JP7208622B2 - Strain measuring device for metal structure and method for detecting deterioration damage of metal structure - Google Patents

Strain measuring device for metal structure and method for detecting deterioration damage of metal structure Download PDF

Info

Publication number
JP7208622B2
JP7208622B2 JP2019036949A JP2019036949A JP7208622B2 JP 7208622 B2 JP7208622 B2 JP 7208622B2 JP 2019036949 A JP2019036949 A JP 2019036949A JP 2019036949 A JP2019036949 A JP 2019036949A JP 7208622 B2 JP7208622 B2 JP 7208622B2
Authority
JP
Japan
Prior art keywords
strain
metal structure
value
external force
base value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019036949A
Other languages
Japanese (ja)
Other versions
JP2020139885A (en
Inventor
敏之 石川
尚史 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai University
Original Assignee
Kansai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai University filed Critical Kansai University
Priority to JP2019036949A priority Critical patent/JP7208622B2/en
Publication of JP2020139885A publication Critical patent/JP2020139885A/en
Application granted granted Critical
Publication of JP7208622B2 publication Critical patent/JP7208622B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、動的な外力を繰り返し受けて生じる疲労き裂によって変化する金属構造物の歪を測定するための金属構造物の歪測定装置及び金属構造物の劣化損傷検知方法に関する。 The present invention relates to a metal structure strain measuring device and a metal structure degradation damage detection method for measuring the strain of a metal structure that changes due to fatigue cracks caused by repeated dynamic external forces.

鋼橋などの動的な外力を繰り返し受ける金属構造物では、溶接部等から疲労き裂が発生し、やがては疲労破壊にいたる危険性がある。従来、このような危険を未然に防止するための劣化損傷検知方法として、溶接部近傍に歪ゲージを配設し、車両の荷重等、外力が作用したときの歪信号の振幅の変化をモニタリングする方法が知られている。そして、歪信号の振幅の変化量がしきい値を超えた場合に異常と判定することにより、点検・補修等の対策につなげることができる。 In metal structures such as steel bridges, which are subjected to repeated dynamic external forces, there is a danger that fatigue cracks will occur from welds and eventually lead to fatigue failure. Conventionally, as a deterioration damage detection method to prevent such a danger, a strain gauge is arranged near the welded part and the change in the amplitude of the strain signal is monitored when an external force such as the load of the vehicle acts. method is known. By determining that there is an abnormality when the amount of change in the amplitude of the distorted signal exceeds the threshold value, it is possible to take measures such as inspection and repair.

例えば、鋼構造物に生ずる応力を電気信号に変換して検出する歪ゲージと、歪ゲージで検出した検出信号に増幅、A/D変換を施して得られた応力信号の振幅の検出値と基準値との比較判定などの信号処理を司るCPUと、データを記録するメモリ部およびUSBと、これらからの出力を受けて判定結果を表示するLED表示部と、各部に電源を供給する電源部と、CPU、LED表示部、電源部を収容する筐体とを有する鋼構造物の応力監視装置が知られている(特許文献1)。この応力監視装置の監視時間帯は、1日のうち少なくとも1列車編成の列車が通過する限られた時間帯に割り当てられ、且つ複数日に一回の周期で割り当てられる。 For example, a strain gauge that converts the stress generated in a steel structure into an electrical signal and detects it, and the detected value and reference of the amplitude of the stress signal obtained by amplifying and A/D converting the detection signal detected by the strain gauge A CPU that controls signal processing such as comparison with values, a memory unit and USB that record data, an LED display unit that receives the output from these and displays the judgment result, and a power supply unit that supplies power to each unit. , a CPU, an LED display unit, and a housing accommodating a power supply unit are known (Patent Document 1). The monitoring time zone of this stress monitoring device is assigned to a limited time zone during which at least one train train is passing in one day, and is assigned once every several days.

また、き裂診断対象に定められた2つの領域に設置された歪センサと、演算装置を備えたき裂診断装置が知られている(特許文献2)。このき裂診断装置では、き裂診断対象のき裂なし解析モデルと、き裂あり解析モデルとを用いた応力解析(外力を作用させた応力解析)により、き裂の発生に伴う歪信号の振幅の変化量の相対的な変化割合が設定された値以上になる2つの領域が求められ、この2つの領域に対応する領域に歪センサが設置される。演算装置は、き裂診断時期に各歪センサより入力されるデータによる診断データ群と、き裂診断対象にき裂が発生していない正常状態のときに蓄積した正常データ群とを統計処理により相対比較し、その比較結果を基に、き裂診断対象におけるき裂発生の有無を判定する。 Further, there is known a crack diagnosis apparatus including strain sensors installed in two areas determined to be crack diagnosis targets and an arithmetic unit (Patent Document 2). In this crack diagnosis device, stress analysis (stress analysis with external force applied) using an analysis model without cracks and an analysis model with cracks, which is the target of crack diagnosis, is performed to determine the strain signal associated with the occurrence of cracks. Two regions are obtained in which the relative rate of change in the amount of change in amplitude is equal to or greater than a set value, and strain sensors are installed in regions corresponding to these two regions. The arithmetic unit statistically processes the diagnostic data group based on the data input from each strain sensor at the time of crack diagnosis and the normal data group accumulated when the crack diagnosis target is in a normal state where no crack has occurred. A relative comparison is made, and based on the comparison result, the presence or absence of crack generation in the crack diagnosis target is determined.

特開2017-49112号公報(2017年3月9日公開)Japanese Patent Application Laid-Open No. 2017-49112 (published on March 9, 2017) 特開2017-187327号公報(2017年10月12日公開)Japanese Patent Application Laid-Open No. 2017-187327 (published on October 12, 2017)

しかしながら、上述のような従来技術は、通過車両等の荷重等による外力が作用したときの歪信号の振幅の変化をモニタリングする方法であるため、車両等が通過する短時間で発生する歪を高速サンプリングで計測しなければならない。このため、高価な計測設備が必要であるという問題があった。 However, the conventional technology described above is a method of monitoring changes in the amplitude of a strain signal when an external force such as the load of a passing vehicle acts. It must be measured by sampling. Therefore, there is a problem that expensive measuring equipment is required.

本発明の目的は、動的な外力を繰り返し受ける金属構造物の劣化損傷を安価且つ簡便に検知することができる金属構造物の歪測定装置、及び金属構造物の劣化損傷検知方法を提供することにある。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a strain measuring device for metal structures and a method for detecting deterioration damage to metal structures, which can inexpensively and easily detect deterioration damage to metal structures that are subjected to repeated dynamic external forces. It is in.

上記の課題を解決するために、本発明に係る金属構造物の歪測定装置は、動的な外力が繰り返し加わる金属構造物の歪測定装置であって、前記金属構造物の歪を表す歪信号を出力するために前記金属構造物に設置された歪ゲージと、前記動的な外力に基づいて前記金属構造物に生じた疲労き裂による内部応力の変化を検出するために、前記歪ゲージから出力された歪信号の動的応答過程に基づいて、前記金属構造物の内部応力に関連するベース値を所定の時間間隔で継続的に測定する測定部とを備えることを特徴とする。 In order to solve the above problems, a strain measuring device for a metal structure according to the present invention is a strain measuring device for a metal structure to which a dynamic external force is repeatedly applied, wherein a strain signal representing the strain of the metal structure and a strain gauge installed on the metal structure to output the dynamic external force from the strain gauge to detect changes in internal stress due to fatigue cracks occurring in the metal structure. a measuring unit for continuously measuring a base value related to the internal stress of the metal structure at predetermined time intervals based on the dynamic response process of the output strain signal.

この特徴によれば、歪信号の動的応答過程に基づいて、金属構造物の内部応力に関連するベース値を所定の時間間隔で継続的に測定することにより、金属構造物に生じた疲労き裂による内部応力の変化を検出することができる。このため、短時間で変化する歪を高速で計測するための高価な計測設備は不要であり、動的な外力を繰り返し受ける金属構造物の劣化損傷を安価且つ簡便に検知することができる。 According to this feature, based on the dynamic response process of the strain signal, by continuously measuring the base value related to the internal stress of the metal structure at predetermined time intervals, the fatigue strain generated in the metal structure can be determined. Changes in internal stress due to cracks can be detected. Therefore, expensive measuring equipment for measuring strain that changes in a short period of time at high speed is not required, and degradation damage to metal structures that are repeatedly subjected to dynamic external forces can be detected easily and inexpensively.

本発明に係る金属構造物の歪測定装置では、前記ベース値は、前記歪信号の動的応答過程の起点となる値であって、前記外力が双方向に継続して加わる場合は前記歪信号の振幅の中央値を含み、前記外力が一方向に継続して加わる場合は前記歪信号の振幅の極大値又は極小値を含み、前記外力が間欠的に加わる場合は前記歪信号の変動の起点であるとともに前記外力が加わっていないときの前記歪信号の値を含むことが好ましい。 In the strain measuring device for a metal structure according to the present invention, the base value is a value that becomes a starting point of the dynamic response process of the strain signal, and when the external force is continuously applied in both directions, the strain signal including the median value of the amplitude of the strain signal when the external force is applied continuously in one direction, including the maximum value or the minimum value of the amplitude of the strain signal, and when the external force is applied intermittently, the starting point of the fluctuation of the strain signal and includes the value of the strain signal when the external force is not applied.

上記構成によれば、外力の作用状況に応じて歪信号からベース値を検出することができる。 According to the above configuration, it is possible to detect the base value from the strain signal according to the state of action of the external force.

本発明に係る金属構造物の歪測定装置では、前記ベース値は、一定期間にサンプリングされた歪信号の複数個のサンプリング値から、最大値から大きい順に選択した所定個数のサンプリング値と最小値から小さい順に選択した所定個数のサンプリング値とを除外した残りのサンプリング値の平均値を含むことが好ましい。 In the strain measuring apparatus for a metal structure according to the present invention, the base value is obtained from a predetermined number of sampled values and a minimum value selected from a plurality of sampled values of the strain signal sampled in a certain period in descending order from the maximum value. It is preferable to include a predetermined number of sampled values selected in ascending order and an average value of the remaining sampled values excluding the sampled values.

上記構成によれば、歪ゲージから出力された歪信号のノイズを排除することができる。 According to the above configuration, noise in the strain signal output from the strain gauge can be eliminated.

本発明に係る金属構造物の歪測定装置では、前記ベース値は、一定期間にサンプリングされた歪信号の、前記動的な外力が双方向に繰り返し加わっているときの複数個のサンプリング値の中央値を含むことが好ましい。 In the strain measuring device for a metal structure according to the present invention, the base value is the center of a plurality of sampled values of strain signals sampled in a certain period when the dynamic external force is repeatedly applied in both directions. It preferably contains a value.

上記構成によれば、歪信号の複数個のサンプリング値の中央値が金属構造物に生じた内部応力を表すため、中央値の変化を検出することにより金属構造物の劣化損傷を検知することができる。 According to the above configuration, since the median value of the plurality of sampling values of the strain signal represents the internal stress generated in the metal structure, deterioration damage of the metal structure can be detected by detecting a change in the median value. can.

本発明に係る金属構造物の歪測定装置では、前記ベース値は、一定期間にサンプリングされた歪信号の、前記動的な外力が一方向に繰り返し加わっているときの複数個のサンプリング値の極大値又は極小値を含むことが好ましい。 In the strain measuring device for a metal structure according to the present invention, the base value is the maximum of a plurality of sampled values of the strain signal sampled in a certain period when the dynamic external force is repeatedly applied in one direction. It is preferred to include values or local minima.

上記構成によれば、歪信号の複数個のサンプリング値の極大値又は極小値が金属構造物に生じた内部応力を表すため、極大値又は極小値の変化を検出することにより金属構造物の劣化損傷を検知することができる。 According to the above configuration, the maximum value or the minimum value of the plurality of sampling values of the strain signal represents the internal stress generated in the metal structure. Damage can be detected.

本発明に係る金属構造物の歪測定装置では、前記ベース値は、一定期間にサンプリングされた歪信号の前記動的な外力が加わっていないときのサンプリング値を含むことが好ましい。 In the strain measuring apparatus for a metal structure according to the present invention, it is preferable that the base value includes a sampling value of the strain signal sampled for a certain period when the dynamic external force is not applied.

上記構成によれば、車両の荷重等の外力が作用したときの歪の変化を測定する必要が無いため、短時間で発生する歪を高速で計測する必要が無くなる。 According to the above configuration, there is no need to measure a change in strain when an external force such as a load of a vehicle acts, so there is no need to measure strain occurring in a short time at high speed.

本発明に係る金属構造物の歪測定装置では、前記歪信号のサンプリング周波数が0.1Hz以上10Hz以下であることが好ましい。 In the strain measuring device for a metal structure according to the present invention, it is preferable that the strain signal has a sampling frequency of 0.1 Hz or more and 10 Hz or less.

上記構成によれば、歪信号の高速サンプリングが不要になる。 According to the above configuration, high-speed sampling of the distorted signal becomes unnecessary.

本発明に係る金属構造物の歪測定装置では、前記金属構造物の他の歪を表す他の歪信号を出力するために前記金属構造物に設置された他の歪ゲージをさらに備え、前記歪ゲージは、前記金属構造物の溶接によって内部応力が引張応力になっている箇所に設置され、前記他の歪ゲージは、前記金属構造物の溶接によって内部応力が圧縮応力になっている箇所に設置されることが好ましい。 The strain measuring apparatus for a metal structure according to the present invention further comprises another strain gauge installed on the metal structure for outputting another strain signal representing another strain of the metal structure, The gauge is installed at a location where the internal stress is tensile stress due to welding of the metal structure, and the other strain gauge is installed at a location where the internal stress is compressive stress due to welding of the metal structure. preferably.

上記構成によれば、金属構造物に損傷が発生したときに発生する内部応力の変化に応じて金属構造物の劣化損傷を精度良く検知することができる。 According to the above configuration, it is possible to accurately detect the deterioration damage of the metal structure according to the change in the internal stress generated when the metal structure is damaged.

本発明に係る金属構造物の歪測定装置では、前記金属構造物の他の歪を表す他の歪信号を出力するために前記金属構造物に設置された他の歪ゲージをさらに備え、前記金属構造物が、第1金属材と、第2金属材と、前記第1及び前記第2金属材を締結する溶接部とを有し、前記歪ゲージは、前記溶接部によって前記金属構造物に生じた引張の内部応力が生じている溶接部領域に配置され、前記他の歪ゲージは、前記溶接によって生じた引張の内部応力とバランスする逆方向の圧縮の内部応力が生じている逆方向応力領域に配置されることが好ましい。 The strain measuring apparatus for a metal structure according to the present invention further comprises another strain gauge installed on the metal structure for outputting another strain signal representing another strain of the metal structure, A structure has a first metal material, a second metal material, and a weld that joins the first and second metal materials, and the strain gauge is generated in the metal structure by the weld. and the other strain gauge is positioned in a weld zone where there is an internal tensile stress in the opposite direction, and the other strain gauge is located in a region of the weld where there is an internal compressive stress in the opposite direction that balances the internal tensile stress created by the weld. is preferably placed in the

上記構成によれば、金属構造物に損傷が発生したときに発生する内部応力の変化に応じて金属構造物の劣化損傷を精度良く検知することができる。 According to the above configuration, it is possible to accurately detect the deterioration damage of the metal structure according to the change in the internal stress generated when the metal structure is damaged.

本発明に係る金属構造物の歪測定装置では、前記金属構造物が、第1金属板材と、第2金属板材と、前記第1金属板材の表面及び前記第2金属板材の表面に接合する溶接部とを有し、前記歪ゲージが前記第1金属板材の裏面に設置されることが好ましい。 In the strain measuring device for a metal structure according to the present invention, the metal structure includes a first metal plate, a second metal plate, and welding for joining the surface of the first metal plate and the surface of the second metal plate. and the strain gauge is installed on the back surface of the first metal plate.

上記構成によれば、金属構造物に損傷が発生したときに発生する第1金属板材の表面と裏面での内部応力の変化に応じて金属構造物の劣化損傷を精度良く検知することができる。 According to the above configuration, deterioration damage of the metal structure can be accurately detected according to the change in internal stress between the front surface and the back surface of the first metal plate that occurs when the metal structure is damaged.

本発明に係る金属構造物の歪測定装置では、前記金属構造物の他の歪を表す他の歪信号を出力するために前記金属構造物に設置された他の歪ゲージをさらに備え、前記歪ゲージが前記金属構造物の表面に設置され、前記他の歪ゲージが前記金属構造物の裏面に設置されることが好ましい。 The strain measuring apparatus for a metal structure according to the present invention further comprises another strain gauge installed on the metal structure for outputting another strain signal representing another strain of the metal structure, It is preferable that a gauge is installed on the surface of the metal structure and the other strain gauge is installed on the back surface of the metal structure.

上記構成によれば、金属構造物に損傷が発生したときの第1金属板材の表面と裏面での内部応力の変化に応じて金属構造物の劣化損傷を精度良く検知することができる。 According to the above configuration, it is possible to accurately detect the deterioration damage of the metal structure according to the change in the internal stress between the front surface and the back surface of the first metal plate when the metal structure is damaged.

本発明に係る金属構造物の歪測定装置では、前記金属構造物の他の歪を表す他の歪信号を出力するために前記金属構造物に設置された他の歪ゲージをさらに備え、前記歪ゲージに対応する前記金属構造物の歪が第1方向に沿った歪であり、前記他の歪ゲージに対応する前記金属構造物の他の歪が前記第1方向に直交する第2方向に沿った歪であり、前記歪ゲージ及び前記他の歪ゲージは、測定方向が互いに直交するように設置されることが好ましい。 The strain measuring apparatus for a metal structure according to the present invention further comprises another strain gauge installed on the metal structure for outputting another strain signal representing another strain of the metal structure, A strain of the metal structure corresponding to the gauge is a strain along a first direction, and another strain of the metal structure corresponding to the other strain gauge is a strain along a second direction orthogonal to the first direction. Preferably, the strain gauge and the other strain gauge are installed so that the measuring directions are orthogonal to each other.

上記構成によれば、金属構造物に損傷が発生したときに発生する内部応力の発生方向に応じて金属構造物の劣化損傷を精度良く検知することができる。 According to the above configuration, it is possible to accurately detect the deterioration damage of the metal structure according to the direction in which the internal stress generated when the metal structure is damaged.

上記の課題を解決するために、本発明に係る金属構造物の劣化損傷検知方法は、動的な外力が繰り返し加わる金属構造物の劣化損傷検知方法であって、前記金属構造物の表面に設置された歪ゲージから出力された歪信号の動的応答過程に基づいて、前記金属構造物に生じた疲労き裂によって変化する内部応力に関連するベース値を所定の時間間隔で継続的に測定し、前記ベース値の経時的な変化量を求める測定工程と、前記測定工程で求められた前記ベース値の経時的な変化量を、予め定められた既定値と比較する比較工程と、前記ベース値の経時的な変化量と前記既定値との比較結果に基づいて、前記金属構造物の劣化損傷の発生の有無を判断する判断工程とを包含することを特徴とする。 In order to solve the above problems, a method for detecting deterioration damage to a metal structure according to the present invention is a method for detecting deterioration damage to a metal structure to which a dynamic external force is repeatedly applied. Based on the dynamic response process of the strain signal output from the strain gauge, the base value related to the internal stress that changes due to fatigue cracks occurring in the metal structure is continuously measured at predetermined time intervals. a measuring step of determining the amount of change in the base value over time; a comparison step of comparing the amount of change in the base value over time obtained in the measuring step with a predetermined default value; and a judgment step of judging whether or not deterioration damage has occurred in the metal structure based on a result of comparison between the amount of change over time of and the predetermined value.

この特徴によれば、歪信号の動的応答過程に基づいて、金属構造物に生じた疲労き裂によって変化する内部応力に関連するベース値を所定の時間間隔で継続的に測定することにより、金属構造物の劣化損傷による内部応力の変化を検出することができる。このため、短時間で発生する歪を高速で計測するための高価な計測設備は不要であり、動的な外力を繰り返し受ける金属構造物の劣化損傷を安価且つ簡便に検知することができる。 According to this feature, based on the dynamic response process of the strain signal, by continuously measuring the base value related to the internal stress that changes due to fatigue cracks occurring in the metal structure at predetermined time intervals, Changes in internal stress due to deterioration damage of metal structures can be detected. Therefore, expensive measuring equipment for measuring strain generated in a short period of time at high speed is not required, and degradation damage of metal structures subjected to repeated dynamic external forces can be detected inexpensively and simply.

本発明に係る金属構造物の劣化損傷検知方法は、前記測定工程で求めるベース値の経時的な変化量が、前記歪信号の値と、測定開始時点の前記歪信号の初期値との間の差分値を含むことが好ましい。 In the method for detecting deterioration damage of a metal structure according to the present invention, the amount of change over time in the base value obtained in the measurement step is between the value of the strain signal and the initial value of the strain signal at the start of measurement. It preferably contains a difference value.

上記構成によれば、ベース値の変化量に基づいて、金属構造物の劣化損傷の発生の有無を判断することができる。 According to the above configuration, it is possible to determine whether deterioration damage has occurred in the metal structure based on the amount of change in the base value.

本発明に係る金属構造物の劣化損傷検知方法は、前記測定工程で求めるベース値の経時的な変化量が、前記ベース値の単位時間当たりの変化量を含むことが好ましい。 In the method for detecting deterioration damage of a metal structure according to the present invention, the amount of change over time in the base value obtained in the measuring step preferably includes the amount of change in the base value per unit time.

上記構成によれば、ベース値の変化量に基づいて、金属構造物の劣化損傷の発生の有無を判断することができる。 According to the above configuration, it is possible to determine whether deterioration damage has occurred in the metal structure based on the amount of change in the base value.

本発明に係る金属構造物の劣化損傷検知方法は、前記測定工程で求めるベース値の経時的な変化量が、前記所定の時間間隔で継続的に測定されたベース値の変化量の中で所定の範囲以上に異なった変化傾向を示す変化量を含むことが好ましい。 In the method for detecting deterioration damage of a metal structure according to the present invention, the amount of change over time in the base value obtained in the measuring step is a predetermined amount of change in the base value continuously measured at the predetermined time interval. It is preferable that the amount of change showing a different trend of change be included in the range of or more.

上記構成によれば、ベース値の変化量に基づいて、金属構造物の劣化損傷の発生の有無を判断することができる。 According to the above configuration, it is possible to determine whether deterioration damage has occurred in the metal structure based on the amount of change in the base value.

本発明は、動的な外力を繰り返し受ける金属構造物の劣化損傷を安価且つ簡便に検知することができるという効果を奏する。 ADVANTAGE OF THE INVENTION This invention is effective in the ability to detect deterioration damage of a metal structure which receives a dynamic external force repeatedly at low cost and simply.

実施形態に係る鋼構造物の歪測定装置の構成を示す概略斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic perspective view which shows the structure of the strain measuring apparatus of the steel structure which concerns on embodiment. (a)~(c)は上記鋼構造物の歪測定装置により測定されるベース値の概念を示す波形図である。(a) to (c) are waveform diagrams showing the concept of the base value measured by the strain measuring device for the steel structure. (a)(b)は疲労試験における上記ベース値の変化を説明するためのグラフである。(a) and (b) are graphs for explaining changes in the base values in fatigue tests. (a)は上記鋼構造物の要部を示す斜視図であり、(b)~(d)は上記鋼構造物の各要部に負荷された荷重の繰り返し回数と各要部の平均歪との間の関係を示すグラフである。(a) is a perspective view showing the main part of the steel structure, and (b) to (d) show the number of repetitions of the load applied to each main part of the steel structure and the average strain of each main part. is a graph showing the relationship between (a)~(f)は上記鋼構造物の要部のき裂発生による内部応力の変化の熱応力解析の結果を示す画像である。(a) to (f) are images showing the results of thermal stress analysis of changes in internal stress due to crack initiation in the main part of the steel structure. 上記鋼構造物に溶接によって生じた内部応力のバランスと境界線の一例を示す模式的斜視図である。FIG. 4 is a schematic perspective view showing an example of the balance and boundaries of internal stress generated by welding in the steel structure. (a)は上記鋼構造物の要部に発生した疲労き裂と歪ゲージを示す模式的斜視図であり、(b)は上記疲労き裂に基づく歪範囲、平均歪を示すグラフである。(a) is a schematic perspective view showing fatigue cracks and strain gauges generated in the main part of the steel structure, and (b) is a graph showing the strain range and average strain based on the fatigue cracks. 上記鋼構造物の要部に発生した疲労き裂と一対の歪ゲージを示す模式的斜視図である。FIG. 4 is a schematic perspective view showing fatigue cracks and a pair of strain gauges generated in the main part of the steel structure; 上記鋼構造物の歪測定装置に設けられた複数の歪ゲージの配置態様の一例を示す図である。It is a figure which shows an example of the arrangement|positioning aspect of several strain gauges provided in the strain measuring apparatus of the said steel structure.

以下、本発明の実施の形態について、詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail.

図1は実施形態に係る鋼構造物2の歪測定装置1の構成を示す概略斜視図である。歪測定装置1は、動的な外力が繰り返し加わる鋼構造物2(金属構造物)に発生する歪を測定する。鋼構造物2は、例えば、矩形平板状の鋼材5(第1金属材)と、鋼材5の一端に溶接部8により鋼材5に垂直に接合された矩形平板状の鋼材6(第2金属材)と、鋼材5及び6の間の接合を補強するように溶接部11により鋼材5及び6に接合された台形平板状の鋼材7とを備える。但し、図1に示される鋼構造物2は、理解の容易のための一例を示すものであり、図1に示す構造に限定されない。 FIG. 1 is a schematic perspective view showing the configuration of a strain measuring device 1 for a steel structure 2 according to an embodiment. A strain measuring device 1 measures strain generated in a steel structure 2 (metal structure) to which a dynamic external force is repeatedly applied. The steel structure 2 includes, for example, a rectangular plate-shaped steel member 5 (first metal member) and a rectangular plate-shaped steel member 6 (second metal member) vertically joined to the steel member 5 by a weld 8 at one end of the steel member 5 . ) and a trapezoidal plate-shaped steel 7 joined to the steels 5 and 6 by a weld 11 so as to reinforce the joint between the steels 5 and 6 . However, the steel structure 2 shown in FIG. 1 shows an example for easy understanding, and is not limited to the structure shown in FIG.

歪測定装置1は、鋼材5の歪を表す歪信号を出力するために鋼材5の表面に配置される歪ゲージ3と、動的な外力に基づいて鋼材5に生じた疲労き裂16による内部応力の変化を検出するために、歪ゲージ3から出力された歪信号の動的応答過程に基づいて、外力が作用していない状態で計測された鋼材5の内部応力に関連するベース値を所定の時間間隔で継続的に測定する測定装置10とを備える。 The strain measuring device 1 includes a strain gauge 3 arranged on the surface of the steel material 5 to output a strain signal representing the strain of the steel material 5 and an internal strain gauge 3 caused by a fatigue crack 16 generated in the steel material 5 based on a dynamic external force. Based on the dynamic response process of the strain signal output from the strain gauge 3, a base value related to the internal stress of the steel material 5 measured in the absence of external forces is determined to detect changes in stress. and a measuring device 10 for continuously measuring at time intervals of .

本明細書において「ベース値」とは、鋼構造物2の溶接によって生じた内部応力に関連する値であり、歪信号の動的応答過程の起点となる値であって、同一の大きさの外力が鋼構造物2に双方向に継続して加わる場合は歪信号の振幅の中央値に対応するものであり、外力が鋼構造物2に一方向に継続して加わる場合は、外力が零となった際に生じる歪信号の振幅の極大値又は極小値に対応するものであり、外力が鋼構造物2に間欠的に加わる場合は歪信号の変動の起点に対応するとともに外力が鋼構造物2に加わっていないときの歪信号の値に対応するものである。 In this specification, the "base value" is a value related to internal stress generated by welding of the steel structure 2, a value that is the starting point of the dynamic response process of the strain signal, and has the same magnitude. When the external force is continuously applied to the steel structure 2 in both directions, it corresponds to the median value of the amplitude of the strain signal, and when the external force is continuously applied to the steel structure 2 in one direction, the external force is zero. When the external force is intermittently applied to the steel structure 2, it corresponds to the starting point of the fluctuation of the strain signal and the external force is the steel structure It corresponds to the value of the distortion signal when the object 2 is not attached.

このベース値は、一定期間にサンプリングされた歪信号の複数個のサンプリング値から、最大値から大きい順に選択した所定個数のサンプリング値と最小値から小さい順に選択した所定個数のサンプリング値とを除外した残りのサンプリング値の平均値を含むことができる。 This base value excludes a predetermined number of sampled values selected in descending order from the maximum value and a predetermined number of sampled values selected in descending order from the minimum value from the plurality of sampled values of the distortion signal sampled in a certain period. An average of the remaining sampled values can be included.

このベース値は、一定期間にサンプリングされた歪信号の前記動的な外力が双方向に繰り返し加わっているときの複数個のサンプリング値の中央値を含むことができる。 This base value can include a median value of a plurality of sampled values of the strain signal sampled for a certain period when the dynamic external force is repeatedly applied in both directions.

このベース値は、一定期間にサンプリングされた歪信号の前記動的な外力が一方向に繰り返し加わっているときの複数個のサンプリング値の極大値又は極小値を含むことができる。 This base value can include a maximum value or a minimum value of a plurality of sampling values when the dynamic external force of the strain signal sampled in a certain period is repeatedly applied in one direction.

このベース値は、一定期間にサンプリングされた歪信号の前記動的な外力が加わっていないときのサンプリング値を含むことができる。 This base value can include a sampling value of the strain signal sampled for a certain period of time when the dynamic external force is not applied.

一定期間にサンプリングされた歪信号のサンプリング周波数は、0.1Hz以上10Hz以下であることが好ましい。 It is preferable that the sampling frequency of the distortion signal sampled in a certain period is 0.1 Hz or more and 10 Hz or less.

歪測定装置1は、鋼材5の他の歪を表す他の歪信号を出力するために鋼材5の表面に配置される歪ゲージ4を備えることが好ましい。歪ゲージ3は溶接によって鋼材5に引張応力が生じる箇所に設置され、歪ゲージ4は、溶接によって鋼材5に圧縮応力が生じる箇所に設置されることが好ましい。 The strain measuring device 1 preferably comprises a strain gauge 4 placed on the surface of the steel 5 to output another strain signal representing another strain of the steel 5 . It is preferable that the strain gauge 3 is installed at a location where tensile stress is generated in the steel material 5 by welding, and the strain gauge 4 is installed at a location where compressive stress is generated in the steel material 5 by welding.

鋼構造物2の鋼材5・6は、溶接部8・11に生じた内部応力(例えば引張応力)に対応する溶接部領域R1と、溶接部8・11に生じた内部応力とバランスする逆方向の他の内部応力(例えば圧縮応力)に対応する逆方向応力領域R2と、この溶接部領域R1及び逆方向応力領域R2を区画する境界線9とを有する。歪ゲージ3は溶接部領域R1に配置されることが好ましく、歪ゲージ4は逆方向応力領域R2に配置されることが好ましい。 The steel materials 5 and 6 of the steel structure 2 have a weld region R1 corresponding to the internal stress (e.g., tensile stress) generated in the welds 8 and 11 and an opposite direction to balance the internal stress generated in the welds 8 and 11. and a boundary line 9 that separates the weld region R1 and the reverse stress region R2. The strain gauge 3 is preferably arranged in the weld region R1 and the strain gauge 4 is preferably arranged in the reverse stress region R2.

歪ゲージ3・4は、鋼材5の鋼材7と反対側の面に設置されてもよいし、鋼材5の鋼材7側の面と鋼材7と反対側の面との双方に設置されてもよい。 The strain gauges 3 and 4 may be installed on the surface of the steel material 5 opposite to the steel material 7, or may be installed on both the surface of the steel material 5 on the steel material 7 side and the surface on the opposite side of the steel material 7. .

歪ゲージ4が検出する歪の方向は、歪ゲージ3が検出する歪の方向と同じ方向であっても良いし、異なる方向、例えば直交する方向であってもよい。 The direction of strain detected by the strain gauge 4 may be the same direction as the direction of strain detected by the strain gauge 3, or may be a different direction, for example, an orthogonal direction.

測定装置10は、鋼構造物2の鋼材5の表面に設置された歪ゲージ3・4から出力された歪信号の動的応答過程に基づいて、鋼材5の溶接によって生じる内部応力に関連するベース値を所定の時間間隔で継続的に測定し、このベース値の経時的な変化量を求めるベース値の測定部13と、ベース値の測定部13で求められたベース値の経時的な変化量を、予め定められた既定値と比較するベース値の変化量の比較部14と、このベース値の経時的な変化量と既定値との比較結果に基づいて、鋼材5の劣化損傷の発生の有無を判断する劣化損傷の判断部15とを含む。 Based on the dynamic response process of the strain signals output from the strain gauges 3 and 4 installed on the surface of the steel material 5 of the steel structure 2, the measuring device 10 measures the internal stress related to the welding of the steel material 5. A base value measurement unit 13 for continuously measuring a value at predetermined time intervals to obtain the amount of change over time in the base value, and the amount of change over time in the base value obtained by the base value measurement unit 13. is compared with a predetermined default value, and based on the result of comparison between the amount of change over time in the base value and the default value, the occurrence of deterioration damage of the steel material 5 is determined. and a deterioration damage determination unit 15 that determines the presence or absence of damage.

ベース値の測定部13で求めるベース値の経時的な変化量は、歪ゲージ3から出力された歪信号の値と、測定開始時点の歪信号の初期値との間の差分値を含んでもよいし、ベース値の単位時間当たりの変化量を含んでもよいし、上記所定の時間間隔で継続的に測定されたベース値の変化量の中で所定の範囲以上に異なった変化傾向を示す変化量を含んでもよい。 The amount of change over time in the base value obtained by the base value measuring unit 13 may include a difference value between the value of the strain signal output from the strain gauge 3 and the initial value of the strain signal at the start of measurement. and may include the amount of change in the base value per unit time, or the amount of change showing a different trend of change over a predetermined range among the amounts of change in the base value continuously measured at the predetermined time intervals. may include

実施形態に係る歪測定装置1は、動的な外力を繰り返し受ける鋼構造物2の疲労き裂16の発生などの劣化・損傷を、外力(荷重)の大きさに対する変形量の大きさ、即ち、歪信号の振幅の大きさを測定し、外力に対して歪信号の振幅の大きさが一定以上になると劣化損傷が発生していると判断していた従来の手法とは異なり、鋼構造物2の溶接による内部応力のバランスに着目したものである。 The strain measuring device 1 according to the embodiment measures deterioration/damage such as occurrence of fatigue cracks 16 in the steel structure 2 which is subjected to repeated dynamic external forces by measuring the magnitude of the amount of deformation with respect to the magnitude of the external force (load), i.e. , the amplitude of the strain signal is measured, and when the amplitude of the strain signal exceeds a certain level with respect to the external force, it is judged that deterioration damage has occurred. 2 focused on the balance of internal stress due to welding.

鋼構造物2の内部応力は、溶接部8・11による引張応力と釣り合うように、部材締結部近傍だけでなく鋼構造物2の全体に生じて分布している。また、ボルト等の部材締結部による建造時の締め付けにより初期的に発生した残留応力も内部応力となる。 The internal stress of the steel structure 2 is generated and distributed throughout the steel structure 2, not only in the vicinity of the member fastening portions, so as to balance the tensile stress due to the welds 8 and 11. In addition, the residual stress initially generated by the tightening of member fastening portions such as bolts at the time of construction also becomes internal stress.

そのため、鋼構造物2の劣化損傷、例えば、溶接部8・11にき裂などが発生すると、鋼構造物2全体の内部応力のバランスが疲労き裂16により変化する。つまり、この内部応力の変化を効率的に検知できれば、鋼構造物2の劣化損傷を知ることができる。 Therefore, when deterioration damage occurs in the steel structure 2 , for example, cracks occur in the welded portions 8 and 11 , the internal stress balance of the entire steel structure 2 changes due to the fatigue cracks 16 . In other words, if the change in internal stress can be efficiently detected, deterioration damage of the steel structure 2 can be detected.

本実施形態は、上述の知見に加え、外力によって変化する歪を測定する中で、内部応力のバランスの変化が、歪信号の動的な応答過程に基づくベース値の変化により検知できるという新たな知見に基づきなされたものである。本実施形態に係る歪測定装置1は、外力が加わったときの変形量(歪信号の振幅)を測定するのではなく、歪信号の動的な応答過程に基づくベース値を時系列に継続的に測定することで、内部応力の絶対値ではなくて、経時的な変化量(ベース値の経時的な変化量)の大きさを検出するものである。 In addition to the above findings, the present embodiment has a new finding that changes in the internal stress balance can be detected from changes in the base value based on the dynamic response process of the strain signal while measuring the strain that changes due to external force. It is based on knowledge. The strain measuring device 1 according to this embodiment does not measure the amount of deformation (amplitude of the strain signal) when an external force is applied, but continuously measures the base value based on the dynamic response process of the strain signal in time series. , the amount of change over time (the amount of change over time in the base value) is detected instead of the absolute value of the internal stress.

そして、ベース値の経時的な変化量と予め定められた既定値とを比較することにより、鋼構造物2の劣化損傷の発生の有無を判断することができる。「予め定められた既定値」とは、対象となる鋼構造物2の機械的特性等の各種パラメータを反映したモデル実験等に基づいて予め定めた値であり、動的な外力によって生じた損傷の度合いと歪の応答過程のベース値の相関から決定される。 By comparing the amount of change over time in the base value with a predetermined default value, it is possible to determine whether or not deterioration damage has occurred in the steel structure 2 . The “predetermined value” is a value determined in advance based on a model experiment or the like that reflects various parameters such as mechanical properties of the target steel structure 2, and damage caused by dynamic external force. is determined from the correlation between the degree of and the base value of the strain response process.

このような金属構造物の歪測定装置及び金属構造物の劣化損傷検知方法によれば、高い周波数のサンプリングを必要とせず、測定周期を長くできる。そして、1日数回の計測でよく、バッテリーによる長期間の運用が可能であるため、高価な計測設備を必要としない、簡易なモニタリングシステムを実現することができる。 According to such a strain measuring device for a metal structure and a deterioration damage detection method for a metal structure, high-frequency sampling is not required, and the measurement period can be lengthened. In addition, the measurement can be performed several times a day, and long-term operation using a battery is possible. Therefore, a simple monitoring system that does not require expensive measurement equipment can be realized.

図2(a)~(c)は鋼構造物2の歪測定装置1により測定されるベース値B1・B2・B3の概念を示す波形図である。歪ゲージ3から出力された歪信号S1・S2・S3の動的な応答過程のベース値とは、歪の動的変動の起点(外力が零の状態)となる値である。 2(a) to (c) are waveform diagrams showing the concept of the base values B1, B2, and B3 measured by the strain measuring device 1 for the steel structure 2. FIG. The base value of the dynamic response process of the strain signals S1, S2, and S3 output from the strain gauge 3 is the starting point of the dynamic variation of the strain (when the external force is zero).

図2(a)に示すように、外力が双方向に均等に鋼構造物2に加わる場合は、歪ゲージ3から出力された歪信号S1の振幅の中央値が、外力が零の状態のベース値B1である。図2(b)に示すように、外力が一方向に鋼構造物2に加わる場合は、歪ゲージ3から出力された歪信号S2の極大値が、外力が零の状態のベース値B2となる。なお、上記外力が逆方向から一方向に作用した場合は極大値の替わりに極小値が、外力が零の状態のベース値B2となる。図2(c)に示すように、外力が間欠的に鋼構造物2に加わる場合は、変動の起点であるとともに外力のかかっていないときの値がベース値B3となる。 As shown in FIG. 2(a), when the external force is equally applied to the steel structure 2 in both directions, the median value of the amplitude of the strain signal S1 output from the strain gauge 3 is the base value when the external force is zero. value B1. As shown in FIG. 2(b), when an external force is applied to the steel structure 2 in one direction, the maximum value of the strain signal S2 output from the strain gauge 3 is the base value B2 when the external force is zero. . When the external force acts in one direction from the opposite direction, the minimum value instead of the maximum value becomes the base value B2 when the external force is zero. As shown in FIG. 2(c), when an external force is intermittently applied to the steel structure 2, the base value B3 is the starting point of fluctuation and the value when no external force is applied.

図3(a)(b)は疲労試験における上記ベース値の変化を説明するためのグラフである。図4(a)は鋼構造物2の要部を示す斜視図であり、(b)~(d)は鋼構造物2の各要部に負荷された荷重の繰り返し回数と各要部の平均歪との間の関係を示すグラフである。図5(a)~(f)は鋼構造物2の要部における疲労き裂16の発生による内部応力の変化の熱応力解析の結果を示す画像である。図6は鋼構造物2に溶接部8・11によって生じた内部応力のバランスと境界線の一例を示す模式的斜視図である。 FIGS. 3(a) and 3(b) are graphs for explaining changes in the base values in the fatigue test. FIG. 4(a) is a perspective view showing the main part of the steel structure 2, and (b) to (d) show the number of repetitions of the load applied to each main part of the steel structure 2 and the average of each main part. 4 is a graph showing the relationship between strain. 5(a) to (f) are images showing the results of thermal stress analysis of changes in internal stress due to the occurrence of fatigue cracks 16 in the main part of the steel structure 2. FIG. FIG. 6 is a schematic perspective view showing an example of the balance of internal stress generated by the welded portions 8 and 11 in the steel structure 2 and boundary lines.

本発明者らは、図3(a)(b)に示すように、試験体である鋼構造物2に繰り返し荷重を作用させた疲労試験を行い、長期にわたる無荷重下の歪(平均歪)の変化から損傷を検知することができないかについて検討したところ、繰り返し回数が一定回数に達すると歪ゲージ3により検出される無荷重下の歪(平均歪)の変化曲線に、図4(b)に示されるように異常が認められ、それが図4(a)に示される疲労き裂16の発生と進展に大きく関係していることを見出した。そして、その結果の妥当性は、疲労き裂16の発生による内部応力の変化の熱応力解析によって、図5(a)~(f)に示されるように、疲労き裂16が発生し進展すると、無荷重下の歪(平均歪、残留応力)が変化することで確認された。鋼構造物2には、溶接部11によって鋼材5に、図6に示されるような、境界線9によって区画される引張応力に対応する溶接部領域R1と、圧縮応力に対応する逆方向応力領域R2とが生じる。このため、疲労き裂16が発生して内部応力が変化すると、溶接部領域R1に貼り付けた歪ゲージ3のベース値は圧縮側の歪(図4(b))となり、逆方向応力領域R2に貼り付けた歪ゲージ4のベース値は引張側の歪(図4(c))となる。 As shown in FIGS. 3(a) and 3(b), the present inventors conducted a fatigue test in which a cyclic load was applied to a steel structure 2, which is a specimen, and found that the strain under no load over a long period of time (average strain) As a result of examining whether it is possible to detect damage from changes in , the change curve of the strain under no load (average strain) detected by the strain gauge 3 when the number of repetitions reaches a certain number is shown in Fig. 4(b). , and found that it is closely related to the initiation and propagation of the fatigue crack 16 shown in FIG. 4(a). The validity of the result is that the thermal stress analysis of the change in internal stress due to the generation of the fatigue crack 16 shows that the fatigue crack 16 is generated and propagates as shown in FIGS. , was confirmed by the change in the strain under no load (mean strain, residual stress). The steel structure 2 has a weld area R1 corresponding to tensile stress and a reverse stress area corresponding to compressive stress, as shown in FIG. R2 is generated. Therefore, when the fatigue crack 16 occurs and the internal stress changes, the base value of the strain gauge 3 attached to the weld region R1 becomes the strain on the compression side (Fig. 4(b)), and the reverse stress region R2 The base value of the strain gauge 4 affixed to is the strain on the tensile side (Fig. 4(c)).

本実施形態は、このような知見に基づくものであり、従来のような外力が加わったときの変化量(歪信号の振幅)を測定するのではなく、歪信号の動的な応答過程のベースとなる値(ベース値)を時系列で継続的に測定することで、鋼構造物2の劣化損傷によって変化する内部応力の絶対値ではなく、内部応力の経時的な変化の大きさを検出するものである。そして、ベース値の経時的な変化量と予め定められた既定値とを比較することにより、鋼構造物2の劣化損傷が発生したと判断することができる。 The present embodiment is based on such knowledge, and instead of measuring the amount of change (amplitude of the strain signal) when an external force is applied as in the conventional method, it is based on the dynamic response process of the strain signal. By continuously measuring the value (base value) in chronological order, the magnitude of change in internal stress over time is detected instead of the absolute value of internal stress that changes due to deterioration damage of the steel structure 2. It is. By comparing the amount of change over time in the base value with a predetermined default value, it can be determined that deterioration damage has occurred in the steel structure 2 .

図7(a)は鋼構造物2の要部に発生した疲労き裂16と歪ゲージ3とを示す模式的斜視図であり、(b)は上記疲労き裂16の発生・進展に基づく歪範囲、平均歪の変化を示すグラフである。従来は、疲労き裂16の有無は荷重の作用による歪信号の振幅の変化により評価する方式が一般的であったが、図7(b)の歪範囲の変化を示す曲線L1及び平均歪の変化を示す曲線L2に示すように、上記荷重の作用による歪範囲の変化よりも無荷重下の歪(平均歪)の方が、疲労き裂16の発生に敏感に反応するという知見を本発明者らは見出した。鋼構造物2に溶接部8・11によって生じる内部応力(残留応力)が影響する範囲内であれば、鋼構造物2のどの部位に対しても上記知見を適用することが可能である。 FIG. 7(a) is a schematic perspective view showing a fatigue crack 16 generated in the main part of the steel structure 2 and the strain gauge 3, and FIG. 4 is a graph showing changes in range and average strain; Conventionally, the presence or absence of the fatigue crack 16 was generally evaluated by the change in the amplitude of the strain signal due to the action of the load. As shown by the curve L2 showing the change, the present invention is based on the knowledge that the strain under no load (average strain) reacts more sensitively to the generation of the fatigue crack 16 than the change in the strain range due to the action of the load. they found. The above knowledge can be applied to any portion of the steel structure 2 within the range where the internal stress (residual stress) generated by the welded portions 8 and 11 affects the steel structure 2 .

従来の鋼構造物2の劣化損傷検知のためのモニタリングシステムは、リアルタイムモニタリングであり、力学的には外的荷重に対する応答による評価であり、常時電源が必要であったり、あるいは計測期間が限定されていた。そして、損傷による力学的挙動・振動特性などは室内実験で検証していた。 The conventional monitoring system for detecting deterioration and damage of the steel structure 2 is real-time monitoring, and mechanically, it is an evaluation based on the response to an external load, and requires a constant power supply or has a limited measurement period. was In addition, the mechanical behavior and vibration characteristics due to damage were verified in laboratory experiments.

これに対して、実施形態に係る歪測定装置1によるモニタリングシステムは、一定期間ごとのデータを蓄積するだけでよいモニタリングであり、1日に1回あるいは数秒計測するだけでよく、計測されたデータの転送は、1日1回、又は1週間に1回程度でよい。従って、計測機器、通信機器の電力消費量が従来のモニタリングシステムに比べて非常に少なくなる。このため、常時電源が不要となり電池のみで数年間の長期に渡る計測期間の計測が可能となる。 On the other hand, the monitoring system using the strain measuring device 1 according to the embodiment is a monitoring system that only needs to accumulate data for a certain period of time. may be transferred once a day or once a week. Therefore, the power consumption of measuring equipment and communication equipment is much less than that of the conventional monitoring system. This eliminates the need for a constant power supply and enables long-term measurement over several years using only a battery.

実施形態に係る歪測定装置1は、外力等が鋼構造物2に作用していない状態の歪データを計測することができる。計測対象は、鋼構造物2に限定されず、損傷が生じると内部応力の釣り合いが変化する構造物であれば、他の金属構造物や金属を部分的に利用したコンクリート構造物であってもよい。 The strain measuring device 1 according to the embodiment can measure strain data in a state where no external force or the like is acting on the steel structure 2 . The object to be measured is not limited to the steel structure 2, and may be any other metal structure or a concrete structure that partially uses metal as long as the structure changes the balance of internal stress when damage occurs. good.

実施形態に係る歪測定装置1の計測対象は、損傷が生じると内部応力の釣り合いが変化するので、歪測定装置1は損傷を検知するために動的な外力を作用させる必要が無い。 When damage occurs, the balance of internal stress changes in the object to be measured by the strain measuring device 1 according to the embodiment, so the strain measuring device 1 does not need to apply a dynamic external force to detect damage.

図8は鋼構造物2の要部に発生した疲労き裂16と一対の歪ゲージ3・4とを示す模式的斜視図である。鋼構造物2に発生した疲労き裂16により異なる方向の内部応力(例えば圧縮応力と引張応力)が発生する異なる箇所に一対の歪ゲージ3・4を設置してもよい。そして、発生した疲労き裂16に対して、鋼構造物2に外力(荷重)が作用しない状態の歪を計測することにより、鋼構造物2の動的な外力の繰り返しによる疲労き裂16の進展を監視することが可能である。 FIG. 8 is a schematic perspective view showing a fatigue crack 16 generated in a main part of the steel structure 2 and a pair of strain gauges 3 and 4. FIG. A pair of strain gauges 3 and 4 may be installed at different locations where fatigue cracks 16 generated in the steel structure 2 cause internal stresses (for example, compressive stress and tensile stress) in different directions. Then, by measuring the strain in a state where no external force (load) acts on the steel structure 2 for the fatigue crack 16 that has occurred, the fatigue crack 16 due to repeated dynamic external forces on the steel structure 2 is measured. Progress can be monitored.

歪ゲージ3・4を鋼構造物2に設置する例を示したが、本発明はこれに限定されない。歪ゲージ3・4の替わりに、コイルに交流電流を印加する渦流探傷検査等で疲労き裂16の進展を監視することが可能である。 Although an example in which the strain gauges 3 and 4 are installed on the steel structure 2 has been shown, the present invention is not limited to this. Instead of using the strain gauges 3 and 4, it is possible to monitor the progress of the fatigue crack 16 by an eddy current inspection or the like in which an alternating current is applied to the coil.

鋼構造物2の疲労き裂16を検知する例を示したが、本発明はこれに限定されない。鋼構造物2に設けられたボルトの頭部あるいは軸部に歪ゲージを設置し、鋼構造物2に外力(荷重)が作用しない状態の歪を計測してもよい。また、鋼構造物2の溶接によって生じる内部応力(残留応力)が腐食によって変化する位置の歪のベース値の変化を経時的に計測できれば鋼構造物2の腐食の進行を検知することも可能であるし、加速度計や変位計を用いて鋼構造物2の角度を計測できれば鋼構造物2の変位・角度に係る損傷を検出することも可能である。 Although an example of detecting the fatigue crack 16 of the steel structure 2 has been shown, the present invention is not limited to this. A strain gauge may be installed on the head or shaft of a bolt provided on the steel structure 2 to measure the strain when no external force (load) acts on the steel structure 2 . In addition, if the change in the base value of the strain at the position where the internal stress (residual stress) generated by welding of the steel structure 2 changes due to corrosion can be measured over time, it is possible to detect the progress of corrosion of the steel structure 2. Alternatively, if the angle of the steel structure 2 can be measured using an accelerometer or a displacement meter, it is possible to detect damage related to the displacement/angle of the steel structure 2 .

そして、実施形態に係る歪測定装置1は、RC(Reinforced Concrete、鉄筋コンクリート)、PC(Prestressed Concrete、プレストレストコンクリート)に係る損傷によって内部応力のバランスが変化する損傷も検出することが可能である。例えば、PCケーブルの定着部近傍のナット部の歪等を計測することにより、PCケーブルの損傷等を検知することが可能である。 The strain measuring device 1 according to the embodiment can also detect damage that changes the internal stress balance due to damage to RC (reinforced concrete) and PC (prestressed concrete). For example, by measuring the distortion of the nut portion near the fixing portion of the PC cable, it is possible to detect the damage of the PC cable.

歪測定装置1が鋼構造物2に生じた疲労き裂16による内部応力の変化を検出する例を説明したが、本発明はこれに限定されない。歪測定装置1が検出する対象は、鋼構造物2に生じた損傷によって変化する指標であればよい。そして、歪測定装置1の計測値は、荷重が作用していない状態の計測値でよく、頻繁に計測する必要が無い。歪測定装置1は、荷重が作用していない平常時のデータを取り続けることで鋼構造物2の損傷を検知することができる。 Although an example in which the strain measuring device 1 detects changes in internal stress due to fatigue cracks 16 generated in the steel structure 2 has been described, the present invention is not limited to this. The target to be detected by the strain measuring device 1 may be an index that changes due to damage occurring in the steel structure 2 . Further, the measured values of the strain measuring device 1 may be measured values in a state where no load is applied, and there is no need for frequent measurements. The strain measuring device 1 can detect damage to the steel structure 2 by continuing to acquire data during normal times when no load is applied.

図9は鋼構造物2の歪測定装置1に設けられた複数の歪ゲージ3の配置態様の一例を示す図である。鋼構造物2は例えば、図9に示すように、橋梁であり得る。この橋梁に設けられた鋼板に所定の間隔を空けて複数個の歪ゲージ3が設置される。各歪ゲージ3は、鋼板の歪を表す歪信号を無線により測定装置10に送信する。 FIG. 9 is a diagram showing an example of arrangement of a plurality of strain gauges 3 provided in the strain measuring device 1 for the steel structure 2. As shown in FIG. The steel structure 2 can be, for example, a bridge, as shown in FIG. A plurality of strain gauges 3 are installed at predetermined intervals on steel plates provided on the bridge. Each strain gauge 3 wirelessly transmits a strain signal representing the strain of the steel plate to the measuring device 10 .

以上のように、本実施形態に係る金属構造物の歪測定装置及び金属構造物の劣化損傷検知方法は、動的な外力を繰り返し受ける金属構造物に発生する劣化損傷による内部応力のバランスの変化を検知することができ、これにより、溶接部の疲労き裂などの構造物の劣化損傷の発生を検知できる。 As described above, the strain measuring device for metal structures and the deterioration damage detection method for metal structures according to the present embodiment can be used to measure changes in internal stress balance due to deterioration damage that occurs in metal structures that are repeatedly subjected to dynamic external forces. can be detected, thereby detecting the occurrence of structural deterioration damage such as fatigue cracks in welds.

本実施形態は更に以下のような特長を有している。 This embodiment further has the following features.

(1)歪以外の物理量の測定は必要としない。 (1) Measurement of physical quantities other than strain is not required.

(2)溶接部近傍だけでなく、劣化損傷により金属構造物の構成単位全体で釣り合っている内部応力の変動が検知できる位置であれば損傷が検知できる。 (2) Damage can be detected not only in the vicinity of the welded portion, but also at any position where variation in internal stress balanced in the entire structural unit of the metal structure due to deterioration damage can be detected.

(3)高い周波数でのサンプリングは必要なく、測定間隔を長くできる。 (3) Sampling at a high frequency is not required, and measurement intervals can be lengthened.

(4)目視できない箇所の損傷も検知できる。 (4) It is possible to detect damage in places that are not visible to the naked eye.

(5)従来の動的負荷に対する歪の大きさの判断よりも検知の感度が良い。 (5) Sensitivity of detection is better than conventional determination of magnitude of strain for dynamic load.

日本の高度成長期などに建造された大規模な社会インフラの劣化が大きな問題となってきている。かかる社会情勢のもと、この社会的課題の解決に対する要請が高まっている。また、IoT(Internet of Things、物のインターネット)や高速度大容量通信(5G(第5世代移動通信システム、5th Generation)規格など)の技術の進歩の期待も高まっており、新しい技術を応用した技術の開発が望まれている。本実施形態はこれらの社会的要請に応えるものである。 The deterioration of the large-scale social infrastructure built during Japan's high-growth period has become a major problem. Under such social conditions, there is an increasing demand for solutions to this social problem. In addition, expectations are rising for the advancement of technologies such as the Internet of Things (IoT) and high-speed, high-capacity communications (5G (5th Generation mobile communication system, 5th Generation ) standards, etc.), and new technologies will be applied. It is desired to develop a technology that This embodiment meets these social demands.

本実施形態は、動的な外力を繰り返し受けて劣化損傷する金属構造物および金属を部分的に利用した構造物であれば適用可能であり、例えば、高速道路や道路橋、河川にかかる橋梁、鉄塔、鉄橋、車両の通行可能な大型の吊橋、及び、鉄道車両の台車部分などに対して適用することができる。 This embodiment can be applied to metal structures and structures that partially use metal that are subject to repeated dynamic external forces for deterioration and damage. For example, highways, road bridges, bridges over rivers, It can be applied to steel towers, iron bridges, large suspension bridges through which vehicles can pass, bogie parts of railroad vehicles, and the like.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, but can be modified in various ways within the scope of the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. is also included in the technical scope of the present invention.

1 歪測定装置
2 鋼構造物(金属構造物)
3 歪ゲージ
4 歪ゲージ
5 鋼材(第1金属材)
6 鋼材(第2金属材)
7 鋼材
8 溶接部(締結部)
9 境界線
10 測定装置(測定部)
11 溶接部
13 ベース値の測定部
14 ベース値の変化量の比較部
15 劣化損傷の判断部
16 疲労き裂
S1、S2、S3 歪信号
B1、B2、B3 ベース値
R1 溶接部領域
R2 逆方向応力領域
1 strain measuring device 2 steel structure (metal structure)
3 strain gauge 4 strain gauge 5 steel material (first metal material)
6 Steel material (second metal material)
7 Steel material 8 Welded part (Fastening part)
9 boundary line 10 measuring device (measuring unit)
11 Welded portion 13 Base value measurement portion 14 Base value change amount comparison portion 15 Degradation damage determination portion 16 Fatigue cracks S1, S2, S3 Strain signals B1, B2, B3 Base value R1 Welded region R2 Reverse stress region

Claims (15)

動的な外力が繰り返し加わる金属構造物の歪測定装置であって、
前記金属構造物の歪を表す歪信号を出力するために前記金属構造物に設置された歪ゲージと、
前記金属構造物の内部応力の変化を利用して、前記動的な外力によって前記金属構造物に生じた劣化損傷検出するために、前記外力が零になるときに前記歪ゲージにより計測された前記金属構造物の前記歪信号の値であるベース値を所定の時間間隔で継続的に測定する測定部とを備えることを特徴とする金属構造物の歪測定装置。
A strain measuring device for a metal structure to which a dynamic external force is repeatedly applied,
a strain gauge mounted on the metal structure for outputting a strain signal representing the strain of the metal structure;
In order to detect degradation damage caused to the metal structure by the dynamic external force using changes in the internal stress of the metal structure, the strain gauge is measured when the external force becomes zero. and a measuring unit for continuously measuring a base value , which is the value of the strain signal of the metal structure, at predetermined time intervals.
前記ベース値は、記外力が双方向に継続して加わる場合は、外力が零になる前記歪信号の振幅の中央値を含み、前記外力が一方向に継続して加わる場合は、外力が零になる前記歪信号の振幅の極大値又は極小値を含み、前記外力が間欠的に加わる場合は前記歪信号の変動の起点であるとともに前記外力が加わっていないときの前記歪信号の値を含む請求項1に記載の金属構造物の歪測定装置。 The base value includes the median value of the amplitude of the strain signal at which the external force is zero when the external force is continuously applied in both directions, and when the external force is continuously applied in one direction, the external force is It includes the maximum value or the minimum value of the amplitude of the distortion signal that becomes zero, is the starting point of fluctuation of the distortion signal when the external force is applied intermittently, and is the value of the distortion signal when the external force is not applied. 2. The strain measuring device for a metal structure according to claim 1, comprising: 前記ベース値は、一定期間にサンプリングされた歪信号の複数個のサンプリング値から、最大値から大きい順に選択した所定個数のサンプリング値と最小値から小さい順に選択した所定個数のサンプリング値とを除外した残りのサンプリング値の平均値を含む請求項1に記載の金属構造物の歪測定装置。 The base value excludes a predetermined number of sampled values selected in descending order from the maximum value and a predetermined number of sampled values selected in ascending order from the minimum value from the plurality of sampled values of the distortion signal sampled in a predetermined period. 2. A strain measuring apparatus for a metal structure according to claim 1, which includes an average value of the remaining sampling values. 前記ベース値は、一定期間にサンプリングされた歪信号の、前記動的な外力が双方向に繰り返し加わっているときの複数個のサンプリング値の中央値を含む請求項1に記載の金属構造物の歪測定装置。 2. The metal structure according to claim 1, wherein the base value includes a median value of a plurality of sampling values of strain signals sampled in a certain period when the dynamic external force is repeatedly applied in both directions. Strain measuring device. 前記ベース値は、一定期間にサンプリングされた歪信号の、前記動的な外力が一方向に繰り返し加わっているときの複数個のサンプリング値の極大値又は極小値を含む請求項1に記載の金属構造物の歪測定装置。 2. The metal according to claim 1, wherein the base value includes a maximum value or a minimum value of a plurality of sampling values of strain signals sampled in a certain period when the dynamic external force is repeatedly applied in one direction. Structural strain measurement device. 前記ベース値は、一定期間にサンプリングされた歪信号の前記動的な外力が加わっていないときのサンプリング値を含む請求項1に記載の金属構造物の歪測定装置。 2. The apparatus for measuring strain of a metal structure according to claim 1, wherein the base value includes a sampling value of the strain signal sampled for a certain period when the dynamic external force is not applied. 前記歪信号のサンプリング周波数が0.1Hz以上10Hz以下である請求項3~6の何れか1項に記載の歪測定装置。 The strain measuring device according to any one of claims 3 to 6, wherein the distortion signal has a sampling frequency of 0.1 Hz or more and 10 Hz or less. 前記金属構造物の他の歪を表す他の歪信号を出力するために前記金属構造物に設置された他の歪ゲージをさらに備え求項1に記載の金属構造物の歪測定装置。 2. The apparatus for measuring strain of a metal structure according to claim 1, further comprising another strain gauge installed on said metal structure for outputting another strain signal representing another strain of said metal structure. . 前記金属構造物が、第1金属板材と、第2金属板材と、前記第1金属板材の表面及び前記第2金属板材の表面に接合する溶接部とを有し、The metal structure has a first metal plate material, a second metal plate material, and a weld portion that joins the surface of the first metal plate material and the surface of the second metal plate material,
前記歪ゲージが前記第1金属板材の裏面に設置される請求項1に記載の金属構造物の歪測定装置。2. A strain measuring apparatus for a metal structure according to claim 1, wherein said strain gauge is installed on the rear surface of said first metal plate.
前記金属構造物の他の歪を表す他の歪信号を出力するために前記金属構造物に設置された他の歪ゲージをさらに備え、further comprising another strain gauge mounted on the metal structure for outputting another strain signal representing another strain of the metal structure;
前記歪ゲージが前記金属構造物の表面に設置され、The strain gauge is installed on the surface of the metal structure,
前記他の歪ゲージが前記金属構造物の裏面に設置される請求項1に記載の金属構造物の歪測定装置。2. A strain measuring apparatus for a metal structure according to claim 1, wherein said another strain gauge is installed on the back surface of said metal structure.
前記金属構造物の他の歪を表す他の歪信号を出力するために前記金属構造物に設置された他の歪ゲージをさらに備え、further comprising another strain gauge mounted on the metal structure for outputting another strain signal representing another strain of the metal structure;
前記歪ゲージに対応する前記金属構造物の歪が第1方向に沿った歪であり、strain of the metal structure corresponding to the strain gauge is strain along a first direction;
前記他の歪ゲージに対応する前記金属構造物の他の歪が前記第1方向に直交する第2方向に沿った歪であり、the other strain of the metal structure corresponding to the other strain gauge is strain along a second direction orthogonal to the first direction;
前記歪ゲージ及び前記他の歪ゲージは、測定方向が互いに直交するように設置される請求項1に記載の金属構造物の歪測定装置。2. A strain measuring apparatus for a metal structure according to claim 1, wherein said strain gauge and said another strain gauge are installed so that their measuring directions are perpendicular to each other.
動的な外力が繰り返し加わる金属構造物の劣化損傷検知方法であって、A deterioration damage detection method for a metal structure to which a dynamic external force is repeatedly applied, comprising:
前記金属構造物の表面に設置された歪ゲージから出力された歪信号に基づいて、前記金属構造物の内部応力の変化を利用して、前記動的な外力によって前記金属構造物に生じた劣化損傷を検出するために、前記外力が零になるときに前記歪ゲージにより計測された前記金属構造物の前記歪信号の値であるベース値を所定の時間間隔で継続的に測定し、前記ベース値の経時的な変化量を求める測定工程と、Deterioration caused in the metal structure due to the dynamic external force based on a strain signal output from a strain gauge installed on the surface of the metal structure and using a change in internal stress of the metal structure. In order to detect damage, a base value, which is the value of the strain signal of the metal structure measured by the strain gauge when the external force becomes zero, is continuously measured at predetermined time intervals. a measuring step of determining the amount of change in value over time;
前記測定工程で求められた前記ベース値の経時的な変化量を、予め定められた既定値と比較する比較工程と、a comparing step of comparing the amount of change over time of the base value obtained in the measuring step with a predetermined default value;
前記ベース値の経時的な変化量と前記既定値との比較結果に基づいて、前記金属構造物の劣化損傷の発生の有無を判断する判断工程とを包含することを特徴とする金属構造物の劣化損傷検知方法。and a determination step of determining whether or not deterioration damage has occurred in the metal structure based on the result of comparison between the amount of change over time in the base value and the predetermined value. Degradation damage detection method.
前記測定工程で求めるベース値の経時的な変化量が、前記歪信号の値と、測定開始時点の前記歪信号の初期値との間の差分値を含む請求項12に記載の金属構造物の劣化損傷検知方法。13. The metal structure according to claim 12, wherein the amount of change over time in the base value obtained in the measuring step includes a difference value between the value of the strain signal and the initial value of the strain signal at the start of measurement. Degradation damage detection method. 前記測定工程で求めるベース値の経時的な変化量が、前記ベース値の単位時間当たりの変化量を含む請求項12に記載の金属構造物の劣化損傷検知方法。13. The method for detecting deterioration and damage to a metal structure according to claim 12, wherein the amount of change over time in the base value obtained in the measuring step includes the amount of change in the base value per unit time. 前記測定工程で求めるベース値の経時的な変化量が、前記所定の時間間隔で継続的に測定されたベース値の変化量の中で所定の範囲以上に異なった変化傾向を示す変化量を含む請求項12に記載の金属構造物の劣化損傷検知方法。The amount of change over time in the base value obtained in the measuring step includes an amount of change showing a different trend of change over a predetermined range among the amounts of change in the base value continuously measured at the predetermined time intervals. The method for detecting deterioration damage of a metal structure according to claim 12.
JP2019036949A 2019-02-28 2019-02-28 Strain measuring device for metal structure and method for detecting deterioration damage of metal structure Active JP7208622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019036949A JP7208622B2 (en) 2019-02-28 2019-02-28 Strain measuring device for metal structure and method for detecting deterioration damage of metal structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019036949A JP7208622B2 (en) 2019-02-28 2019-02-28 Strain measuring device for metal structure and method for detecting deterioration damage of metal structure

Publications (2)

Publication Number Publication Date
JP2020139885A JP2020139885A (en) 2020-09-03
JP7208622B2 true JP7208622B2 (en) 2023-01-19

Family

ID=72264789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019036949A Active JP7208622B2 (en) 2019-02-28 2019-02-28 Strain measuring device for metal structure and method for detecting deterioration damage of metal structure

Country Status (1)

Country Link
JP (1) JP7208622B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116182943B (en) * 2023-01-31 2023-12-15 扬州丰筑建设工程有限公司 Large-span steel structure health monitoring method and system based on data reconstruction

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066228A (en) 1999-08-31 2001-03-16 Murakami Yukitaka Fatigue damage diagnosing device
JP2001281120A (en) 2000-03-30 2001-10-10 Kawasaki Heavy Ind Ltd Crack-shaped fatigue detection element and its manufacturing method and damage degree estimation method by using crack-shaped fatigue detection element
JP2001338382A (en) 2000-05-29 2001-12-07 Takenaka Komuten Co Ltd Measuring instrument and monitoring system
JP2003322593A (en) 2002-04-26 2003-11-14 Nippon Steel Corp Residual fatigue life estimating device for steel structure weld part, estimating system, estimating method, program, and storage medium
JP2004264153A (en) 2003-02-28 2004-09-24 Japan Fine Ceramics Center Damage sensor using conductive ceramic continuum
JP2005066646A (en) 2003-08-25 2005-03-17 Toshiba Corp Method for estimating deformation and residual stress in welded structure and apparatus therefor
JP2005337818A (en) 2004-05-25 2005-12-08 Japan Fine Ceramics Center Damage sensor, its manufacturing method, and strain detection method
JP2006053095A (en) 2004-08-13 2006-02-23 Hiroshima Univ Method of measuring opening variation amount of surface crack in structure, method of measuring surface crack depth, and database used therefor
JP2006337144A (en) 2005-06-01 2006-12-14 Kawasaki Heavy Ind Ltd Fatigue life diagnostic method and diagnostic support device of bridge
US9261444B1 (en) 2013-07-30 2016-02-16 The Boeing Company Apparatus, system, and method for in situ strength testing of a bonded joint
JP2017027468A (en) 2015-07-24 2017-02-02 株式会社Ttes Data generation device, data generation method, program, and recording medium
JP2018025020A (en) 2016-08-09 2018-02-15 国立大学法人九州大学 Crack diagnostic device and crack diagnostic method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194275A (en) * 1992-12-24 1994-07-15 Ishikawajima Harima Heavy Ind Co Ltd Monitor for structure
JP3188838B2 (en) * 1996-03-28 2001-07-16 株式会社福岡機器製作所 Data collection device for fatigue analysis by rainflow method
JP2952576B2 (en) * 1996-12-25 1999-09-27 株式会社ビーエムシー Method and apparatus for detecting fatigue damage of structural material
JP3749411B2 (en) * 1999-12-09 2006-03-01 株式会社鷺宮製作所 Control method and material test apparatus in material test apparatus
SE524784C2 (en) * 2003-02-10 2004-10-05 Sandvik Ab Gyratory crusher has first and second crush covers limiting crush gap adjustable by alteration of relative positions of covers
KR100798100B1 (en) * 2005-12-22 2008-01-28 주식회사 포스코 Fatigue Load Level Detecting Gauge
JP2007241583A (en) * 2006-03-08 2007-09-20 Hitachi Ltd Mechanical quantity measuring apparatus and method
JP5484227B2 (en) * 2010-07-08 2014-05-07 株式会社共和電業 Strain gauge for hot spot stress measurement and hot spot stress measurement sensor device
JP6803766B2 (en) * 2017-02-16 2020-12-23 株式会社東光高岳 Strength evaluation method, structure manufacturing method, strength evaluation device, and strength evaluation program

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066228A (en) 1999-08-31 2001-03-16 Murakami Yukitaka Fatigue damage diagnosing device
JP2001281120A (en) 2000-03-30 2001-10-10 Kawasaki Heavy Ind Ltd Crack-shaped fatigue detection element and its manufacturing method and damage degree estimation method by using crack-shaped fatigue detection element
JP2001338382A (en) 2000-05-29 2001-12-07 Takenaka Komuten Co Ltd Measuring instrument and monitoring system
JP2003322593A (en) 2002-04-26 2003-11-14 Nippon Steel Corp Residual fatigue life estimating device for steel structure weld part, estimating system, estimating method, program, and storage medium
JP2004264153A (en) 2003-02-28 2004-09-24 Japan Fine Ceramics Center Damage sensor using conductive ceramic continuum
JP2005066646A (en) 2003-08-25 2005-03-17 Toshiba Corp Method for estimating deformation and residual stress in welded structure and apparatus therefor
JP2005337818A (en) 2004-05-25 2005-12-08 Japan Fine Ceramics Center Damage sensor, its manufacturing method, and strain detection method
JP2006053095A (en) 2004-08-13 2006-02-23 Hiroshima Univ Method of measuring opening variation amount of surface crack in structure, method of measuring surface crack depth, and database used therefor
JP2006337144A (en) 2005-06-01 2006-12-14 Kawasaki Heavy Ind Ltd Fatigue life diagnostic method and diagnostic support device of bridge
US9261444B1 (en) 2013-07-30 2016-02-16 The Boeing Company Apparatus, system, and method for in situ strength testing of a bonded joint
JP2017027468A (en) 2015-07-24 2017-02-02 株式会社Ttes Data generation device, data generation method, program, and recording medium
JP2018025020A (en) 2016-08-09 2018-02-15 国立大学法人九州大学 Crack diagnostic device and crack diagnostic method

Also Published As

Publication number Publication date
JP2020139885A (en) 2020-09-03

Similar Documents

Publication Publication Date Title
Chaki et al. Guided ultrasonic waves for non-destructive monitoring of the stress levels in prestressed steel strands
US6192758B1 (en) Structure safety inspection
US8596135B2 (en) System and method for monitoring health of structural joints
JP5113874B2 (en) Structural integrity monitoring system
US6532825B1 (en) Fatigue damage detection sensor for structural materials and mounting method thereof
US20080201089A1 (en) System and method for determining neutral temperature of a metal
WO2017079986A1 (en) Optical fibre detection apparatus using steel rail as elastic body, and railway overload and unbalanced load detection system
JP4862708B2 (en) Deterioration degree diagnosis method, deterioration degree diagnosis device, and deterioration diagnosis program
JP7208622B2 (en) Strain measuring device for metal structure and method for detecting deterioration damage of metal structure
JP6050152B2 (en) Non-contact evaluation method for damage to bearing parts of railway bridges
Chakraborty et al. Embedded ultrasonic transmission sensors and signal processing techniques for structural change detection in the Gliwice bridge
JP4542957B2 (en) Loosening detection method and apparatus for laminated iron core of electrical equipment
JP6079098B2 (en) Crane crack diagnosis apparatus and method
JP2003322593A (en) Residual fatigue life estimating device for steel structure weld part, estimating system, estimating method, program, and storage medium
Valinejadshoubi et al. Structural health monitoring of buildings and infrastructure
Simon et al. Structural monitoring of prestressed concrete containments of nuclear power plants for ageing management
Wang et al. Relationship between local damage and structural dynamic behavior
JP2001056272A (en) Measuring method of stress enlarging factor
CN105548360A (en) Stress concentration and ultrasonic guided wave based composite stay cable rusting monitoring method
JP2010112942A (en) Method for monitoring of steel structure
JP2017187327A (en) Crack diagnostic method and device
JP6426568B2 (en) Crack occurrence diagnosis method and crack occurrence diagnosis program
JPH09269268A (en) Method for detecting looseness of bolt by strain wave analysis
RU2411478C2 (en) Method for diagnostics of technical condition of steel reinforced concrete spans
RU2550826C2 (en) Method to measure stresses in structure without removal of static loads

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221226

R150 Certificate of patent or registration of utility model

Ref document number: 7208622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150