JP2006337144A - Fatigue life diagnostic method and diagnostic support device of bridge - Google Patents

Fatigue life diagnostic method and diagnostic support device of bridge Download PDF

Info

Publication number
JP2006337144A
JP2006337144A JP2005161374A JP2005161374A JP2006337144A JP 2006337144 A JP2006337144 A JP 2006337144A JP 2005161374 A JP2005161374 A JP 2005161374A JP 2005161374 A JP2005161374 A JP 2005161374A JP 2006337144 A JP2006337144 A JP 2006337144A
Authority
JP
Japan
Prior art keywords
fatigue
bridge
life
sensor
damage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005161374A
Other languages
Japanese (ja)
Inventor
Osamu Murakishi
治 村岸
Satoshi Umeda
聡 梅田
Kazuo Ogaki
賀津雄 大垣
Original Assignee
Kawasaki Heavy Ind Ltd
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Ind Ltd, 川崎重工業株式会社 filed Critical Kawasaki Heavy Ind Ltd
Priority to JP2005161374A priority Critical patent/JP2006337144A/en
Publication of JP2006337144A publication Critical patent/JP2006337144A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fatigue life diagnostic method for carrying out accurate maintenance on the basis of estimation by accurately estimating an endurance period, even by a unskilled person, concerning a structure, in particular, a bridge. <P>SOLUTION: The fatigue life diagnostic method comprises sticking a fatigue sensor 30, by selecting a proper part for measuring repeating stress, on the basis of the whole structure of the bridge, a detailed structure and an active load mounting state; recording the result by measuring the developed length of cracks in each fatigue sensor 30 after a prescribed period; estimating the degree of damage concerning each part, in accordance with an accumulated damage rule on the basis of recorded crack developed length; calculating the lifetime by estimating the actual lifetime of an object part from the degree of damage and subtract passage period; and estimating the actual fatigue lifetime concerning each part and the whole bridge, by comparing the residual lifes at each part. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、簡易軽便な疲労センサを用いて、鋼製またはアルミニウム製の橋梁の疲労に起因する残りの寿命を評価する方法に関し、特に溶接部における疲労損傷度を推定して橋梁の余命を求める方法及びそのために使用する診断支援装置に関する。   The present invention relates to a method for evaluating the remaining life due to fatigue of a steel or aluminum bridge using a simple and convenient fatigue sensor, and in particular, estimates the fatigue damage degree in a welded portion to obtain the life expectancy of the bridge. The present invention relates to a method and a diagnosis support apparatus used for the method.
橋梁その他の構造物を的確かつ効率的に保全管理するためには、構造物の状態を定期的に診断もしくは性能評価して余寿命および耐力を定量的に把握することが求められる。
特に、溶接部分に疲労破壊や耐力劣化が起こりやすく、構造物全体としての耐用期間は溶接部の寿命や耐力に左右される場合が多い。構造物には多数の溶接部が存在するが、劣化の激しい溶接部について補修することにより、構造物自体の寿命を実質的に延長させることができる。したがって、橋梁などの構造物における各溶接部の劣化、あるいは余寿命を個々に正しく把握することが構造物を経済的に管理するために求められる。
In order to accurately and efficiently maintain and manage bridges and other structures, it is necessary to periodically diagnose the state of the structure or evaluate the performance to quantitatively grasp the remaining life and strength.
In particular, fatigue failure and yield strength deterioration are likely to occur in the welded portion, and the useful life of the entire structure is often influenced by the life and strength of the welded portion. Although many welds exist in the structure, the life of the structure itself can be substantially extended by repairing a weld that is severely deteriorated. Therefore, in order to manage the structure economically, it is required to correctly grasp the deterioration of each welded part in the structure such as a bridge or the remaining life individually.
特許文献1には、橋梁その他の構造物の状態を診断して余寿命および耐力を定量的に把握して構造物データファイルにデータベース化し、維持経営のための費用を的確に査定するようにした構造物維持経営システムが開示されている。
特許文献1には、橋梁などの構造物の状態を、訓練を受けた検査員が構造物専門家の支援の下で目視検査などに基づく定性的判断と、客観的に診断することにより構造物の余寿命と耐力の特性を定量的に把握してデータベース化することが記載されている。
Patent Document 1 diagnoses the state of bridges and other structures, quantitatively grasps the remaining life and proof stress, creates a database of the structure data file, and accurately assesses maintenance costs. A structure maintenance management system is disclosed.
In Patent Document 1, the state of a structure such as a bridge is evaluated by an inspector who has been trained, with the assistance of a structural expert, qualitative judgment based on visual inspection and the like, and objectively diagnoses the structure. It is described that the remaining life and proof stress characteristics of the product are quantitatively grasped and made into a database.
開示された方法によると、モニタリングセンサーを橋梁に常時取り付けておいて、橋梁の応力ないし歪みその他の特性を検出すると共に、異状の検知もしくは状態の把握を行う。検査員は、モニタリングセンサーと接続した診断装置を使って橋梁を点検、検査ないし診断して、結果を集約しデータベース化する。構造物専門家は、実際の診断における相談に応じると共に検査員の育成を行うものとされる。
特許文献1には、構造物の状態や余寿命などの求め方について実施可能な程度の説明がなく、訓練を受けた検査員が構造物専門家の支援の下で目視検査や構造物の余寿命と耐力の把握を行うとの記載があるので、高度な専門性を身につけた熟達の人材の能力に頼って判断する必要がある。また、最終的な評価、判定は構造物専門家がデータベースに基づいて総合的に行うものと考えられる。
According to the disclosed method, the monitoring sensor is always attached to the bridge, and the stress or strain and other characteristics of the bridge are detected, and the abnormality is detected or the state is grasped. The inspector inspects, inspects or diagnoses the bridge using a diagnostic device connected to the monitoring sensor, and aggregates the results into a database. The structural specialist will respond to consultations in actual diagnosis and train inspectors.
In Patent Document 1, there is no explanation to the extent that it is possible to determine the state of the structure and the remaining life, and a trained inspector can perform visual inspection and the remaining structure with the assistance of a structural expert. Since there is a statement that the life expectancy and proof stress are to be grasped, it is necessary to make a judgment by relying on the ability of skilled human resources with advanced expertise. In addition, the final evaluation and determination are considered to be comprehensively performed by a structural expert based on a database.
このように、従来は、目視により既存の損傷を見つけたり、溶接部の近辺にひずみゲージを貼付しひずみ変換器を組み込んだ計器を用いて局所毎の疲労損傷度を評価していた。
しかし、ひずみゲージを用いた疲労損傷度診断法は、1カ所当たりの計測コストが高くなるため計測点数に制限があり、またデータを電子的に処理する必要があるため、橋梁全体を診断する手法として必ずしも適当ではなかった。さらに、ひずみゲージによる診断は、短期間の計測データに頼るため誤差が大きかった。
Thus, conventionally, the existing damage was found by visual observation, or the fatigue damage degree for each local area was evaluated using an instrument in which a strain gauge was attached in the vicinity of the weld and a strain transducer was incorporated.
However, the fatigue damage diagnosis method using strain gauges is a method of diagnosing the entire bridge because there is a limit to the number of measurement points because the measurement cost per location is high, and the data must be processed electronically. It was not always appropriate. In addition, the strain gauge diagnosis has a large error because it relies on short-term measurement data.
なお、溶接部分の寿命は、いわゆるSN曲線で表されるように、実際にその部分に作用するストレスとその回数に影響される。また、ストレスが強くなると指数関数的に寿命が短縮するので、溶接部に発生する応力集中の程度が重要な問題となる。
そこで、亀裂進展特性が分かっている材料で形成されたサンプルピースを測定対象位置に貼り付けて代替センサとし、観察しやすいサンプルピースについて損傷程度を評価することにより、対象部材の疲労損傷度を推定する疲労センサが用いられることがある。
このようなサンプルピースは、対象部材と同じ繰返し応力を受けるうちに亀裂が生じ、亀裂が進展して、最後には破損するので、亀裂の状態から測定期間中に対象部材に生じた疲労損傷度を推定することができる。特に、対象部材より薄い部材を使用したり予め適当な傷を付けておくことにより、対象部材の疲労損傷度の先行指標として利用することができる。
The life of the welded part is affected by the stress actually applied to the part and the number of times as represented by a so-called SN curve. In addition, since the life is exponentially shortened when the stress becomes stronger, the degree of stress concentration occurring in the weld becomes an important problem.
Therefore, a sample piece formed of a material with known crack growth characteristics is attached to the measurement target position as an alternative sensor, and the degree of damage of the target member is estimated by evaluating the degree of damage for the easily observed sample piece. A fatigue sensor may be used.
Since such a sample piece is cracked while undergoing the same cyclic stress as the target member, the crack progresses and eventually breaks, so the degree of fatigue damage caused to the target member during the measurement period from the crack state Can be estimated. In particular, by using a member thinner than the target member or preliminarily scratching it, it can be used as a leading indicator of the degree of fatigue damage of the target member.
しかし、サンプルピースは大型で設置場所に制約があり応力集中部に近接して貼付することが難しい上、測定位置に貼付するときの状態によって亀裂発生進展の状況が左右されるので、対象部材の疲労損傷度を推定する場合の誤差が大きいという問題があった。
したがって、サンプルピースを使って橋梁等を保全管理する場合には、測定誤差があるため安全係数を高めに設定する必要があるので、実際には余寿命が十分あって使用可能である場合にも安全を確保するため早めに架け替えるなどの不経済な管理を行わざるを得なかった。
However, since the sample piece is large and has a limited installation location, it is difficult to apply it close to the stress concentration part, and the progress of crack generation depends on the state of application to the measurement position. There was a problem that the error in estimating the fatigue damage degree was large.
Therefore, when managing bridges etc. using sample pieces, there is a measurement error, so it is necessary to set a high safety factor. In order to ensure safety, it was necessary to carry out uneconomical management, such as replacing it early.
本出願人は、既に特許文献2に開示したように、極めて小型で取扱いの容易な疲労センサの開発に成功している。
この疲労センサは、指先に載る程度の小さな長方形の箔状ベースに金属箔からなる破断片の両端を接合したもので、破断片は中央部に横断溝が形成されて薄くなっており、この溝部に一側端から所定の長さを持ち最奥に鋭端を有するスリットが形成されている。
疲労センサは、繰返し応力を受けると、スリット先端から亀裂が生じ、繰返し応力に対応して亀裂が進展するので、亀裂長さから測定期間中に実際に受けた繰返し応力の状況を推定することができる。スリットは鋭端を有するので亀裂発生までの時間は十分に短く、スリット部の金属厚さは十分薄いので亀裂進展時間も短いため、亀裂の長さに基づいてストレス状況を敏感に検出することができる。
As disclosed in Patent Document 2, the present applicant has succeeded in developing an extremely small and easy-to-handle fatigue sensor.
This fatigue sensor is made by joining both ends of a broken piece made of metal foil to a small rectangular foil-shaped base that can be placed on the fingertip. The broken piece is thin with a transverse groove formed in the center. A slit having a predetermined length from one end and having a sharp end at the farthest is formed.
When a fatigue sensor is subjected to repeated stress, a crack is generated from the slit tip and the crack progresses in response to the repeated stress. Therefore, it is possible to estimate the actual state of repeated stress received during the measurement period from the crack length. it can. Since the slit has a sharp edge, the time to crack initiation is sufficiently short, and since the metal thickness of the slit is thin enough, the crack propagation time is also short, so it is possible to detect stress conditions sensitively based on the length of the crack. it can.
この疲労センサを基材に貼付して、所定の期間経過したところで亀裂状態を観察することにより、その期間中、実際に基材部分に掛かったストレスの状況を高感度で検知することができる。破断片は箔状ベースの上に固定されているため、対象部材表面に貼付したときにも貼付状態に影響を受けずにストレスに対して安定した検出力を有する。
また、この疲労センサは極めて小型であるので、溶接部に近接して疲労センサを貼付することができ、貼付後所定期間が経過したところで観察すれば、期間中に基材が実際に受けているストレスが分かるため、このストレスに対応する溶接部の実寿命を推定することができる。実寿命からこれまでの経過時間を差し引けば、溶接部の余寿命を推定することができる。このようにして、指定の溶接部について余寿命を推定することができる。
しかし、個々の溶接部や部材の余寿命を知ることができても、それだけで橋梁全体の疲労損傷度を管理することは難しい。
特開2001−306670号公報 特開2001−281120号公報
By attaching this fatigue sensor to the base material and observing the cracked state after a predetermined period of time, the state of stress actually applied to the base material portion can be detected with high sensitivity during that period. Since the broken piece is fixed on the foil-like base, even when it is affixed to the surface of the target member, it has a stable detection power against stress without being affected by the affixing state.
In addition, since this fatigue sensor is extremely small, the fatigue sensor can be affixed close to the welded portion, and the base material is actually received during the period if observed after a predetermined period after the application. Since the stress is understood, the actual life of the weld corresponding to the stress can be estimated. The remaining life of the weld can be estimated by subtracting the elapsed time from the actual life. In this way, the remaining life can be estimated for the designated weld.
However, even if it is possible to know the remaining life of individual welds and members, it is difficult to manage the fatigue damage degree of the entire bridge by itself.
JP 2001-306670 A JP 2001-281120 A
そこで、本発明が解決しようとする課題は、構造物、特に橋梁について、非熟練者であってもその耐用期間を正確に推定して、この推定に基づいて的確な保全を実施できる疲労寿命診断方法を提供することである。
特に、先に開示された疲労センサを適切に使用して、安全を確保しつつ十分経済的な保全管理ができるような橋梁の疲労寿命診断方法を提供することである。
Therefore, the problem to be solved by the present invention is a fatigue life diagnosis for a structure, in particular, a bridge, even if it is an unskilled person, accurately estimating its useful life and performing accurate maintenance based on this estimation. Is to provide a method.
In particular, the present invention is to provide a method for diagnosing a fatigue life of a bridge by appropriately using the previously disclosed fatigue sensor and capable of sufficiently economical maintenance management while ensuring safety.
上記課題を解決するため、本発明に係る橋梁の疲労寿命診断方法は、橋梁の全体構造、詳細構造、活荷重載荷状態に基づいて繰返し応力を測定するための適切な部位を選定して疲労センサを貼付し、所定期間後に各疲労センサにおける亀裂の進展長を計測して結果を記録し、記録された亀裂進展長に基づき累積損傷則に従って各部位について損傷度を推定し、損傷度から対象部位の実寿命を推定し経過期間を差し引いて余寿命を算定して、部位毎の余寿命同士を比較することにより各部位及び橋梁全体について実地の疲労寿命を評価することを特徴とする。   In order to solve the above problems, a fatigue life diagnosis method for a bridge according to the present invention selects an appropriate part for measuring repeated stress based on the overall structure, detailed structure, and active load loading state of the bridge, and selects a fatigue sensor. , Measure the crack growth length in each fatigue sensor after a predetermined period, record the result, estimate the damage degree for each part according to the cumulative damage law based on the recorded crack growth length, and determine the target part from the damage degree The remaining life is calculated by subtracting the elapsed period, and the remaining life of each part is compared with each other and the actual fatigue life is evaluated for each part and the entire bridge.
また、上記課題を解決するため、本発明に係る橋梁の疲労寿命診断支援装置は、橋梁の全体構造、詳細構造、活荷重載荷状態を集積した橋梁データファイルを備え、橋梁データファイルに従って適切な部位を選定して貼付した疲労センサを備え、所定期間後に各疲労センサにおける亀裂の進展長を計測した結果を記録した測定データファイルを備え、測定データファイルに記録された亀裂進展長に基づき累積損傷則に従って各部位について損傷度を推定した結果を記録する損傷度ファイルを備え、対象部位の実寿命を推定し経過期間を差し引いて余寿命を算定して記録する余寿命データファイルを備えて、演算装置が余寿命データファイルに記録した部位毎の余寿命同士を比較することにより各部位及び橋梁全体について実地の疲労寿命を評価することを特徴とする。   Further, in order to solve the above-mentioned problems, the bridge fatigue life diagnosis support device according to the present invention includes a bridge data file in which the entire structure, detailed structure, and active load loading state of the bridge are integrated, and an appropriate part according to the bridge data file. Is provided with a fatigue sensor that has been selected and affixed, and a measurement data file that records the results of measuring the crack growth length of each fatigue sensor after a predetermined period of time, and a cumulative damage law based on the crack growth length recorded in the measurement data file A damage degree file for recording the result of estimating the damage degree for each part according to the above, a remaining life data file for estimating the actual life of the target part, subtracting the elapsed period, and calculating and recording the remaining life data file The actual fatigue life of each part and the entire bridge is evaluated by comparing the remaining life of each part recorded in the remaining life data file. Characterized in that it.
本発明の疲労寿命診断方法および診断支援装置によれば、橋梁データファイルに基づき橋梁の全体構造及び詳細構造、さらに活荷重載荷状態などを参照し、橋梁全体の状態に基づいて全体の疲労損傷を左右する部材あるいは溶接部位を選定することができる。選定された部位に疲労センサを貼付し、所定期間後に測定された疲労センサの亀裂進展長が測定データファイルに格納される。
本発明に使用する疲労センサは、長方形の箔状ベースに金属箔からなる破断片の両端を接合したもので、破断片は中央部に横断溝が形成されて薄くなっており、この溝部に一側端から所定の長さを持ち最奥に鋭端を有するスリットが形成されたものであることが好ましい。この疲労センサは、対象部位に箔状ベースを接着し固定して利用するもので、スリットの先端に成長する亀裂の状態から対象部位に作用する応力を推測することができる。
According to the fatigue life diagnosis method and diagnosis support apparatus of the present invention, the overall structure and detailed structure of the bridge based on the bridge data file, and the active load loading state are referred to, and the entire fatigue damage is determined based on the state of the entire bridge. It is possible to select a member to be influenced or a welding part. A fatigue sensor is affixed to the selected part, and the crack growth length of the fatigue sensor measured after a predetermined period is stored in the measurement data file.
The fatigue sensor used in the present invention is formed by joining both ends of a broken piece made of metal foil to a rectangular foil-shaped base, and the broken piece is thinned with a transverse groove formed in the central portion. It is preferable that a slit having a predetermined length from the side end and having a sharp end at the back is formed. This fatigue sensor is used by adhering and fixing a foil-like base to a target site, and can estimate the stress acting on the target site from the state of a crack growing at the tip of the slit.
なお、材料に応力集中が生じる場合は集中度合いが推定できるように複数の疲労センサを応力勾配に沿って貼付することが好ましい。疲労センサでは、貼付した部位における所定期間中の繰返し応力の実際値と亀裂長さが相関関係を有する。演算装置は測定データファイルに記録された亀裂進展長を用い累積損傷則に従って各部位について疲労損傷度を算出する。算出された疲労損傷度データは損傷度ファイルに格納される。
演算結果は、橋梁データファイルに格納された情報と結合し、人が理解しやすい形に編集されて、ディスプレイあるいはプリンタを通じて出力される。
When stress concentration occurs in the material, it is preferable to attach a plurality of fatigue sensors along the stress gradient so that the concentration degree can be estimated. In the fatigue sensor, there is a correlation between the actual value of the repeated stress and the crack length in a predetermined period at the site where it is applied. The arithmetic unit calculates the fatigue damage degree for each part according to the cumulative damage rule using the crack growth length recorded in the measurement data file. The calculated fatigue damage degree data is stored in a damage degree file.
The calculation result is combined with the information stored in the bridge data file, edited in a form that is easy for humans to understand, and output through a display or a printer.
橋梁の余寿命は、測定部位の余寿命のうち最短のものに従う。従って、余寿命が最短の部材や部位について補修や部品取り替えなど適切な修理を行って余寿命を延長させれば、橋梁自体の余寿命も延長される。このため、余寿命が短い部材に関する情報は従業者が注意を喚起するように表示することが好ましい。
なお、測定期間中の繰返し荷重が供用期間全体に亘って変化しないわけではない。過去の活荷重載荷状態が知れている場合は、測定値、算出値を補正して評価することができる。また、将来についての予測値が分かっている場合も同様に修正して利用することができる。
The remaining life of the bridge follows the shortest remaining life of the measurement site. Therefore, if the remaining life is extended by performing appropriate repairs such as repairs and replacement of parts and parts having the shortest remaining life, the remaining life of the bridge itself is also extended. For this reason, it is preferable to display the information regarding a member with a short remaining life so that an employee may call attention.
Note that the repeated load during the measurement period does not change over the entire service period. When the past live load loading state is known, the measurement value and the calculated value can be corrected and evaluated. Moreover, when the predicted value about the future is known, it can correct and utilize similarly.
本発明の方法は、疲労センサの貼付に多少の専門知識と熟練を必要とするが、疲労センサの評価は亀裂進展長を測定すればたりるので、特別な訓練を必要としない。また、余寿命演算も簡単であるし、通常は電子計算機の演算機能を利用するので、熟練者を使う必要がない。
このように、対象とする橋梁について疲労センサを貼付する部位を選択するときに多少の専門知識が必要とされるが、その他には専門家や熟練者を必要としないので、多数の橋梁を対象として的確な余寿命推定を行うプロジェクトを実施する場合に有利である。
The method of the present invention requires some expertise and skill to attach a fatigue sensor, but the evaluation of the fatigue sensor requires no special training because it can measure the crack growth length. In addition, the remaining life calculation is easy, and since the calculation function of an electronic computer is usually used, it is not necessary to use a skilled person.
In this way, some specialized knowledge is required when selecting the part where the fatigue sensor is to be attached to the target bridge, but other experts and skilled workers are not required, so many bridges are targeted. This is advantageous when implementing a project that accurately estimates the remaining life.
なお、上記発明は橋梁に適用しているが、他の構造物、船舶、車両などについても同じ方法が適用できることはいうまでもない。
また、疲労センサは、現状では鋼製部材やアルミニウム部材を対象とするものが入手できるが、疲労センサの破断片の材質を選択することにより任意の材料について計測が可能になる。したがって、必要に応じて適当な疲労センサを調達することにより、複合材料なども含めて任意の材料で形成された構造物について余寿命を得ることができる。
In addition, although the said invention is applied to a bridge, it cannot be overemphasized that the same method is applicable also to another structure, a ship, a vehicle, etc.
Moreover, although the fatigue sensor currently available for steel members and aluminum members is available, it is possible to measure any material by selecting the material of the fracture piece of the fatigue sensor. Therefore, if a suitable fatigue sensor is procured as necessary, a remaining life can be obtained for a structure formed of an arbitrary material including a composite material.
以下、本発明について実施例に基づき図面を参照して詳細に説明する。
図1は本発明の1実施例に係る橋梁の疲労寿命診断法の手順を示すフロー図、図2は本実施例に係る疲労寿命診断支援装置の構成を表すブロック図である。
疲労センサを用いて余寿命診断を実施する場合の全体の流れは、図1に示す通り、計画、貼付、点検、評価の各工程を順次踏襲することになる。
計画工程1は、対象とする橋梁と疲労センサの貼付部位に関する事前調査を実施し、事前調査に基づいて疲労センサの貼付位置を決定する工程である。
貼付工程2は、決定されたセンサ貼付位置に疲労センサを貼付する工程である。
点検工程3は、センサの貼付状況を確認し定時にセンサの亀裂進展長さを測定する工程である。
評価工程4は、疲労センサの亀裂進展長さatに基づいて所定期間中のセンサの疲労損傷度Dsを算出し、供用履歴を参照しこれまでの交通量データに基づいて対象部位の累積疲労損傷度を算出し、さらに供用計画を参照し今後の交通量予測に従って各部位の疲労余寿命を算出する工程である。
Hereinafter, the present invention will be described in detail based on examples with reference to the drawings.
FIG. 1 is a flowchart showing a procedure of a fatigue life diagnosis method for a bridge according to one embodiment of the present invention, and FIG. 2 is a block diagram showing a configuration of a fatigue life diagnosis support apparatus according to the present embodiment.
As shown in FIG. 1, the overall flow when performing a remaining life diagnosis using a fatigue sensor follows the planning, pasting, inspection, and evaluation steps in sequence.
The planning process 1 is a process of conducting a preliminary survey on the target bridge and the application site of the fatigue sensor, and determining the application position of the fatigue sensor based on the preliminary survey.
The sticking step 2 is a step of sticking the fatigue sensor to the determined sensor sticking position.
Inspecting step 3 is a step of confirming the state of attachment of the sensor and measuring the crack propagation length of the sensor at a fixed time.
The evaluation process 4 calculates the fatigue damage degree Ds of the sensor during a predetermined period based on the crack propagation length at of the fatigue sensor, refers to the service history, and accumulates the cumulative fatigue damage of the target part based on the traffic data so far This is a step of calculating the degree of fatigue and remaining fatigue life of each part according to future traffic volume prediction with reference to the service plan.
本実施例における余寿命診断は、図2に示されるような、コンピュータシステムとして構成される支援装置を用いて能率的に行われる。
図2において、余寿命診断支援装置10は、橋梁データファイル11、測定部位データファイル12、測定データ入力装置13、測定データファイル14、損傷度ファイル15、余寿命ファイル16、演算式ファイル17、演算制御装置18、および、プリンタや表示装置などのデータ出力装置19で構成される。
また、外部に設計データベース21、貼付方法データベース22、供用履歴・計画データベース23を備え、それぞれ必要に応じてデータを入力することができる。
データ出力装置19は、余寿命判断に必要になる疲労センサ取扱マニュアル25や測定結果表示画面26を出力する。測定データ入力装置13は、橋梁の各所に貼付した疲労センサ30について観測される亀裂長データを入力する装置である。
The remaining life diagnosis in this embodiment is efficiently performed using a support device configured as a computer system as shown in FIG.
In FIG. 2, the remaining life diagnosis support device 10 includes a bridge data file 11, a measurement site data file 12, a measurement data input device 13, a measurement data file 14, a damage degree file 15, a remaining life file 16, an arithmetic expression file 17, a calculation. It comprises a control device 18 and a data output device 19 such as a printer or a display device.
In addition, a design database 21, a pasting method database 22, and a service history / plan database 23 are provided outside, and data can be input as necessary.
The data output device 19 outputs a fatigue sensor handling manual 25 and a measurement result display screen 26 which are necessary for determining the remaining life. The measurement data input device 13 is a device for inputting crack length data observed for the fatigue sensor 30 affixed to various places on the bridge.
以下、余寿命診断支援装置10を利用した本実施例に係る橋梁の疲労寿命診断法について、さらに詳しく各工程を説明する。
計画工程1では、対象とする橋梁の設計図面や設計計算書に基づいて全体構造や微細構造の情報、橋梁が従前の供用期間に受容した活荷重載荷履歴、供用計画に基づく今後の交通量の予想など、色々な情報を収集し、またこれらの情報を利用して疲労センサの貼付位置を決定する。
また、現地踏査により、周辺状況の確認、疲労センサ貼付部位へのアクセス方法の確認、疲労センサ貼付位置および姿勢の確認、板組みなどの設計図面との照合を行う。センサ貼付部位へのアクセスには、検査路、高所作業車、足場設置などの手段も考慮する。板組みなどは現場の実際と設計図面の間に差がある場合があるので、確認しておくことが好ましい。
Hereinafter, each process is demonstrated in detail about the fatigue life diagnostic method of the bridge which concerns on a present Example using the remaining life diagnosis assistance apparatus 10. FIG.
In the planning process 1, the overall structure and microstructure information based on the design drawings and design documents of the target bridge, the live load loading history received by the bridge during the previous service period, and the future traffic volume based on the service plan Various information such as predictions is collected, and the fatigue sensor sticking position is determined using these information.
Also, on-site inspections will confirm the surrounding situation, confirmation of the access method to the fatigue sensor application site, confirmation of the fatigue sensor application position and orientation, and verification with design drawings such as plate assemblies. For access to the sensor attachment site, consideration should be given to means such as inspection roads, aerial work platforms, and installation of scaffolding. Since there is a case where there is a difference between the actual on-site and the design drawing, it is preferable to confirm the board assembly.
疲労センサの貼付部位は、全体構造、詳細構造、活荷重載荷状態などから判断して、適切なものを選定する必要がある。疲労亀裂が発生しやすい部位は、過去の疲労亀裂の発生事例や疲労損傷マップなどから推定することが可能である。疲労センサは、現状では疲労亀裂が発生していないが、これから亀裂が発生する可能性が高い部位に貼付することが好ましい。
なお、疲労センサには、疲労損傷に対する補強を実施した場合に、補強部位に貼付して、繰返し応力の振幅が小さくなっていることを検知して補強効果を確認するという利用方法もある。
It is necessary to select an appropriate fatigue sensor application site based on the overall structure, detailed structure, live load loading state, and the like. The site where fatigue cracks are likely to occur can be estimated from past fatigue crack occurrence examples and fatigue damage maps. The fatigue sensor does not generate a fatigue crack at present, but it is preferable that the fatigue sensor is attached to a site where a crack is likely to occur.
In addition, when the fatigue sensor is reinforced against fatigue damage, there is a utilization method in which the reinforced effect is confirmed by sticking to a reinforced part and detecting that the amplitude of repeated stress is small.
余寿命診断支援装置10を利用する場合は、設計データベース21から余寿命診断の対象となる橋梁の全体構造、微細構造など形状や構造上の情報を取り込んで橋梁データファイル11に格納する。設計データベース21で不足する情報は、他の手段で収集して同じく橋梁データファイル11に納める。収集するデータには、各溶接部の設計データと施工データの両方が含まれるようにする。また、事前に現地踏査をして知った情報も整理して橋梁データファイル11に記録する。
設計データベース21はCADデータを格納したものであっても良い。CADデータは演算制御装置18を経由しないで直接的に橋梁データファイル11に取り込むこともできる。
When the remaining life diagnosis support apparatus 10 is used, information on the shape and structure such as the entire structure and microstructure of the bridge to be subjected to the remaining life diagnosis is taken from the design database 21 and stored in the bridge data file 11. Information lacking in the design database 21 is collected by other means and stored in the bridge data file 11. The data to be collected should include both design data and construction data for each weld. In addition, information obtained through field surveys in advance is organized and recorded in the bridge data file 11.
The design database 21 may store CAD data. The CAD data can be directly taken into the bridge data file 11 without going through the arithmetic and control unit 18.
橋梁データファイル11に収納された情報に基づいて、測定効果が期待できる測定位置を決定して、その結果を測定部位データファイル12に格納する。
設計図面などを検討し、予め規定された疲労強度等級などに基づいて、対象とする溶接継手部の疲労強度と寿命を推測することができる。また、過去の疲労亀裂発生事例や疲労損傷マップなどを参考にして、スティフナ(補剛材)など疲労亀裂が発生しやすい具体的な部位を見つけ出す。これらの結果として、疲労センサを貼付して余寿命を評価する部位を決定する。
Based on the information stored in the bridge data file 11, a measurement position where a measurement effect can be expected is determined, and the result is stored in the measurement site data file 12.
By examining design drawings and the like, it is possible to estimate the fatigue strength and life of the target welded joint based on a predetermined fatigue strength grade. In addition, referring to past fatigue crack occurrence examples and fatigue damage maps, a specific part where fatigue cracks are likely to occur, such as a stiffener (stiffener), is found. As a result, a fatigue sensor is affixed to determine a portion for evaluating the remaining life.
なお、橋梁の形式が決まると疲労寿命の短い部材や位置は経験上ある程度分かる。例えば、溶接継手部では溶接止端に応力集中が起こって破損し易く、鉄道橋では特に枕木の直下やレール継ぎ目付近の補剛材の疲労が著しい。また、ソールプレートには荷重が集中するので、疲労も大きい。したがって、橋梁全体の疲労寿命を見るためには、これらの特に疲労し易い部材等の疲労状態を把握する必要がある。
橋梁の構造中で疲労破壊が生じやすい部位は、全体構造と微細構造のデータに基づいて、自動的に検出して列挙させることができる。スクリーニングのアルゴリズムの信頼性が足りないときは、候補を列挙させて、技術者が確認するようにすれば万全である。
In addition, if the type of bridge is determined, members and positions with a short fatigue life can be understood to some extent from experience. For example, stress concentration occurs at the weld toe at the welded joint, and it is easy to break. In a railway bridge, the fatigue of the stiffener especially under the sleepers and near the rail joint is remarkable. Further, since the load is concentrated on the sole plate, the fatigue is large. Therefore, in order to see the fatigue life of the entire bridge, it is necessary to grasp the fatigue state of these particularly easily fatigued members.
Portions where fatigue failure is likely to occur in the bridge structure can be automatically detected and enumerated based on the data of the entire structure and microstructure. If the screening algorithm is not reliable, it is safe to enumerate the candidates and have the engineers confirm them.
図3は上路プレートガーダー方式の鉄道橋について、図4はプレートガーダー式道路橋について、それぞれ疲労センサを貼付する場所を丸で囲って例示した図面である。また、図5は溶接部における疲労センサの貼付状況を例示する部分斜視図である。図5に示すように、溶接部でも止端部や複数部材の突き合わせ位置など応力集中が起こりやすい部分に応力勾配に沿って疲労センサを貼付することが好ましい。
得られた測定部位リストは測定部位データファイル12に格納する。
疲労寿命診断支援装置10は疲労センサを貼付する位置を作業者に知らせるため、ディスプレイやプリンタなどの出力装置19を介してセンサ取扱マニュアル25を出力する。センサ取扱マニュアル25には、貼付方法データベース22からセンサ貼付において注意すべき事項を抽出して、使用する疲労センサの種類、疲労センサの貼付位置、姿勢、点検時期、など貼付工程や点検工程に必要な事項を記載することが好ましい。
FIG. 3 is a diagram illustrating an example of an upper plate girder type railway bridge, and FIG. 4 is a diagram illustrating a plate girder type road bridge with circles of places where fatigue sensors are attached. FIG. 5 is a partial perspective view illustrating the state of attachment of the fatigue sensor in the welded portion. As shown in FIG. 5, it is preferable to attach a fatigue sensor along a stress gradient to a portion where stress concentration is likely to occur, such as a toe portion or a butting position of a plurality of members, even in a welded portion.
The obtained measurement site list is stored in the measurement site data file 12.
The fatigue life diagnosis support device 10 outputs a sensor handling manual 25 via an output device 19 such as a display or a printer in order to inform the worker of the position to attach the fatigue sensor. In the sensor handling manual 25, the matters to be noted in sensor pasting are extracted from the pasting method database 22, and are necessary for the pasting process and the inspection process such as the type of fatigue sensor to be used, the fatigue sensor pasting position, the posture, and the inspection time. It is preferable to describe such matters.
貼付工程2では、貼付要領を十分理解した技術者が疲労センサを指定の場所に貼付する。疲労センサ30は、センサ取扱マニュアル25に従って、作業者が現場の橋梁における指定の位置に指定された状態で貼付される。疲労センサ30は、塗膜の除去、清掃、貼付、防護対策の順に、ひずみゲージとほぼ同じ要領で貼付することができるが、ひずみゲージより構造がやや複雑であるため、作業者は事前に教育あるいは訓練を受けておくことが好ましい。
貼付箇所には、検査路、高所作業車、足場などを利用してアクセスし、貼付作業や点検作業を行う。
In the pasting step 2, an engineer who fully understands the pasting procedure sticks the fatigue sensor to a designated place. The fatigue sensor 30 is affixed in a state where an operator is designated at a designated position on the bridge in the field according to the sensor handling manual 25. The fatigue sensor 30 can be applied in the same order as the strain gauge in the order of removal of the coating film, cleaning, application, and protective measures, but the structure is slightly more complicated than that of the strain gauge. Alternatively, it is preferable to receive training.
The affixed location is accessed using an inspection road, an aerial work platform, a scaffold, etc., and affixed and inspected.
点検工程3は、所定の期間経過後に行われる。疲労センサ30は、決められた期間ごとに作業者が状態を点検し亀裂長さを測定して、収集した各疲労センサの亀裂長さを測定データ入力装置13から入力する。
通常は、たとえば1ヶ月後、3ヶ月後、6ヶ月後の3回、点検が実施される。このうち第1回目の点検は、疲労センサが正常に貼付されていることを確認するものである。2回目と3回目の点検でセンサの亀裂進展長を測定する。特別な事情があるときは、点検時期や回数を適当に調整することができる。亀裂進展長は、拡大鏡による方法、レプリカによる方法、CCDカメラによる方法などを使って測定される。なお、実際には、精度良く計測できかつ記録が残ることから、レプリカによる方法が好まれる。
測定データ入力装置13は、キーボードやICカードリーダ、あるいはUSBメモリを介して入力するものなど、各種の入力装置を利用することができる。入力された測定データは測定データファイル14に格納される。
The inspection process 3 is performed after a predetermined period. In the fatigue sensor 30, an operator checks the state and measures the crack length every predetermined period, and inputs the collected crack length of each fatigue sensor from the measurement data input device 13.
Usually, for example, the inspection is performed three times after one month, three months, and six months. Of these, the first inspection is to confirm that the fatigue sensor is properly attached. The crack growth length of the sensor is measured at the second and third inspections. When there are special circumstances, the inspection timing and frequency can be adjusted appropriately. The crack growth length is measured using a magnifying glass method, a replica method, a CCD camera method, or the like. In practice, a method using a replica is preferred because measurement can be performed with high accuracy and recording remains.
The measurement data input device 13 can use various input devices such as a keyboard, an IC card reader, or a device for inputting via a USB memory. The input measurement data is stored in the measurement data file 14.
評価工程4においては、疲労センサの亀裂進展長さに基づいて所定期間中の繰返し応力の状況を知って溶接部など対象部位の実寿命を推定し、供用履歴と供用計画を参照して、対象部位ごとに疲労余寿命を算出する。
余寿命診断支援装置10では、演算制御装置18が演算式ファイル17から必要な数式を呼び出して、初めに測定データファイル14のデータから各部位の損傷度を算定して損傷度ファイル15に収納する。次に損傷度ファイルから損傷度を読み出して処理し、各部位の実寿命を算出し、さらに各部位について過去の供用履歴と今後の供用計画を加味して余寿命を算出して余寿命ファイル16に格納する。供用履歴と供用計画の情報は、供用履歴・計画データベース23から取得することができる。
In the evaluation process 4, based on the crack growth length of the fatigue sensor, the actual life of the target part such as a welded part is estimated by knowing the situation of the repeated stress during a predetermined period, and the service history and service plan are referred to. The fatigue life expectancy is calculated for each part.
In the remaining life diagnosis support apparatus 10, the arithmetic and control unit 18 calls a necessary mathematical expression from the arithmetic expression file 17, first calculates the damage degree of each part from the data of the measurement data file 14 and stores it in the damage degree file 15. . Next, the damage degree is read from the damage degree file and processed, the actual life of each part is calculated, and the remaining life is calculated for each part by considering the past service history and the future service plan. To store. The service history and service plan information can be acquired from the service history / plan database 23.
図6は本実施例に利用した疲労センサの例を示す斜視図である。
本実施例で利用される疲労センサ30は、たとえば、特許文献2によりその技術的思想が開示されたセンサであって、図6に代表的に示すように、不変鋼(インバー)、ポリイミドフィルムなど熱に対する寸法安定性が高い材質からなる例えば厚さ0.05mmの薄いベース31の上に、中央が横断方向に溝部33を有する例えば厚さ0.1mmの箔状の金属製破断片32がその両端のみをベースに固定されて構成されたものである。
破断片32の大きさはたとえば長さ12mm幅5mmと極めて小型である。また、破断片中央の溝部33はたとえば幅が1mm、厚さが0.02mmで、溝部33には最奥部に鋭端を有する適当長のスリット34が一側端から中心軸の方向に形成されている。
FIG. 6 is a perspective view showing an example of a fatigue sensor used in this embodiment.
The fatigue sensor 30 used in the present embodiment is, for example, a sensor whose technical idea is disclosed in Patent Document 2, and as representatively shown in FIG. 6, invariant steel (invar), polyimide film, etc. On a thin base 31 made of a material having high dimensional stability against heat, for example, a thin base 31 having a thickness of 0.05 mm, for example, a foil-shaped metal fracture piece 32 having a thickness of, for example, 0.1 mm and having a groove portion 33 in the transverse direction. Only the both ends are fixed to the base.
The size of the broken piece 32 is extremely small, for example, 12 mm long and 5 mm wide. Further, the groove 33 at the center of the broken piece has a width of 1 mm and a thickness of 0.02 mm, for example, and the groove 33 is formed with a slit 34 of an appropriate length having a sharp end at the innermost part in the direction from the one end to the central axis. Has been.
この疲労センサ30の軸方向に繰返し応力を作用させると溝部33に亀裂が発生する。普通の部材ならば長期に亘る亀裂発生期間後に亀裂が発生し、その後に亀裂が発達する亀裂進展期間があるはずのところ、この疲労センサ30は鋭端を有するスリット34があるため、亀裂発生期間が殆ど存在せず直ちにスリット先端から亀裂が発生して横断方向に進展する。特許文献2に明らかにされているように、亀裂の進展長aは応力σが一定であれば繰り返し数Nに比例する。
また、破断片32を母材の亀裂進展特性と対応する材料を使って薄い箔状に形成して得ているから、破断片32を母材溶接部に貼付した場合、破断片32の溝部33において亀裂が進展するメカニズムは母材の溶接部において亀裂進展するときと変わらない。したがって、両者の亀裂進展の間には所定の関係があり、応力σと繰返し回数Nを対数スケールとして疲労寿命を表すSN線図にしたときに、両者はほぼ平行線になる。
疲労センサ30は十分に小さいので、対象部材における応力集中が生じる領域のごく近傍に貼付することができる。また、必要に応じて応力勾配の途中に複数のセンサを並べて貼付することにより応力集中度を検知することもできる。
When repeated stress is applied in the axial direction of the fatigue sensor 30, a crack is generated in the groove 33. In the case of an ordinary member, a crack should occur after a long crack generation period, and then there should be a crack propagation period in which the crack develops. However, since this fatigue sensor 30 has a slit 34 having a sharp edge, There are almost no cracks and a crack is immediately generated from the slit tip and propagates in the transverse direction. As clarified in Patent Document 2, the crack growth length a is proportional to the number of repetitions N if the stress σ is constant.
In addition, since the fracture piece 32 is obtained by forming a thin foil using a material corresponding to the crack propagation characteristics of the base material, when the fracture piece 32 is affixed to the base metal welded portion, the groove portion 33 of the fracture piece 32 is obtained. The mechanism by which cracks propagate is the same as when cracks propagate in the weld of the base metal. Therefore, there is a predetermined relationship between the crack growth of the two, and when the SN diagram representing the fatigue life is made using the stress σ and the number of repetitions N as a logarithmic scale, the two become substantially parallel lines.
Since the fatigue sensor 30 is sufficiently small, it can be affixed in the very vicinity of a region where stress concentration occurs in the target member. Moreover, the stress concentration degree can also be detected by arranging and attaching a plurality of sensors in the middle of the stress gradient as necessary.
図7は疲労センサと溶接部のSN線図を一緒に描いた説明図である。
図7は、縦軸が応力σの対数目盛、横軸が繰返し数Nの対数目盛になっており、溶接部の疲労寿命を点線で、疲労センサ30の寿命を実線で表したSN線図である。なお、対象部位のSN線図は、平均線および設計線の両方を使って解析することが好ましい。平均線とは、破壊ばらつきの平均である非破壊確率50.0%のときの疲労寿命を表す線図、設計線とは、破壊ばらつきの下限である非破壊確率97.7%のときの疲労寿命を表す線図である。
構造物の部材のSN線図はほぼ直線であり、応力集中の度合いが強くなるほど傾きが急になる。溶接部のSN線図は傾斜が最も大きい。特許文献2に開示された疲労センサは鋭端を有するスリットのため、SN線図は溶接部におけるSN線図と同じ傾きを有し、図中で溶接部のSN線図に対してΔだけ離れた平行線となる。
FIG. 7 is an explanatory diagram in which an SN diagram of a fatigue sensor and a welded portion is drawn together.
FIG. 7 is an SN diagram in which the vertical axis is a logarithmic scale of the stress σ, the horizontal axis is a logarithmic scale of the repetition number N, the fatigue life of the welded portion is indicated by a dotted line, and the life of the fatigue sensor 30 is indicated by a solid line. is there. Note that the SN diagram of the target region is preferably analyzed using both the average line and the design line. The average line is a diagram representing the fatigue life when the non-destructive probability is 50.0%, which is the average of the variation in fracture, and the design line is fatigue when the non-destructive probability is 97.7%, which is the lower limit of the variation of fracture. It is a diagram showing a lifetime.
The SN diagram of the member of the structure is almost a straight line, and the inclination becomes steeper as the degree of stress concentration increases. The SN diagram of the weld has the largest slope. Since the fatigue sensor disclosed in Patent Document 2 is a slit having a sharp end, the SN diagram has the same inclination as the SN diagram in the weld, and is separated by Δ from the SN diagram of the weld in the figure. Parallel lines.
すなわち、疲労センサの寿命Ts(正確には許容繰返し数Ns)と溶接部の寿命Tm(正確には許容繰返し数Nm)の間には、
logNm−logNs=log(Nm/Ns)=Δ
の関係が成立する。
ここで、logα=Δとすれば、部材の許容繰返し回数Nmは、
Nm=αNs
で得られる。
That is, between the fatigue sensor life Ts (to be exact, the allowable number of repetitions Ns) and the weld life Tm (to be exact, the allowable number of repetitions Nm),
logNm−logNs = log (Nm / Ns) = Δ
The relationship is established.
Here, if log α = Δ, the allowable number of repetitions Nm of the member is
Nm = αNs
It is obtained with.
したがって、SN線図が与えられているときには、疲労センサが実際に受容する活荷重載荷状態において示す疲労寿命Tsに定数αを掛けることにより、同じ活荷重載荷状態における溶接部の疲労寿命Tmが推定できる。
さらに、溶接部の疲労寿命Tmから診断時までの供用期間Thを差し引けば、今後寿命が尽きるまでの期間すなわち余寿命Trを得ることができる。
すなわち、
Tr=Tm−Th
である。
Therefore, when an SN diagram is given, the fatigue life Tm of the welded part in the same live load loading state is estimated by multiplying the fatigue life Ts shown in the live load loading state actually accepted by the fatigue sensor by the constant α. it can.
Further, by subtracting the service period Th from the fatigue life Tm of the welded part to the time of diagnosis, the period until the end of the life, that is, the remaining life Tr can be obtained.
That is,
Tr = Tm-Th
It is.
疲労センサには感度の異なる複数の種類があるので、貼付部位の寸法や推定される応力振幅に合わせて使い分けたり、感度の異なる疲労センサを組み合わせて使用することもできる。
感度が高い疲労センサSbは、SN線図の傾きは変わらず許容繰返し数Nsbが小さくなる方向に平行にずれる形になるので、溶接部のSN線図との差Δbの値が大きくなり、センサを貼付した部材の疲労寿命Nmを推定するために掛ける係数αが大きくなる。
Since there are a plurality of types of fatigue sensors having different sensitivities, the fatigue sensors can be selectively used according to the size of the applied site and the estimated stress amplitude, or fatigue sensors having different sensitivities can be used in combination.
The fatigue sensor Sb having high sensitivity has a shape in which the inclination of the SN diagram does not change and shifts in parallel with the direction in which the allowable number of repetitions Nsb decreases, so that the value of the difference Δb from the SN diagram of the welded portion increases. The coefficient α to be multiplied to estimate the fatigue life Nm of the member to which is attached is increased.
さらに、詳細に部材の疲労寿命を推定するためには、疲労センサの亀裂長さに基づいて損傷度Dを使う方法がある。
図8は、疲労センサの亀裂が進展する状態を示す平面図である。ベース31の上に固定された破断片32の中央部に形成された溝部33には、一方の端からスリット34が形成されている。繰返し応力が掛かると、スリット34の先端から亀裂35が発生し、繰返し回数が増大するにつれて進展する。
図8に示すように、計測期間Ttの間に亀裂長がatになったとすると、亀裂が入る全長をa0として、疲労センサの損傷度(ダメージ)Dsは、
Ds=at/a0
と表される。なお、損傷度Dsは、損傷がない場合を0、破壊されるときを1で表わす指数である。
Furthermore, in order to estimate the fatigue life of the member in detail, there is a method of using the damage degree D based on the crack length of the fatigue sensor.
FIG. 8 is a plan view showing a state in which a crack of the fatigue sensor progresses. A slit 33 is formed from one end of the groove 33 formed in the center of the broken piece 32 fixed on the base 31. When the repeated stress is applied, a crack 35 is generated from the tip of the slit 34 and progresses as the number of repetitions increases.
As shown in FIG. 8, if the crack length becomes at during the measurement period Tt, the total length of the crack is a0, and the damage degree (damage) Ds of the fatigue sensor is
Ds = at / a0
It is expressed. The damage degree Ds is an index representing 0 when there is no damage and 1 when it is destroyed.
応力σが一定しない場合にも、応力毎に負荷回数を積算することにより損傷度を算出することができる(累積損傷則)。
累積損傷則によれば、破断に至る負荷回数がNs1,Ns2,・・・である応力σ1,σ2,・・・について、計測期間Tt中の負荷回数がそれぞれn1,n2,・・・であったとすれば、損傷度Dsは、
Ds=n1/Ns1+n2/Ns2+・・・=Σ(ni/Nsi)
で表される。すなわち、損傷度Dsは疲労センサが履歴した負荷状態に比例関係をもって対応する。
Even when the stress σ is not constant, the damage degree can be calculated by accumulating the number of loads for each stress (cumulative damage law).
According to the cumulative damage law, for stresses σ1, σ2,... Where the number of loads leading to fracture is Ns1, Ns2,..., The number of loads during the measurement period Tt is n1, n2,. For example, the damage degree Ds is
Ds = n1 / Ns1 + n2 / Ns2 +... = Σ i (ni / Nsi)
It is represented by That is, the damage degree Ds corresponds to the load state that has been recorded by the fatigue sensor in a proportional relationship.
一方、測定対象の溶接部は、同じ計測期間Ttで疲労センサと同じ負荷を受けるので、図7に表示されるように、それぞれの応力に対応する破断繰返し回数をNm1,Nm2,・・・とすれば、損傷度Dmは累積損傷則により、
Dm=n1/Nm1+n2/Nm2+・・・=Σ(ni/Nmi)
と表される。
図7を用いて先に説明した通り、Nm=αNsであるから、
Dm=Σ(ni/Nmi)=Σ(ni/αNsi)
となる。すなわち、
Dm=Ds/α
と表され、計測期間に生じる溶接部の損傷度Dmは疲労センサで生じた損傷度Dsの1/α倍になる。
On the other hand, since the welded part to be measured receives the same load as the fatigue sensor in the same measurement period Tt, the number of repeated fractures corresponding to each stress is expressed as Nm1, Nm2,. Then, the damage degree Dm is determined by the cumulative damage law.
Dm = n1 / Nm1 + n2 / Nm2 +... = Σ i (ni / Nmi)
It is expressed.
Since Nm = αNs as described above with reference to FIG.
Dm = Σ i (ni / Nmi) = Σ i (ni / αNsi)
It becomes. That is,
Dm = Ds / α
The damage degree Dm of the welded portion that occurs during the measurement period is 1 / α times the damage degree Ds that occurs in the fatigue sensor.
溶接部の疲労寿命Tmは損傷度Dmが1になるまでの時間であるから、計測時間Ttによって、
Tm=Tt/Dm=αTt/Ds
となる。さらに、溶接部のこれまでの供用期間をThとすると、溶接部の余寿命Trは、
Tr=Tm−Th=αTt/Ds−Th
で求めることができる。
Since the fatigue life Tm of the welded portion is the time until the damage degree Dm becomes 1, the measurement time Tt
Tm = Tt / Dm = αTt / Ds
It becomes. Furthermore, assuming that the service period of the welded part is Th, the remaining life Tr of the welded part is
Tr = Tm−Th = αTt / Ds−Th
Can be obtained.
余寿命算定の対象となる部位は、測定部位データファイル12に格納された情報に基づいて、疲労センサの具体的な位置や姿勢などを確認して、測定結果と対象部位の応力状態の関係を確定して、寿命導出をする必要がある。
なお、余寿命算定の対象となる部位における点検期間の負荷が、その以前の供用期間におけるものと異なることが知れている場合は、その程度に合わせて供用期間Thを補正して余寿命の算定をしなければならない。また、今後の供用計画において交通量が増大するなど、現状と異なる負荷状態が予測される場合も同様に余寿命Trを補正して算定する必要がある。
溶接部の供用履歴や供用計画は、供用履歴・計画データベース23から入手することができる。
なお、これら方程式は、演算式ファイル17に格納されていて、必要に応じて呼び出して利用する。
Based on the information stored in the measured part data file 12, the part that is the target of the remaining life calculation is checked for the specific position and posture of the fatigue sensor, and the relationship between the measurement result and the stress state of the target part is determined. It is necessary to determine the lifetime.
In addition, when it is known that the load of the inspection period in the part subject to the remaining life calculation is different from that in the previous service period, the remaining service life is calculated by correcting the service period Th according to the degree. Have to do. Further, when a load state different from the current state is predicted, such as an increase in traffic volume in a future service plan, it is necessary to calculate the remaining life Tr in the same manner.
The service history and service plan of the welded portion can be obtained from the service history / plan database 23.
These equations are stored in the arithmetic expression file 17 and are called up and used as necessary.
得られた個々の部位についての余寿命データは判断しやすいように整理して、ディスプレイやプリンタを介して表形式で出力される。
図9は、測定結果のアウトプット例を示す。各部位に貼付した疲労センサの亀裂長に基づいて、部位について設計線に基づく余寿命と平均線に基づく余寿命を推定した結果が示されている。
なお、疲労センサの適用期間中に亀裂が発生しなかった部位については、日本鋼構造協会などで規定している疲労強度等級に基づいて与えられる寿命が採用されている。
The obtained remaining life data for each part is arranged so that it can be easily judged, and is output in a table format via a display or a printer.
FIG. 9 shows an output example of the measurement result. The result of estimating the remaining life based on the design line and the remaining life based on the average line is shown for the site based on the crack length of the fatigue sensor attached to each site.
For parts where cracks did not occur during the application period of the fatigue sensor, the life given based on the fatigue strength grade defined by the Japan Steel Structure Association or the like is adopted.
橋梁全体の寿命は最も寿命が短い部材により制約されるので、寿命が短い部材から保全作業を行って新しく部材と入れ換えれば、その次に短い寿命を持った部材の寿命まで延長することができる。
本実施例に利用する疲労センサは小型で安価であり、特別な測定機器を使わないから、橋梁中の多数の箇所に設置することができる。このため、信頼性の高い診断が可能になるが、結果を図9に例示したような表形式で表示するだけでは、一目で最短余寿命部位を見出すことは難しく、肝心のデータを見落とす危険もある。そこで、橋梁データファイル11に格納した構造データを活用して、画像表記することにより、直感的にかつ見落としなく問題となる部位を見出すことができる。
The life of the entire bridge is constrained by the member with the shortest life, so if maintenance work is performed from a member with the shortest life and replaced with a new member, it can be extended to the life of the member with the next shortest life. .
The fatigue sensor used in this embodiment is small and inexpensive, and does not use special measurement equipment, so it can be installed at many locations in the bridge. For this reason, although a highly reliable diagnosis is possible, it is difficult to find the shortest remaining life part at a glance only by displaying the result in a table format as illustrated in FIG. 9, and there is a risk of overlooking important data. is there. Therefore, by utilizing the structure data stored in the bridge data file 11 and expressing the image, it is possible to find a problem part intuitively and without oversight.
本発明の橋梁の疲労寿命診断法により得られた解析結果を用いると、いつまでにどの部材の補修作業をするべきかを正確に判断することができるので、橋梁をいたずらに改修したり、不急の部品を交換したりするなどの無駄な保全費用を節約して、効率の良い保全作業を実施することができる。   By using the analysis result obtained by the fatigue life diagnosis method of the bridge of the present invention, it is possible to accurately determine which member should be repaired by when. It is possible to save an unnecessary maintenance cost such as exchanging parts, and to perform efficient maintenance work.
本発明の1実施例に係る橋梁の疲労寿命診断法の手順を示すフロー図である。It is a flowchart which shows the procedure of the fatigue life diagnostic method of the bridge concerning one Example of this invention. 本実施例に係る疲労寿命診断支援装置の構成を表すブロック図である。It is a block diagram showing the structure of the fatigue life diagnosis assistance apparatus which concerns on a present Example. 本実施例の疲労寿命診断法において鉄道橋について疲労センサを貼付する場所を例示した図面である。It is drawing which illustrated the place which attaches a fatigue sensor about a railway bridge in the fatigue life diagnostic method of a present Example. 本実施例の疲労寿命診断法において道路橋について疲労センサを貼付する場所を例示した図面である。It is drawing which illustrated the place which attaches a fatigue sensor about a road bridge in the fatigue life diagnostic method of a present Example. 本実施例の疲労寿命診断法において溶接部における疲労センサの貼付状況を例示する部分斜視図である。It is a fragmentary perspective view which illustrates the sticking condition of the fatigue sensor in a welding part in the fatigue life diagnostic method of a present Example. 本実施例に利用した疲労センサの例を示す斜視図である。It is a perspective view which shows the example of the fatigue sensor utilized for the present Example. 疲労センサと溶接部のSN線図を一緒に描いた説明図である。It is explanatory drawing which drew together the SN diagram of a fatigue sensor and a welding part. 本実施例における疲労センサの亀裂進展状態を示す平面図である。である。It is a top view which shows the crack progress state of the fatigue sensor in a present Example. It is. 本実施例における測定結果のアウトプット例を示す図面である。It is drawing which shows the example of an output of the measurement result in a present Example.
符号の説明Explanation of symbols
1 計画工程
2 貼付工程
3 点検工程
4 評価工程
10 余寿命診断支援装置
11 橋梁データファイル
12 測定部位データファイル
13 測定データ入力装置
14 測定データファイル
15 損傷度ファイル
16 余寿命ファイル
17 演算式ファイル
18 演算制御装置
19 データ出力装置
21 設計データベース
22 貼付方法データベース
23 供用履歴・計画データベース
25 疲労センサ取扱マニュアル
26 測定結果表示画面
30 疲労センサ
31 ベース
32 破断片
33 溝部
34 スリット
DESCRIPTION OF SYMBOLS 1 Planning process 2 Pasting process 3 Inspection process 4 Evaluation process 10 Remaining life diagnosis support apparatus 11 Bridge data file 12 Measurement site data file 13 Measurement data input device 14 Measurement data file 15 Damage degree file 16 Remaining life file 17 Calculation formula file 18 Calculation Control device 19 Data output device 21 Design database 22 Pasting method database 23 Service history / plan database 25 Fatigue sensor operation manual 26 Measurement result display screen 30 Fatigue sensor 31 Base 32 Fragment 33 Groove 34 Slit

Claims (4)

  1. 橋梁の全体構造、詳細構造、活荷重載荷状態に基づいて繰返し応力を測定するための適切な部位を選定して疲労センサを貼付し、所定期間後に各疲労センサにおける亀裂の進展長を計測して結果を記録し、記録された亀裂進展長に基づき累積損傷則に従って各部位について損傷度を推定し、損傷度から対象部位の実寿命を推定し経過期間を差し引いて余寿命を算定して、部位毎の余寿命同士を比較することにより各部位及び橋梁全体について実地の疲労寿命を評価することを特徴とする橋梁の疲労寿命診断方法。 Select an appropriate site for measuring cyclic stress based on the overall structure, detailed structure, and live load state of the bridge, attach a fatigue sensor, and measure the crack propagation length in each fatigue sensor after a predetermined period. Record the results, estimate the degree of damage for each part according to the cumulative damage law based on the recorded crack growth length, estimate the actual life of the target part from the degree of damage, subtract the elapsed period, calculate the remaining life, A method for diagnosing a fatigue life of a bridge, characterized by evaluating the fatigue life of each part and the entire bridge by comparing the remaining lives of the respective bridges.
  2. 前記疲労センサは、長方形の箔状ベースに金属箔からなる破断片の両端を接合したもので、該破断片は中央部に横断溝が形成されて薄くなっており、該横断溝に一側端から所定の長さを持ち最奥に鋭端を有するスリットが形成されたものであることを特徴とする請求項1記載の疲労寿命診断方法。 The fatigue sensor is formed by joining both ends of a broken piece made of metal foil to a rectangular foil-shaped base, and the broken piece is thinned with a transverse groove formed in the center, and one end of the transverse groove is formed in the transverse groove. 2. The fatigue life diagnosis method according to claim 1, wherein a slit having a predetermined length and having a sharp end at the back is formed.
  3. 橋梁の全体構造、詳細構造、活荷重載荷状態の情報を集積した橋梁データファイルを備え、該橋梁データファイルに収納された情報に従って適切な部位を選定して貼付された疲労センサを備え、所定期間後に各疲労センサにおける亀裂の進展長を計測した結果を記録した測定データファイルを備え、該測定データファイルに記録された亀裂進展長に基づき累積損傷則に従って各部位について損傷度を推定した結果を記録する損傷度ファイルを備え、対象部位の実寿命を推定し経過期間を差し引いて余寿命を算定して記録する余寿命データファイルを備え、該余寿命データファイルに記録した部位毎の余寿命同士を比較することにより各部位及び橋梁全体について実地の疲労寿命を評価する演算制御装置を備えることを特徴とする橋梁の疲労寿命診断支援装置。 It is equipped with a bridge data file that integrates information on the overall structure, detailed structure, and live load loading state of the bridge, and is equipped with a fatigue sensor that is attached by selecting an appropriate part according to the information stored in the bridge data file for a predetermined period. It is equipped with a measurement data file that records the results of the measurement of the crack growth length in each fatigue sensor later, and records the results of estimating the damage degree for each part according to the cumulative damage law based on the crack growth length recorded in the measurement data file. A remaining life data file for estimating the actual life of the target part, subtracting the elapsed period and calculating and recording the remaining life, and recording the remaining life of each part recorded in the remaining life data file Fatigue life of a bridge characterized by comprising an arithmetic and control unit that evaluates the fatigue life of each part and the whole bridge by comparison Diagnosis support apparatus.
  4. 前記疲労センサは、長方形の箔状ベースに金属箔からなる破断片の両端を接合したもので、該破断片は中央部に横断溝が形成されて薄くなっており、該横断溝に一側端から所定の長さを持ち最奥に鋭端を有するスリットが形成されたものであることを特徴とする請求項3記載の疲労寿命診断支援装置。
    The fatigue sensor is formed by joining both ends of a broken piece made of metal foil to a rectangular foil-shaped base, and the broken piece is thinned with a transverse groove formed in the center, and one end of the transverse groove is formed in the transverse groove. 4. A fatigue life diagnosis support apparatus according to claim 3, wherein a slit having a predetermined length and a sharp end at the back is formed.
JP2005161374A 2005-06-01 2005-06-01 Fatigue life diagnostic method and diagnostic support device of bridge Pending JP2006337144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005161374A JP2006337144A (en) 2005-06-01 2005-06-01 Fatigue life diagnostic method and diagnostic support device of bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005161374A JP2006337144A (en) 2005-06-01 2005-06-01 Fatigue life diagnostic method and diagnostic support device of bridge

Publications (1)

Publication Number Publication Date
JP2006337144A true JP2006337144A (en) 2006-12-14

Family

ID=37557832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005161374A Pending JP2006337144A (en) 2005-06-01 2005-06-01 Fatigue life diagnostic method and diagnostic support device of bridge

Country Status (1)

Country Link
JP (1) JP2006337144A (en)

Cited By (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223393A (en) * 2007-03-14 2008-09-25 Jfe Engineering Kk High fatigue enduring steel structure
JP2010066188A (en) * 2008-09-12 2010-03-25 Mitsubishi Heavy Ind Ltd Method and device for diagnosing failure of rotating body of industrial vehicle
CN101793630A (en) * 2010-04-02 2010-08-04 东南大学 Cable structure health monitoring method based on angle monitoring
CN101793632A (en) * 2010-04-02 2010-08-04 东南大学 Cable structure health monitoring method based on strain monitoring
CN101806668A (en) * 2010-04-02 2010-08-18 东南大学 Cable structure health monitoring method based on cable tension monitoring
CN101806664A (en) * 2010-03-17 2010-08-18 东南大学 Progressive health monitoring method of cable system based on mixed monitoring in presence of support seat settlement
WO2011054604A1 (en) * 2009-11-06 2011-05-12 Siemens Aktiengesellschaft Method and device for determining a maintenance parameter of a component having a crack
CN102288424A (en) * 2011-05-13 2011-12-21 东南大学 Progressive method for recognizing damaged cable and angular displacement of support based on hybrid monitoring
CN102288442A (en) * 2011-05-13 2011-12-21 东南大学 Method for distinguishing damaged cable, slack cable and angular displacement of supporting seat based on angle monitoring
CN102323083A (en) * 2011-05-31 2012-01-18 东南大学 Strain monitoring based method for recognizing damaged cable, loose cable and supporting seat generalized displacement
CN102323084A (en) * 2011-05-31 2012-01-18 东南大学 Progressive method for identifying damaged cable and support generalized displacement on the basis of mixed monitoring
CN102519748A (en) * 2011-12-26 2012-06-27 同济大学 Actual bridge loading and long-term monitoring test method for asphalt pavement of beam steel bridge
CN102706668A (en) * 2012-05-30 2012-10-03 东南大学 Progressive type identification method of damaged cable and support generalized displacement based on hybrid monitoring during temperature variation
CN102706664A (en) * 2012-05-30 2012-10-03 东南大学 Damaged cable approximation identification method based on mixed monitoring of support generalized displacement and temperature change
CN102706608A (en) * 2012-05-29 2012-10-03 东南大学 Loosened cable identification method based on angle monitoring at moment of temperature variation
CN102706611A (en) * 2012-05-30 2012-10-03 东南大学 Problem cable and supporting seat generalized displacement identification method based on cable tension monitoring at moment of temperature variation
CN102706641A (en) * 2012-05-29 2012-10-03 东南大学 Method for identifying damaged cable based on strain monitoring during support settlement and temperature variation
CN102706647A (en) * 2012-05-29 2012-10-03 东南大学 Method for identifying slack cable based on strain monitoring during temperature variation.
CN102706629A (en) * 2012-05-30 2012-10-03 东南大学 Problem cable supporting seat generalized displacement progressive-type identification method based on space coordinate monitoring at moment of temperature variation
CN102706598A (en) * 2012-05-29 2012-10-03 东南大学 Slack cable identification method on basis of the space coordinate monitoring during temperature variation
CN102706652A (en) * 2012-05-29 2012-10-03 东南大学 Method for identifying damaged cable and support translation based on strain monitoring during temperature variation
CN102706650A (en) * 2012-05-29 2012-10-03 东南大学 Slack cable progressive identification method on basis of strain monitoring during support settlement and temperature variation
CN102706617A (en) * 2012-05-30 2012-10-03 东南大学 Loosened cable identification method based on angle monitoring at moment of generalized displacement of supporting seat and temperature variation
CN102706672A (en) * 2012-05-30 2012-10-03 东南大学 Damaged cable and support generalized displacement progressive identification method based on angular monitoring of temperature change
CN102706618A (en) * 2012-05-29 2012-10-03 东南大学 Slack cable approximant identification method on basis of strain monitoring during temperature variation
CN102706640A (en) * 2012-05-29 2012-10-03 东南大学 Damaged cable identification method on basis of strain monitoring during temperature variation
CN102706619A (en) * 2012-05-30 2012-10-03 东南大学 Slack cable identification method on basis of space coordinate monitoring during generalized displacement of support and temperature variation
CN102706620A (en) * 2012-05-30 2012-10-03 东南大学 Slack cable identification method on basis of strain monitoring during generalized displacement of support and temperature variation
CN102706661A (en) * 2012-05-30 2012-10-03 东南大学 Defective cable and support angular displacement identification method based on mixed monitoring of temperature change
CN102706635A (en) * 2012-05-30 2012-10-03 东南大学 Damaged cable approximant identification method on basis of angle monitoring during generalized displacement of support and temperature variation
CN102706642A (en) * 2012-05-29 2012-10-03 东南大学 Slack cable identification method on basis of angle monitoring during support settlement and temperature variation
CN102706592A (en) * 2012-05-29 2012-10-03 东南大学 Problem cable and support translation progressive identification method on basis of space coordinate monitoring during temperature variation
CN102706594A (en) * 2012-05-30 2012-10-03 东南大学 Problem cable and supporting seat generalized displacement identification method based on space coordinate monitoring at moment of temperature variation
CN102706666A (en) * 2012-05-30 2012-10-03 东南大学 Method for identifying damaged cable and support generalized displacement based on space coordinate monitoring during temperature variation
CN102706670A (en) * 2012-05-30 2012-10-03 东南大学 Damaged cable and support generalized displacement identification method based on cable force monitoring of temperature change
CN102706658A (en) * 2012-05-30 2012-10-03 东南大学 Defective cable and support angular displacement progressive identification method based on mixed monitoring of temperature change
CN102706646A (en) * 2012-05-29 2012-10-03 东南大学 Approximant type identification method of damaged cable based on space coordinate monitoring during temperature variation
CN102706665A (en) * 2012-05-30 2012-10-03 东南大学 Method for identifying damaged cable and support generalized displacement based on hybrid monitoring during temperature variation
CN102706644A (en) * 2012-05-29 2012-10-03 东南大学 Method for identifying slack cable based on cable force monitoring during support settlement and temperature variation
CN102706575A (en) * 2012-05-29 2012-10-03 东南大学 Damaged cable and supporting seat translation progressive-type identification method based on space coordinate monitoring at moment of temperature variation
CN102706653A (en) * 2012-05-29 2012-10-03 东南大学 Method for identifying slack cable based on space coordinate monitoring during support settlement and temperature variation
CN102706643A (en) * 2012-05-29 2012-10-03 东南大学 Method for identifying damaged cable and support translation based on angle monitoring during temperature variation
CN102706677A (en) * 2012-05-30 2012-10-03 东南大学 Damaged cable approximation identification method based on angular monitoring of support angular displacement and temperature change
CN102706657A (en) * 2012-05-30 2012-10-03 东南大学 Damaged cable identification method based on cable force monitoring of support generalized displacement and temperature change
CN102706624A (en) * 2012-05-30 2012-10-03 东南大学 Damaged cable and support angular displacement progressive identification method on basis of cable force monitoring temperature variation
CN102706613A (en) * 2012-05-30 2012-10-03 东南大学 Slack cable progressive identification method on basis of space coordinate monitoring during generalized displacement of support and temperature variation
CN102706669A (en) * 2012-05-30 2012-10-03 东南大学 Damaged cable and support generalized displacement identification method based on strain monitoring of temperature change
JP2013092427A (en) * 2011-10-25 2013-05-16 Minebea Co Ltd Fatigue degree detecting strain gauge
JP2013117459A (en) * 2011-12-05 2013-06-13 Ihi Corp Method for detecting damage of pipe
CN103234720A (en) * 2013-04-10 2013-08-07 东南大学 Method for separating and extracting strain caused by different load types
JP2013191888A (en) * 2013-06-20 2013-09-26 Toshiba Corp Damage index prediction system and damage prediction method
CN103852323A (en) * 2014-03-10 2014-06-11 东南大学 Method for progressively recognizing damaged cables, loads and linear displacement based on cable force monitoring
CN103852304A (en) * 2014-03-10 2014-06-11 东南大学 Method for recognizing damaged cables, loads and linear displacement based on cable force monitoring
CN103852328A (en) * 2014-03-10 2014-06-11 东南大学 Angle-monitoring load linear displacement progressive identification method for damaged cable
CN103852286A (en) * 2014-03-10 2014-06-11 东南大学 Strain monitoring error cable load generalized displacement identification method
CN103852291A (en) * 2014-03-10 2014-06-11 东南大学 Progressive recognition method for problematic cable loads through generalized displacement and space coordinate monitoring
CN103852287A (en) * 2014-03-10 2014-06-11 东南大学 Strain monitoring damaged cable load generalized displacement progressive identification method
CN103868705A (en) * 2014-03-10 2014-06-18 东南大学 Angle monitoring damaged cable load progressive identification method
CN103884522A (en) * 2014-03-10 2014-06-25 东南大学 Method for recognizing damaged cables and loads by monitoring angular displacement space coordinates
CN103884526A (en) * 2014-03-10 2014-06-25 东南大学 Progressive method for recognizing fault rod loads based on generalized displacement angle monitoring
CN103884521A (en) * 2014-03-10 2014-06-25 东南大学 Method for recognizing damaged cables and loads by monitoring angular displacement angles
CN103913343A (en) * 2014-03-10 2014-07-09 东南大学 Hybrid monitoring damaged cable load generalized displacement progressive identification method
CN103913335A (en) * 2014-03-10 2014-07-09 东南大学 Identification method for damaged cable and load through linear displacement monitoring and cable force monitoring
CN103913334A (en) * 2014-03-10 2014-07-09 东南大学 Progressive identification method for damaged cable and load through linear displacement monitoring and space coordinate monitoring
CN103913326A (en) * 2014-03-10 2014-07-09 东南大学 Generalized displacement strain monitoring damaged cable load progressive identification method
CN103913338A (en) * 2014-03-10 2014-07-09 东南大学 Hybrid monitoring defective cable load generalized displacement identification method
CN103913333A (en) * 2014-03-10 2014-07-09 东南大学 Progressive identification method for damaged cable and load through linear displacement monitoring and hybrid monitoring
CN103913336A (en) * 2014-03-10 2014-07-09 东南大学 Method for identifying damaged cable load annular displacement in progressive mode through cable force monitoring
CN104990731A (en) * 2015-07-23 2015-10-21 东南大学 Simplified problematical cable load progressive-identification method through hybrid monitoring under angular displacement
CN104990747A (en) * 2015-07-23 2015-10-21 东南大学 Simplified method of recognizing problematic cable load through generalized displacement space coordinate monitoring
CN104990745A (en) * 2015-07-23 2015-10-21 东南大学 Simplified damaged cable load generalized displacement identification method through cable force monitoring
CN104990732A (en) * 2015-07-23 2015-10-21 东南大学 Simplified damaged cable load progressive-identification method through cable force monitoring under angular displacement
CN104990743A (en) * 2015-07-23 2015-10-21 东南大学 Simplified problematical cable load linear displacement progressive-identification method through cable force monitoring
CN104990751A (en) * 2015-07-23 2015-10-21 东南大学 Simplified method of progressively recognizing damaged cable load through linear displacement cable force monitoring
CN104990742A (en) * 2015-07-23 2015-10-21 东南大学 Simplified problematical cable load linear displacement identification method through hybrid monitoring
CN104990734A (en) * 2015-07-23 2015-10-21 东南大学 Simplified damaged cable load progressive-identification method through angle monitoring
CN104990750A (en) * 2015-07-23 2015-10-21 东南大学 Simplified method of recognizing damaged cable load through linear displacement hybrid monitoring
CN104990723A (en) * 2015-07-23 2015-10-21 东南大学 Simplified load damaged cable identification method through hybrid monitoring under generalized displacement
CN104990722A (en) * 2015-07-23 2015-10-21 东南大学 Simplified load problematical cable generalized displacement progressive-identification method through space coordinate monitoring
CN104990749A (en) * 2015-07-23 2015-10-21 东南大学 Simplified method of progressively recognizing load damage cable through generalized displacement space coordinate monitoring
CN104990729A (en) * 2015-07-23 2015-10-21 东南大学 Simplified problematical cable load identification method through strain monitoring under angular displacement
CN104990724A (en) * 2015-07-23 2015-10-21 东南大学 Simplified load damaged cable generalized displacement progressive-identification method through strain monitoring
CN104990725A (en) * 2015-07-23 2015-10-21 东南大学 Simplified damaged cable load linear displacement progressive-identification method through space coordinate monitoring
CN104990739A (en) * 2015-07-23 2015-10-21 东南大学 Simplified damaged cable load identification method through angle monitoring under generalized displacement
CN105004555A (en) * 2015-07-23 2015-10-28 东南大学 Recognition method for load of damaged cable based on streamlined angle monitoring process
CN105004543A (en) * 2015-07-23 2015-10-28 东南大学 Method for recognizing load linear displacement of damaged cable based on streamlined space coordinate monitoring process
CN105004553A (en) * 2015-07-23 2015-10-28 东南大学 Method for recognizing load angular displacement of damaged cable based on streamlined angle monitoring process
CN105004548A (en) * 2015-07-23 2015-10-28 东南大学 Method for recognizing load of damaged cable based on angle monitoring process of streamlined linear displacement
CN105004561A (en) * 2015-07-23 2015-10-28 东南大学 Method for recognizing load of damaged cable based on space coordinate monitoring process of streamlined annular displacement
CN105004557A (en) * 2015-07-23 2015-10-28 东南大学 Method for recognizing damaged cable of load based on streamlined angle monitoring process of generalized displacement
CN105004560A (en) * 2015-07-23 2015-10-28 东南大学 Method for recognizing load of damaged cable based on cable force monitoring process of streamlined linear displacement
CN105004546A (en) * 2015-07-23 2015-10-28 东南大学 Method for progressively recognizing damaged cable of load based on streamlined generalized displacement and angle monitoring process
CN105067353A (en) * 2015-07-23 2015-11-18 东南大学 Method for progressively recognizing load of damaged cable based on angle monitoring process of streamlined and generalized displacement
CN105067323A (en) * 2015-07-23 2015-11-18 东南大学 Method for progressively recognizing damaged cable generalized displacement of load based on streamlined angle monitoring process
CN105067302A (en) * 2015-07-23 2015-11-18 东南大学 Simplified generalized displacement strain-monitoring load damaged cable identifying method
CN105067350A (en) * 2015-07-23 2015-11-18 东南大学 Method for progressively recognizing load annular displacement of damaged cable based on streamlined space coordinate monitoring process
CN105067351A (en) * 2015-07-23 2015-11-18 东南大学 Method for progressively recognizing damaged cable of load based on space coordinate monitoring process of streamlined and generalized displacement
CN105067301A (en) * 2015-07-23 2015-11-18 东南大学 Simplified strain-monitoring load damaged cable generalized displacement identifying method
CN105067349A (en) * 2015-07-23 2015-11-18 东南大学 Method for recognizing damaged cable of load based on cable force monitoring process of streamlined and generalized displacement
CN105067331A (en) * 2015-07-23 2015-11-18 东南大学 Method for recognizing damaged cable of load based on cable force monitoring process of streamlined and generalized displacement
CN105067303A (en) * 2015-07-23 2015-11-18 东南大学 Simplified generalized displacement angle-monitoring load damaged cable progressive identifying method
CN105067356A (en) * 2015-07-23 2015-11-18 东南大学 Method for recognizing load of damaged cable based on streamlined hybrid monitoring process
CN105067334A (en) * 2015-07-23 2015-11-18 东南大学 Method for recognizing load generalized displacement of damaged cable based on streamlined strain monitoring process
CN105067310A (en) * 2015-07-23 2015-11-18 东南大学 Method for recognizing damaged cable generalized displacement of load based on streamlined space coordinate monitoring process
CN105067304A (en) * 2015-07-23 2015-11-18 东南大学 Simplified strain-monitoring defective cable load angular displacement progressive identifying method
CN105067329A (en) * 2015-07-23 2015-11-18 东南大学 Method for recognizing load of damaged cable based on streamlined hybrid monitoring process of generalized displacement
CN105067355A (en) * 2015-07-23 2015-11-18 东南大学 Method for recognizing load of damaged cable based on streamlined strain monitoring process
CN105067297A (en) * 2015-07-23 2015-11-18 东南大学 Simplified cable-force-monitoring damaged cable load support angular displacement identifying method
CN105067348A (en) * 2015-07-23 2015-11-18 东南大学 Method for progressively recognizing load of damaged cable based on hybrid monitoring process of streamlined angular displacement
CN105067345A (en) * 2015-07-23 2015-11-18 东南大学 Method for recognizing damaged cable generalized displacement of load based on streamlined cable force monitoring process
CN105067343A (en) * 2015-07-23 2015-11-18 东南大学 Method for recognizing load angular displacement of damaged cable based on streamlined hybrid monitoring process
CN105067340A (en) * 2015-07-23 2015-11-18 东南大学 Method for recognizing damaged cable of load based on space coordinate monitoring process of streamlined and generalized displacement
CN105067309A (en) * 2015-07-23 2015-11-18 东南大学 Simplified cable-force-monitoring load damaged cable generalized displacement identifying method
CN105067324A (en) * 2015-07-23 2015-11-18 东南大学 Method for progressively recognizing load of damaged cable based on streamlined strain monitoring process
CN105067337A (en) * 2015-07-23 2015-11-18 东南大学 Method for progressively recognizing load generalized displacement of damaged cable based on hybrid monitoring process
CN105067296A (en) * 2015-07-23 2015-11-18 东南大学 Simplified generalized displacement cable-force-monitoring load defective cable progressive identifying method
CN105115754A (en) * 2015-07-23 2015-12-02 东南大学 Progressive identification method for damaged cable load based on angle monitoring through simplified linear displacement change
CN105115771A (en) * 2015-07-23 2015-12-02 东南大学 Progressive identification method for load, damaged cable and generalized displacement through simplified space coordinate monitoring
CN105115763A (en) * 2015-07-23 2015-12-02 东南大学 Identification method for damaged cable and load through simplified monitoring of angular displacement and cable force
CN105115770A (en) * 2015-07-23 2015-12-02 东南大学 Progressive identification method for load, problematic cable and generalized displacement through simplified hybrid monitoring
CN105115750A (en) * 2015-07-23 2015-12-02 东南大学 Identification method for damaged cable load and linear displacement through simplified angle monitoring
CN105115747A (en) * 2015-07-23 2015-12-02 东南大学 Identification method for load of problematic cable based on hydrate monitoring through simplified generalized displacement change
CN105115756A (en) * 2015-07-23 2015-12-02 东南大学 Identification method for damaged cable and generalized displacement based on angle monitoring through simplified load change
CN105115755A (en) * 2015-07-23 2015-12-02 东南大学 Identification method for problematic cable load and angular displacement through simplified strain monitoring
CN105115751A (en) * 2015-07-23 2015-12-02 东南大学 Progressive identification method for damaged cable load and linear displacement based on simplified strain monitoring
CN105136492A (en) * 2015-07-23 2015-12-09 东南大学 Simplified linear displacement angle monitoring faulty cable load progressive identification method
CN105136496A (en) * 2015-07-23 2015-12-09 东南大学 Simplified generalized displacement hybrid monitoring load damaged cable progressive identification method
CN105136504A (en) * 2015-07-23 2015-12-09 东南大学 Simplified generalized displacement strain monitoring load faulty cable progressive identification method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001306670A (en) * 2000-04-26 2001-11-02 B M C:Kk System and method for maintenance management of structure and its content file storage device
JP2003004599A (en) * 2001-06-26 2003-01-08 Nkk Corp Method for evaluating fatigue damage to structure and for display method of the same
JP2003075301A (en) * 2001-09-07 2003-03-12 Topy Ind Ltd System for monitoring fatigue crack on structure
JP2003302320A (en) * 2002-04-05 2003-10-24 Kawasaki Heavy Ind Ltd Fatigue sensor and its protecting method
JP2003322593A (en) * 2002-04-26 2003-11-14 Nippon Steel Corp Residual fatigue life estimating device for steel structure weld part, estimating system, estimating method, program, and storage medium
JP2005114375A (en) * 2003-10-02 2005-04-28 Hirose & Co Ltd Method for detecting endurance limit of temporary construction member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001306670A (en) * 2000-04-26 2001-11-02 B M C:Kk System and method for maintenance management of structure and its content file storage device
JP2003004599A (en) * 2001-06-26 2003-01-08 Nkk Corp Method for evaluating fatigue damage to structure and for display method of the same
JP2003075301A (en) * 2001-09-07 2003-03-12 Topy Ind Ltd System for monitoring fatigue crack on structure
JP2003302320A (en) * 2002-04-05 2003-10-24 Kawasaki Heavy Ind Ltd Fatigue sensor and its protecting method
JP2003322593A (en) * 2002-04-26 2003-11-14 Nippon Steel Corp Residual fatigue life estimating device for steel structure weld part, estimating system, estimating method, program, and storage medium
JP2005114375A (en) * 2003-10-02 2005-04-28 Hirose & Co Ltd Method for detecting endurance limit of temporary construction member

Cited By (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223393A (en) * 2007-03-14 2008-09-25 Jfe Engineering Kk High fatigue enduring steel structure
JP2010066188A (en) * 2008-09-12 2010-03-25 Mitsubishi Heavy Ind Ltd Method and device for diagnosing failure of rotating body of industrial vehicle
DE102009052196B4 (en) * 2009-11-06 2014-09-25 Siemens Aktiengesellschaft Method and device for determining a maintenance parameter of a component having a crack
WO2011054604A1 (en) * 2009-11-06 2011-05-12 Siemens Aktiengesellschaft Method and device for determining a maintenance parameter of a component having a crack
CN101806664A (en) * 2010-03-17 2010-08-18 东南大学 Progressive health monitoring method of cable system based on mixed monitoring in presence of support seat settlement
CN101793630A (en) * 2010-04-02 2010-08-04 东南大学 Cable structure health monitoring method based on angle monitoring
CN101793632A (en) * 2010-04-02 2010-08-04 东南大学 Cable structure health monitoring method based on strain monitoring
CN101806668A (en) * 2010-04-02 2010-08-18 东南大学 Cable structure health monitoring method based on cable tension monitoring
CN102288442A (en) * 2011-05-13 2011-12-21 东南大学 Method for distinguishing damaged cable, slack cable and angular displacement of supporting seat based on angle monitoring
CN102288424A (en) * 2011-05-13 2011-12-21 东南大学 Progressive method for recognizing damaged cable and angular displacement of support based on hybrid monitoring
CN102323084A (en) * 2011-05-31 2012-01-18 东南大学 Progressive method for identifying damaged cable and support generalized displacement on the basis of mixed monitoring
CN102323083A (en) * 2011-05-31 2012-01-18 东南大学 Strain monitoring based method for recognizing damaged cable, loose cable and supporting seat generalized displacement
JP2013092427A (en) * 2011-10-25 2013-05-16 Minebea Co Ltd Fatigue degree detecting strain gauge
JP2013117459A (en) * 2011-12-05 2013-06-13 Ihi Corp Method for detecting damage of pipe
CN102519748A (en) * 2011-12-26 2012-06-27 同济大学 Actual bridge loading and long-term monitoring test method for asphalt pavement of beam steel bridge
CN102706642A (en) * 2012-05-29 2012-10-03 东南大学 Slack cable identification method on basis of angle monitoring during support settlement and temperature variation
CN102706608A (en) * 2012-05-29 2012-10-03 东南大学 Loosened cable identification method based on angle monitoring at moment of temperature variation
CN102706647A (en) * 2012-05-29 2012-10-03 东南大学 Method for identifying slack cable based on strain monitoring during temperature variation.
CN102706643A (en) * 2012-05-29 2012-10-03 东南大学 Method for identifying damaged cable and support translation based on angle monitoring during temperature variation
CN102706598A (en) * 2012-05-29 2012-10-03 东南大学 Slack cable identification method on basis of the space coordinate monitoring during temperature variation
CN102706652A (en) * 2012-05-29 2012-10-03 东南大学 Method for identifying damaged cable and support translation based on strain monitoring during temperature variation
CN102706650A (en) * 2012-05-29 2012-10-03 东南大学 Slack cable progressive identification method on basis of strain monitoring during support settlement and temperature variation
CN102706653A (en) * 2012-05-29 2012-10-03 东南大学 Method for identifying slack cable based on space coordinate monitoring during support settlement and temperature variation
CN102706575A (en) * 2012-05-29 2012-10-03 东南大学 Damaged cable and supporting seat translation progressive-type identification method based on space coordinate monitoring at moment of temperature variation
CN102706618A (en) * 2012-05-29 2012-10-03 东南大学 Slack cable approximant identification method on basis of strain monitoring during temperature variation
CN102706640A (en) * 2012-05-29 2012-10-03 东南大学 Damaged cable identification method on basis of strain monitoring during temperature variation
CN102706644A (en) * 2012-05-29 2012-10-03 东南大学 Method for identifying slack cable based on cable force monitoring during support settlement and temperature variation
CN102706608B (en) * 2012-05-29 2015-10-07 东南大学 Based on the slack line recognition methods of angle monitor during temperature variation
CN102706646A (en) * 2012-05-29 2012-10-03 东南大学 Approximant type identification method of damaged cable based on space coordinate monitoring during temperature variation
CN102706592A (en) * 2012-05-29 2012-10-03 东南大学 Problem cable and support translation progressive identification method on basis of space coordinate monitoring during temperature variation
CN102706641A (en) * 2012-05-29 2012-10-03 东南大学 Method for identifying damaged cable based on strain monitoring during support settlement and temperature variation
CN102706635A (en) * 2012-05-30 2012-10-03 东南大学 Damaged cable approximant identification method on basis of angle monitoring during generalized displacement of support and temperature variation
CN102706594A (en) * 2012-05-30 2012-10-03 东南大学 Problem cable and supporting seat generalized displacement identification method based on space coordinate monitoring at moment of temperature variation
CN102706666A (en) * 2012-05-30 2012-10-03 东南大学 Method for identifying damaged cable and support generalized displacement based on space coordinate monitoring during temperature variation
CN102706670A (en) * 2012-05-30 2012-10-03 东南大学 Damaged cable and support generalized displacement identification method based on cable force monitoring of temperature change
CN102706658A (en) * 2012-05-30 2012-10-03 东南大学 Defective cable and support angular displacement progressive identification method based on mixed monitoring of temperature change
CN102706661A (en) * 2012-05-30 2012-10-03 东南大学 Defective cable and support angular displacement identification method based on mixed monitoring of temperature change
CN102706665A (en) * 2012-05-30 2012-10-03 东南大学 Method for identifying damaged cable and support generalized displacement based on hybrid monitoring during temperature variation
CN102706619A (en) * 2012-05-30 2012-10-03 东南大学 Slack cable identification method on basis of space coordinate monitoring during generalized displacement of support and temperature variation
CN102706672A (en) * 2012-05-30 2012-10-03 东南大学 Damaged cable and support generalized displacement progressive identification method based on angular monitoring of temperature change
CN102706617A (en) * 2012-05-30 2012-10-03 东南大学 Loosened cable identification method based on angle monitoring at moment of generalized displacement of supporting seat and temperature variation
CN102706629A (en) * 2012-05-30 2012-10-03 东南大学 Problem cable supporting seat generalized displacement progressive-type identification method based on space coordinate monitoring at moment of temperature variation
CN102706677A (en) * 2012-05-30 2012-10-03 东南大学 Damaged cable approximation identification method based on angular monitoring of support angular displacement and temperature change
CN102706657A (en) * 2012-05-30 2012-10-03 东南大学 Damaged cable identification method based on cable force monitoring of support generalized displacement and temperature change
CN102706624A (en) * 2012-05-30 2012-10-03 东南大学 Damaged cable and support angular displacement progressive identification method on basis of cable force monitoring temperature variation
CN102706613A (en) * 2012-05-30 2012-10-03 东南大学 Slack cable progressive identification method on basis of space coordinate monitoring during generalized displacement of support and temperature variation
CN102706669A (en) * 2012-05-30 2012-10-03 东南大学 Damaged cable and support generalized displacement identification method based on strain monitoring of temperature change
CN102706611A (en) * 2012-05-30 2012-10-03 东南大学 Problem cable and supporting seat generalized displacement identification method based on cable tension monitoring at moment of temperature variation
CN102706664A (en) * 2012-05-30 2012-10-03 东南大学 Damaged cable approximation identification method based on mixed monitoring of support generalized displacement and temperature change
CN102706624B (en) * 2012-05-30 2015-10-07 东南大学 The damaged cable support angular displacement progressive identification method of temperature variation cable force monitoring
CN102706666B (en) * 2012-05-30 2015-07-08 东南大学 Method for identifying damaged cable and support generalized displacement based on space coordinate monitoring during temperature variation
CN102706658B (en) * 2012-05-30 2015-07-08 东南大学 Defective cable and support angular displacement progressive identification method based on mixed monitoring of temperature change
CN102706669B (en) * 2012-05-30 2015-07-08 东南大学 Damaged cable and support generalized displacement identification method based on strain monitoring of temperature change
CN102706668A (en) * 2012-05-30 2012-10-03 东南大学 Progressive type identification method of damaged cable and support generalized displacement based on hybrid monitoring during temperature variation
CN102706620A (en) * 2012-05-30 2012-10-03 东南大学 Slack cable identification method on basis of strain monitoring during generalized displacement of support and temperature variation
CN102706611B (en) * 2012-05-30 2015-12-02 东南大学 The problem cable of temperature variation cable force monitoring and generalized displacement of support recognition methods
CN103234720A (en) * 2013-04-10 2013-08-07 东南大学 Method for separating and extracting strain caused by different load types
JP2013191888A (en) * 2013-06-20 2013-09-26 Toshiba Corp Damage index prediction system and damage prediction method
CN103852287A (en) * 2014-03-10 2014-06-11 东南大学 Strain monitoring damaged cable load generalized displacement progressive identification method
CN103884526A (en) * 2014-03-10 2014-06-25 东南大学 Progressive method for recognizing fault rod loads based on generalized displacement angle monitoring
CN103884521A (en) * 2014-03-10 2014-06-25 东南大学 Method for recognizing damaged cables and loads by monitoring angular displacement angles
CN103913343A (en) * 2014-03-10 2014-07-09 东南大学 Hybrid monitoring damaged cable load generalized displacement progressive identification method
CN103913335A (en) * 2014-03-10 2014-07-09 东南大学 Identification method for damaged cable and load through linear displacement monitoring and cable force monitoring
CN103913334A (en) * 2014-03-10 2014-07-09 东南大学 Progressive identification method for damaged cable and load through linear displacement monitoring and space coordinate monitoring
CN103852291A (en) * 2014-03-10 2014-06-11 东南大学 Progressive recognition method for problematic cable loads through generalized displacement and space coordinate monitoring
CN103913338A (en) * 2014-03-10 2014-07-09 东南大学 Hybrid monitoring defective cable load generalized displacement identification method
CN103913333A (en) * 2014-03-10 2014-07-09 东南大学 Progressive identification method for damaged cable and load through linear displacement monitoring and hybrid monitoring
CN103852286A (en) * 2014-03-10 2014-06-11 东南大学 Strain monitoring error cable load generalized displacement identification method
CN103852328A (en) * 2014-03-10 2014-06-11 东南大学 Angle-monitoring load linear displacement progressive identification method for damaged cable
CN103852304A (en) * 2014-03-10 2014-06-11 东南大学 Method for recognizing damaged cables, loads and linear displacement based on cable force monitoring
CN103852323A (en) * 2014-03-10 2014-06-11 东南大学 Method for progressively recognizing damaged cables, loads and linear displacement based on cable force monitoring
CN103884522A (en) * 2014-03-10 2014-06-25 东南大学 Method for recognizing damaged cables and loads by monitoring angular displacement space coordinates
CN103868705A (en) * 2014-03-10 2014-06-18 东南大学 Angle monitoring damaged cable load progressive identification method
CN103913326A (en) * 2014-03-10 2014-07-09 东南大学 Generalized displacement strain monitoring damaged cable load progressive identification method
CN103913336A (en) * 2014-03-10 2014-07-09 东南大学 Method for identifying damaged cable load annular displacement in progressive mode through cable force monitoring
CN104990747A (en) * 2015-07-23 2015-10-21 东南大学 Simplified method of recognizing problematic cable load through generalized displacement space coordinate monitoring
CN104990745A (en) * 2015-07-23 2015-10-21 东南大学 Simplified damaged cable load generalized displacement identification method through cable force monitoring
CN104990732A (en) * 2015-07-23 2015-10-21 东南大学 Simplified damaged cable load progressive-identification method through cable force monitoring under angular displacement
CN104990743A (en) * 2015-07-23 2015-10-21 东南大学 Simplified problematical cable load linear displacement progressive-identification method through cable force monitoring
CN104990751A (en) * 2015-07-23 2015-10-21 东南大学 Simplified method of progressively recognizing damaged cable load through linear displacement cable force monitoring
CN104990742A (en) * 2015-07-23 2015-10-21 东南大学 Simplified problematical cable load linear displacement identification method through hybrid monitoring
CN104990734A (en) * 2015-07-23 2015-10-21 东南大学 Simplified damaged cable load progressive-identification method through angle monitoring
CN104990750A (en) * 2015-07-23 2015-10-21 东南大学 Simplified method of recognizing damaged cable load through linear displacement hybrid monitoring
CN104990723A (en) * 2015-07-23 2015-10-21 东南大学 Simplified load damaged cable identification method through hybrid monitoring under generalized displacement
CN104990722A (en) * 2015-07-23 2015-10-21 东南大学 Simplified load problematical cable generalized displacement progressive-identification method through space coordinate monitoring
CN104990749A (en) * 2015-07-23 2015-10-21 东南大学 Simplified method of progressively recognizing load damage cable through generalized displacement space coordinate monitoring
CN104990729A (en) * 2015-07-23 2015-10-21 东南大学 Simplified problematical cable load identification method through strain monitoring under angular displacement
CN104990724A (en) * 2015-07-23 2015-10-21 东南大学 Simplified load damaged cable generalized displacement progressive-identification method through strain monitoring
CN104990725A (en) * 2015-07-23 2015-10-21 东南大学 Simplified damaged cable load linear displacement progressive-identification method through space coordinate monitoring
CN104990739A (en) * 2015-07-23 2015-10-21 东南大学 Simplified damaged cable load identification method through angle monitoring under generalized displacement
CN105004555A (en) * 2015-07-23 2015-10-28 东南大学 Recognition method for load of damaged cable based on streamlined angle monitoring process
CN105004543A (en) * 2015-07-23 2015-10-28 东南大学 Method for recognizing load linear displacement of damaged cable based on streamlined space coordinate monitoring process
CN105004553A (en) * 2015-07-23 2015-10-28 东南大学 Method for recognizing load angular displacement of damaged cable based on streamlined angle monitoring process
CN105004548A (en) * 2015-07-23 2015-10-28 东南大学 Method for recognizing load of damaged cable based on angle monitoring process of streamlined linear displacement
CN105004561A (en) * 2015-07-23 2015-10-28 东南大学 Method for recognizing load of damaged cable based on space coordinate monitoring process of streamlined annular displacement
CN105004557A (en) * 2015-07-23 2015-10-28 东南大学 Method for recognizing damaged cable of load based on streamlined angle monitoring process of generalized displacement
CN105004560A (en) * 2015-07-23 2015-10-28 东南大学 Method for recognizing load of damaged cable based on cable force monitoring process of streamlined linear displacement
CN105004546A (en) * 2015-07-23 2015-10-28 东南大学 Method for progressively recognizing damaged cable of load based on streamlined generalized displacement and angle monitoring process
CN105067353A (en) * 2015-07-23 2015-11-18 东南大学 Method for progressively recognizing load of damaged cable based on angle monitoring process of streamlined and generalized displacement
CN105067323A (en) * 2015-07-23 2015-11-18 东南大学 Method for progressively recognizing damaged cable generalized displacement of load based on streamlined angle monitoring process
CN105067302A (en) * 2015-07-23 2015-11-18 东南大学 Simplified generalized displacement strain-monitoring load damaged cable identifying method
CN105067350A (en) * 2015-07-23 2015-11-18 东南大学 Method for progressively recognizing load annular displacement of damaged cable based on streamlined space coordinate monitoring process
CN105067351A (en) * 2015-07-23 2015-11-18 东南大学 Method for progressively recognizing damaged cable of load based on space coordinate monitoring process of streamlined and generalized displacement
CN105067301A (en) * 2015-07-23 2015-11-18 东南大学 Simplified strain-monitoring load damaged cable generalized displacement identifying method
CN105067349A (en) * 2015-07-23 2015-11-18 东南大学 Method for recognizing damaged cable of load based on cable force monitoring process of streamlined and generalized displacement
CN105067331A (en) * 2015-07-23 2015-11-18 东南大学 Method for recognizing damaged cable of load based on cable force monitoring process of streamlined and generalized displacement
CN105067303A (en) * 2015-07-23 2015-11-18 东南大学 Simplified generalized displacement angle-monitoring load damaged cable progressive identifying method
CN105067356A (en) * 2015-07-23 2015-11-18 东南大学 Method for recognizing load of damaged cable based on streamlined hybrid monitoring process
CN105067334A (en) * 2015-07-23 2015-11-18 东南大学 Method for recognizing load generalized displacement of damaged cable based on streamlined strain monitoring process
CN105067310A (en) * 2015-07-23 2015-11-18 东南大学 Method for recognizing damaged cable generalized displacement of load based on streamlined space coordinate monitoring process
CN105067304A (en) * 2015-07-23 2015-11-18 东南大学 Simplified strain-monitoring defective cable load angular displacement progressive identifying method
CN105067329A (en) * 2015-07-23 2015-11-18 东南大学 Method for recognizing load of damaged cable based on streamlined hybrid monitoring process of generalized displacement
CN105067355A (en) * 2015-07-23 2015-11-18 东南大学 Method for recognizing load of damaged cable based on streamlined strain monitoring process
CN105067297A (en) * 2015-07-23 2015-11-18 东南大学 Simplified cable-force-monitoring damaged cable load support angular displacement identifying method
CN105067348A (en) * 2015-07-23 2015-11-18 东南大学 Method for progressively recognizing load of damaged cable based on hybrid monitoring process of streamlined angular displacement
CN105067345A (en) * 2015-07-23 2015-11-18 东南大学 Method for recognizing damaged cable generalized displacement of load based on streamlined cable force monitoring process
CN105067343A (en) * 2015-07-23 2015-11-18 东南大学 Method for recognizing load angular displacement of damaged cable based on streamlined hybrid monitoring process
CN105067340A (en) * 2015-07-23 2015-11-18 东南大学 Method for recognizing damaged cable of load based on space coordinate monitoring process of streamlined and generalized displacement
CN105067309A (en) * 2015-07-23 2015-11-18 东南大学 Simplified cable-force-monitoring load damaged cable generalized displacement identifying method
CN105067324A (en) * 2015-07-23 2015-11-18 东南大学 Method for progressively recognizing load of damaged cable based on streamlined strain monitoring process
CN105067337A (en) * 2015-07-23 2015-11-18 东南大学 Method for progressively recognizing load generalized displacement of damaged cable based on hybrid monitoring process
CN105067296A (en) * 2015-07-23 2015-11-18 东南大学 Simplified generalized displacement cable-force-monitoring load defective cable progressive identifying method
CN105115754A (en) * 2015-07-23 2015-12-02 东南大学 Progressive identification method for damaged cable load based on angle monitoring through simplified linear displacement change
CN105115771A (en) * 2015-07-23 2015-12-02 东南大学 Progressive identification method for load, damaged cable and generalized displacement through simplified space coordinate monitoring
CN105115763A (en) * 2015-07-23 2015-12-02 东南大学 Identification method for damaged cable and load through simplified monitoring of angular displacement and cable force
CN105115770A (en) * 2015-07-23 2015-12-02 东南大学 Progressive identification method for load, problematic cable and generalized displacement through simplified hybrid monitoring
CN105115750A (en) * 2015-07-23 2015-12-02 东南大学 Identification method for damaged cable load and linear displacement through simplified angle monitoring
CN105115747A (en) * 2015-07-23 2015-12-02 东南大学 Identification method for load of problematic cable based on hydrate monitoring through simplified generalized displacement change
CN105115756A (en) * 2015-07-23 2015-12-02 东南大学 Identification method for damaged cable and generalized displacement based on angle monitoring through simplified load change
CN105115755A (en) * 2015-07-23 2015-12-02 东南大学 Identification method for problematic cable load and angular displacement through simplified strain monitoring
CN104990731A (en) * 2015-07-23 2015-10-21 东南大学 Simplified problematical cable load progressive-identification method through hybrid monitoring under angular displacement
CN105115751A (en) * 2015-07-23 2015-12-02 东南大学 Progressive identification method for damaged cable load and linear displacement based on simplified strain monitoring
CN105136492A (en) * 2015-07-23 2015-12-09 东南大学 Simplified linear displacement angle monitoring faulty cable load progressive identification method
CN105136496A (en) * 2015-07-23 2015-12-09 东南大学 Simplified generalized displacement hybrid monitoring load damaged cable progressive identification method
CN105136504A (en) * 2015-07-23 2015-12-09 东南大学 Simplified generalized displacement strain monitoring load faulty cable progressive identification method

Similar Documents

Publication Publication Date Title
JP2006337144A (en) Fatigue life diagnostic method and diagnostic support device of bridge
Kim et al. Vibration-based damage monitoring in model plate-girder bridges under uncertain temperature conditions
CN106428617B (en) Integrated system and method for vehicle management and monitoring
Kwon et al. Bridge fatigue assessment and management using reliability-based crack growth and probability of detection models
Soliman et al. Probabilistic optimum inspection planning of steel bridges with multiple fatigue sensitive details
JP4862708B2 (en) Deterioration degree diagnosis method, deterioration degree diagnosis device, and deterioration diagnosis program
JP4799267B2 (en) Fatigue sensor and fatigue damage degree estimation method
US7272330B2 (en) System for analyzing an organic photoconducting drum and a method thereof
Aldrin et al. Case studies for model‐assisted probabilistic reliability assessment for structural health monitoring systems
US20130104659A1 (en) Method for Non-Destructive Testing
JP2017187327A (en) Crack diagnostic method and device
KR20110005180A (en) System for structural health monitoring of each construction member, and method for the same
JP6794025B2 (en) Crack diagnostic device and crack diagnostic method
JP2003065942A (en) Device and method for diagnosing damaged degree of concrete
Schmidt Monitoring of aircraft landing gear structure
JP2020115153A (en) Crack diagnosis method and device
JP6927360B2 (en) Crack diagnostic method and equipment
JP6061767B2 (en) Method and apparatus for exploring delamination inside concrete
Hardman Mechanical and propulsion systems prognostics: US navy strategy and demonstration
Molent et al. Verification of an airframe fatigue life monitoring system using ex-service structure
Yun Entropic approaches for assessment of metal fatigue damage
Drury et al. Measuring human detection performance in aircraft visual inspection
JP3612293B2 (en) Method and apparatus for measuring residual stress in object
JP2013096720A (en) Method for monitoring deterioration of rc structure due to reinforcement corrosion and device therefor
JP2021021647A (en) Abnormality detection system for information board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026