検知でき、
正確なボルトの緩み検知が可能となる。特に、請求項5
記載の歪み波形解析によるボルト緩み検知方法において
は、周波数領域が、10〜30Hzの領域であるので、
ボルトの締め付け状態の変化に対応してスペクトルが変
化し、他の要因にあまり影響されないので、正確で信頼
性高くボルトの緩みを検知することができる。
Particularly, in the bolt looseness detecting method by strain waveform analysis according to claim 2, since the strain waveform data is waveform data of strain in the axial direction of the bolt and the direction orthogonal to the axial direction, tightening of the bolt is performed. The change in strain caused by the state is accurately reflected to allow accurate detection of bolt loosening, and the strain gauge is easily attached to the head side surface of the bolt, which is excellent in workability. Further, in the bolt loosening detection method by strain waveform analysis according to claim 3, the fluctuation of the value of the minimum intensity of the spectrum is observed in a predetermined frequency range, and the tightening force of the bolt becomes smaller as the value of the minimum intensity becomes smaller. Since it is determined that the tightening force will decrease, the change can be sensitively detected even with a slight change in the tightening force, the looseness of the initial bolt can be accurately detected, and the bolt loosening detection accuracy can be significantly improved. Claim 4
In the looseness detection method by the strain waveform analysis described, the spectrum is integrated in a predetermined frequency range, and as the integrated value of the spectrum becomes smaller, it is determined that the tightening force of the bolt decreases, so that the looseness at the end stage is relatively small. Since the integrated value changes according to the degree of bolt loosening at large times, it is possible to accurately detect the state where the bolt is loose,
Accurate bolt looseness detection is possible. In particular, claim 5
In the bolt loosening detection method by the strain waveform analysis described, since the frequency region is the region of 10 to 30 Hz,
Since the spectrum changes in response to the change in the tightened state of the bolt and is not significantly affected by other factors, the looseness of the bolt can be detected accurately and with high reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態に係る歪み波形解析によ
るボルト緩み検知方法を適用したボルト緩み検知装置の
装置ブロック図である。
FIG. 1 is a device block diagram of a bolt loosening detection device to which a bolt loosening detection method by strain waveform analysis according to an embodiment of the present invention is applied.

【図2】ボルトを装着した疲労試験機の要部正面図であ
る。
FIG. 2 is a front view of a main part of a fatigue testing machine equipped with bolts.

【図3】(a)歪みゲージを貼着したボルトの要部正面
図である。 (b)他の位置に歪みゲージを貼着したボルトの要部正
面図である。
FIG. 3A is a front view of a main part of a bolt to which a strain gauge is attached. (B) It is a principal part front view of the bolt which attached the strain gauge to the other position.

【図4】(a)ボルトが緩んでない場合の歪み関数h1
(t)の値を示すグラフである。 (b)ボルトが緩んだ場合の歪み関数h1 (t)の値を
示すグラフである。
FIG. 4 (a) Strain function h 1 when the bolt is not loose
It is a graph which shows the value of (t). (B) A graph showing the value of the strain function h 1 (t) when the bolt is loosened.

【図5】(a)締め付け力が締め付け限界の0.4倍の
場合の相互相関関数R12(τ)のフーリエ解析を行った
スペクトルを示すグラフである。 (b)締め付け力が締め付け限界の0.14倍の場合の
相互相関関数R12(τ)のフーリエ解析を行ったスペク
トルを示すグラフである。
FIG. 5 (a) is a graph showing a spectrum obtained by performing a Fourier analysis of a cross-correlation function R 12 (τ) when the tightening force is 0.4 times the tightening limit. (B) A graph showing a spectrum obtained by performing a Fourier analysis of a cross-correlation function R 12 (τ) when the tightening force is 0.14 times the tightening limit.

【図6】ボルトの締め付け力比とスペクトルの最小谷部
の値との関係図である。
FIG. 6 is a relationship diagram between a tightening force ratio of a bolt and a value of a minimum valley portion of a spectrum.

【図7】ボルトの締め付け力比と所定の周波数領域にお
けるスペクトルの積分値比との関係図である。
FIG. 7 is a relationship diagram of a bolt tightening force ratio and a spectrum integral value ratio in a predetermined frequency region.

【符号の説明】[Explanation of symbols]

A ボルト緩み検知装置 11 ボルト 11a 頭側面 12 歪みゲー
ジ 13 配線 14 動歪みア
ンプ 15 A−Dコンバータ 16 演算装置 17 入力インターフェース 18 記憶装置 19 表示装置 20 キーボー
ド 21 中央処理装置 22 チャック 23 固定治具 24 ナット 25 補助部材
A bolt loosening detection device 11 bolt 11a head side surface 12 strain gauge 13 wiring 14 dynamic strain amplifier 15 A-D converter 16 arithmetic unit 17 input interface 18 storage device 19 display device 20 keyboard 21 central processing unit 22 chuck 23 fixing jig 24 nut 25 Auxiliary member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浦島 親行 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Ms. Urashima, No. 1-1 Toibata-cho, Tobata-ku, Kitakyushu, Fukuoka Inside Nippon Steel Corporation Yawata Works

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 測定対象であるボルトの頭側面に貼着さ
れた歪みゲージから直交する2つの方向の歪み波形デー
タを測定し、 該2つの歪み波形データから合成される歪み関数を算出
した後に、該歪み関数の相互相関関数を導出し、 更に、該相互相関関数にフーリエ解析を施し、周波数に
より変動するスペクトルを算出した後に、 該スペクトルの挙動により前記ボルトの締め付け力を判
定することを特徴とする歪み波形解析によるボルト緩み
検知方法。
1. After measuring strain waveform data in two directions orthogonal to each other from a strain gauge attached to the head side surface of a bolt to be measured, and calculating a strain function synthesized from the two strain waveform data. , Deriving a cross-correlation function of the distortion function, further subjecting the cross-correlation function to Fourier analysis to calculate a spectrum that varies with frequency, and then determining the tightening force of the bolt based on the behavior of the spectrum. The bolt looseness detection method by analyzing the strain waveform.
【請求項2】 前記歪み波形データが、前記ボルトの軸
方向と該軸方向と直交する円周方向の歪みの波形データ
であることを特徴とする請求項1記載の歪み波形解析に
よるボルト緩み検知方法。
2. The bolt looseness detection by strain waveform analysis according to claim 1, wherein the strain waveform data is waveform data of strain in the axial direction of the bolt and in a circumferential direction orthogonal to the axial direction. Method.
【請求項3】 前記スペクトルの最小強度の値の変動を
所定の周波数領域の間で観察し、該最小強度の値が小さ
くなるにつれ、前記ボルトの前記締め付け力が低下する
と判定することを特徴とする請求項1又は2記載の歪み
波形解析によるボルト緩み検知方法。
3. The fluctuation of the minimum intensity value of the spectrum is observed in a predetermined frequency range, and it is determined that the tightening force of the bolt decreases as the minimum intensity value decreases. The bolt looseness detection method by strain waveform analysis according to claim 1 or 2.
【請求項4】 前記スペクトルを所定の周波数領域の間
で積分し、該スペクトルの積分値が小さくなるにつれ、
前記ボルトの前記締め付け力が低下すると判定すること
を特徴とする請求項1又は2記載の歪み波形解析による
ボルト緩み検知方法。
4. The spectrum is integrated in a predetermined frequency range, and the integrated value of the spectrum becomes smaller,
The bolt looseness detection method by strain waveform analysis according to claim 1 or 2, wherein it is determined that the tightening force of the bolt decreases.
【請求項5】 前記周波数領域が、10〜30Hzの領
域であることを特徴とする請求項3又は4記載の歪み波
形解析によるボルト緩み検知方法。
5. The bolt looseness detecting method by strain waveform analysis according to claim 3, wherein the frequency region is a region of 10 to 30 Hz.
JP10430496A 1996-03-29 1996-03-29 Method for detecting looseness of bolt by strain wave analysis Withdrawn JPH09269268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10430496A JPH09269268A (en) 1996-03-29 1996-03-29 Method for detecting looseness of bolt by strain wave analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10430496A JPH09269268A (en) 1996-03-29 1996-03-29 Method for detecting looseness of bolt by strain wave analysis

Publications (1)

Publication Number Publication Date
JPH09269268A true JPH09269268A (en) 1997-10-14

Family

ID=14377193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10430496A Withdrawn JPH09269268A (en) 1996-03-29 1996-03-29 Method for detecting looseness of bolt by strain wave analysis

Country Status (1)

Country Link
JP (1) JPH09269268A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000140190A (en) * 1998-11-11 2000-05-23 Buoogu International:Kk Power-priven skateboard
JP2006275796A (en) * 2005-03-29 2006-10-12 National Institute Of Advanced Industrial & Technology Fastener and its use
US7293466B2 (en) 2005-07-19 2007-11-13 Hitachi, Ltd. Bolt with function of measuring strain
JP2010072006A (en) * 2010-01-06 2010-04-02 National Institute Of Advanced Industrial Science & Technology Fastener and its use
CN108871647A (en) * 2017-05-15 2018-11-23 现代自动车株式会社 Method for measuring the axial force of bolt
WO2020090446A1 (en) * 2018-10-29 2020-05-07 日本電信電話株式会社 Loosening detection structure and loosening detection method using said structure
JP2020148504A (en) * 2019-03-11 2020-09-17 小西 拓洋 Looseness detection system of axial force member and looseness detection method of axial force member

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000140190A (en) * 1998-11-11 2000-05-23 Buoogu International:Kk Power-priven skateboard
JP2006275796A (en) * 2005-03-29 2006-10-12 National Institute Of Advanced Industrial & Technology Fastener and its use
US7293466B2 (en) 2005-07-19 2007-11-13 Hitachi, Ltd. Bolt with function of measuring strain
JP2010072006A (en) * 2010-01-06 2010-04-02 National Institute Of Advanced Industrial Science & Technology Fastener and its use
JP4649684B2 (en) * 2010-01-06 2011-03-16 独立行政法人産業技術総合研究所 Fasteners and their use
CN108871647A (en) * 2017-05-15 2018-11-23 现代自动车株式会社 Method for measuring the axial force of bolt
KR20180125285A (en) * 2017-05-15 2018-11-23 현대자동차주식회사 Method for measuring the axial force of bolts
WO2020090446A1 (en) * 2018-10-29 2020-05-07 日本電信電話株式会社 Loosening detection structure and loosening detection method using said structure
JP2020070817A (en) * 2018-10-29 2020-05-07 日本電信電話株式会社 Looseness detection structure and method for detecting looseness using its structure
JP2020148504A (en) * 2019-03-11 2020-09-17 小西 拓洋 Looseness detection system of axial force member and looseness detection method of axial force member

Similar Documents

Publication Publication Date Title
CN108195535B (en) Bolt joint looseness detection method and system based on nonlinear excitation characteristics
US9316620B2 (en) Structural damage detection system, device and method
EP3232190B1 (en) Method for evaluating state of member
CN106768967B (en) A kind of flange fastening bolt loosens lossless detection method and its system
EP3173780A1 (en) Nondestructive inspection method and nondestructive inspection device for anchor bolt
US8299804B2 (en) Nondestructive inspection method of insulator using frequency resonance function
JP2007040781A (en) Blow inspection device and blow inspection method
EP3176575A1 (en) Method and device for nondestructive testing of anchor bolt
Dunn et al. Critical aspects of experimental damage detection methodologies using nonlinear vibro-ultrasonics
CN105277149B (en) Faying face real contact area measurement apparatus and measuring method
JPH09269268A (en) Method for detecting looseness of bolt by strain wave analysis
CN111175378A (en) Method for rapidly detecting bolt tension
JP2002340710A (en) Method and instrument for measuring axial force of bolt
US7131340B2 (en) Device for low-vibration force measurement in rapid dynamic tensile experiments on material samples
JP4033119B2 (en) Material testing method, material testing machine
KR100463727B1 (en) The Method and Device of the Reliability Test and Decision
JP7208622B2 (en) Strain measuring device for metal structure and method for detecting deterioration damage of metal structure
JP2021175957A (en) Axial force evaluation method for screw member
CN114777984B (en) Bolt pretightening force combined test method
KR100726089B1 (en) Load cell of a high speed tensile tester for reuction of the load ringing phenimenon
Fuchs et al. Ultrasonic instrumentation for measuring applied stress on bridges
RADU et al. CONTRIBUTIONS TO THE DYNAMIC STUDY OF ROTOR EXCAVATORS BY RESISTIVE TENSOMETRY AND SPECTRAL ANALYSIS.
Dabrowski et al. Fault diagnosis of carbon fibre composite masts
JPS63317737A (en) Impact and vibration testing machine of screw
CN110608664B (en) Bridge type vibrating wire strain gauge based on online correction

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030603