JP2013191888A - Damage index prediction system and damage prediction method - Google Patents

Damage index prediction system and damage prediction method Download PDF

Info

Publication number
JP2013191888A
JP2013191888A JP2013129353A JP2013129353A JP2013191888A JP 2013191888 A JP2013191888 A JP 2013191888A JP 2013129353 A JP2013129353 A JP 2013129353A JP 2013129353 A JP2013129353 A JP 2013129353A JP 2013191888 A JP2013191888 A JP 2013191888A
Authority
JP
Japan
Prior art keywords
damage
joint
detection
index
prediction system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013129353A
Other languages
Japanese (ja)
Other versions
JP5572741B2 (en
Inventor
Tomoko Kadota
朋子 門田
Minoru Mukai
稔 向井
Kenji Hirohata
賢治 廣畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013129353A priority Critical patent/JP5572741B2/en
Publication of JP2013191888A publication Critical patent/JP2013191888A/en
Application granted granted Critical
Publication of JP5572741B2 publication Critical patent/JP5572741B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a damage index prediction system of an electronic apparatus capable of highly accurately performing damage prediction of mounting components or the like on a circuit board.SOLUTION: A damage index prediction system is a damage prediction system that predicts an index associated with damage of a joining portion of an electronic apparatus having a joining portion for electrically connecting electronic components to a mounting circuit board and a detection joining portion designed to have a life shorter than that of the joining portion. The damage index prediction system comprises: a damage detection section for acquiring information associated with damage of the detection joining portion; and an arithmetic section for calculating a prediction value of the index associated with the damage of the joining portion from the information associated with the damage of the detection joining portion acquired by the damage detection section and a relation between an index associated with the damage of the detection joining portion and the index associated with the damage of the joining portion.

Description

本発明の実施形態は、損傷指標予測システムおよび損傷予測方法に関し、特に、電子機器の損傷指標予測システムおよび損傷予測方法に関する。   Embodiments described herein relate generally to a damage index prediction system and a damage prediction method, and more particularly, to a damage index prediction system and a damage prediction method for an electronic device.

最近では半導体装置を実装したあらゆる機器の高機能化および多機能化が進み、これにともなって半導体チップの高集積化、大規模化が一層進み、この半導体チップを搭載した半導体パッケージと回路基板とを接続する電気的接合部、一般的にははんだ接合部の数が大幅に増加する傾向にある。その結果、半導体パッケージの接合部に熱応力が繰り返し生じ、熱疲労破壊することが問題になっている。   In recent years, various devices equipped with semiconductor devices have become more sophisticated and multifunctional, and with this, semiconductor chips have become more highly integrated and larger in scale. There is a tendency that the number of electrical joints connecting the two, generally solder joints, is greatly increased. As a result, thermal stress is repeatedly generated in the joint portion of the semiconductor package, which causes a problem of thermal fatigue failure.

そこで、接合部の熱疲労破壊を未然に防ぐために、接合部の熱疲労破壊が近づいていることを検出する手法が提案されている(例えば、特許文献1参照。)。これは、電気接続用バンプとは別に、半導体パッケージ側と回路基板側とを電気的に接続するセンサーバンプを設け、このセンサーバンプを含む接続経路の電気抵抗値を自動的に検出し、所定レベルを超えたときに熱疲労破壊が進んでいることを判別するものである。   Thus, in order to prevent thermal fatigue failure at the joint, a method for detecting that the thermal fatigue failure at the joint is approaching has been proposed (see, for example, Patent Document 1). In addition to the electrical connection bumps, sensor bumps are provided to electrically connect the semiconductor package side and the circuit board side, and the electrical resistance value of the connection path including the sensor bumps is automatically detected to a predetermined level. It is determined that the thermal fatigue failure is progressing when the value exceeds.

上記した特許文献1で提案されている熱疲労破壊の検出手法では、半導体パッケージの接合部の熱疲労破壊が近づいていることを検出するが、接合部の余寿命がどの程度であるかを判別することができないという問題がある。   In the thermal fatigue failure detection method proposed in Patent Document 1 described above, it is detected that the thermal fatigue failure of the joint portion of the semiconductor package is approaching, but it is determined how much the remaining life of the joint portion is. There is a problem that you can not.

また、回路基板上の実装部品の接合部について、電子機器使用前に損傷予測される場合、あるいは電子機器使用中に測定されたパラメータから損傷予測される場合においては、電子機器、実装部品、接合部などの各構成部品に個体差が存在する。また、接合部の疲労特性にもばらつきが存在するため、実際の接合部の損傷には大きなばらつきが生じ、損傷予測値と大きく異なる可能性がある。   In addition, in the case where damage is predicted before using an electronic device, or when damage is predicted from parameters measured during use of the electronic device, the joint of the mounted component on the circuit board is not recommended. There is an individual difference in each component such as a part. In addition, since there is also a variation in the fatigue characteristics of the joint, there is a large variation in the actual joint damage, which may be significantly different from the damage prediction value.

特許第3265197号公報Japanese Patent No. 3265197

本発明が解決しようとする課題は、搭載した回路基板上の実装部品の接合部について、より確実な損傷予測が可能な損傷指標予測システムを提供することである。   The problem to be solved by the present invention is to provide a damage index predicting system capable of more surely predicting damage at a joint portion of mounted components on a mounted circuit board.

実施形態の損傷指標予測システムは、電子部品を実装用の回路基板と電気的に接続する接合部と、この接合部よりも低寿命に設計された検出用接合部とを有する電子機器の前記接合部の損傷に関する指標を予測する損傷予測システムであって、前記検出用接合部の損傷に関する情報を取得する損傷検出部と、この損傷検出部で得られる前記検出用接合部の損傷に関する情報と、前記検出用接合部の損傷に関する指標と前記接合部の損傷に関する指標との関係から、前記接合部の損傷に関する指標の予測値を演算する演算部と、を備える。   The damage index prediction system according to the embodiment includes the joint of an electronic device having a joint that electrically connects an electronic component to a circuit board for mounting, and a joint for detection that is designed to have a lower life than the joint. A damage prediction system for predicting an index related to damage of a part, a damage detection unit for acquiring information on damage of the detection joint, and information on damage of the detection joint obtained by the damage detection unit, A calculation unit that calculates a predicted value of the index related to damage of the joint from the relationship between the index related to damage of the detection joint and the index related to damage of the joint;

実施形態の損傷指標予測方法は、電子部品を実装用の回路基板と電気的に接続する接合部と、この接合部よりも低寿命に設計され検出用接合部とを有する電子機器の前記接合部の損傷に関する指標を予測する損傷予測方法であって、
前記検出用接合部の損傷に関する情報を取得し、この損傷検出で取得される前記検出用接合部の前記損傷に関する指標と、前記検出用接合部の損傷に関する指標と前記接合部の損傷に関する指標との関係から、前記接合部の損傷に関する指標の予測値を演算する。
The damage index predicting method according to the embodiment includes the joint part of an electronic device having a joint part for electrically connecting an electronic component to a circuit board for mounting, and a joint part for detection designed to have a lower life than the joint part. A damage prediction method for predicting a damage index of
Obtaining information relating to damage of the detection joint, an index relating to the damage of the joint for detection obtained by this damage detection, an index relating to damage to the joint for detection, and an indicator relating to damage to the joint; From this relationship, the predicted value of the index related to the damage of the joint is calculated.

実施形態に関する損傷指標予測システムの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the damage parameter | index prediction system regarding embodiment. 実施形態に関する電子部品とその周辺の断面図である。It is sectional drawing of the electronic component regarding embodiment, and its periphery. 寿命比のデータベース構築の構成概略を示すブロック図である。It is a block diagram which shows the structure outline of the database construction of a life ratio. 電子部品の接合部の損傷に基づく損傷指標予測手法の流れを示す図である。It is a figure which shows the flow of the damage parameter | index prediction method based on the damage of the junction part of an electronic component. 変形例1における電子部品の接合部の損傷指標予測手法の流れを示す図である。It is a figure which shows the flow of the damage parameter | index prediction method of the junction part of the electronic component in the modification 1. 変形例2に係る電子部品とその周辺の断面図である。FIG. 11 is a cross-sectional view of an electronic component according to Modification 2 and its surroundings. 接合部の損傷指標予測手法の流れを示す図である。It is a figure which shows the flow of the damage parameter | index prediction method of a junction part. 変形例3における電子部品の接合部の損傷指標予測手法の流れを示す図である。It is a figure which shows the flow of the damage parameter | index prediction method of the junction part of the electronic component in the modification 3. 現象解析から接合部と検出用接合部の寿命比のデータベース構築の構成概略を示すブロック図である。It is a block diagram which shows the structure outline of the database construction of the life ratio of a junction part and a junction part for a detection from a phenomenon analysis. 変形例5に係る電子部品とその周辺の断面図である。FIG. 10 is a cross-sectional view of an electronic component according to Modification Example 5 and its periphery. 変形例6に係る電子部品とその周辺を説明する図であり、(a)は電子部品とその周辺の断面図であり、(b)は電子部品の接合部と検出用接合部の配置を示している。It is a figure explaining the electronic component which concerns on the modification 6, and its periphery, (a) is sectional drawing of an electronic component and its periphery, (b) shows arrangement | positioning of the junction part and detection junction part of an electronic component ing. 本変形例7に係る電子部品とその周辺を説明する図であり、(a)は電子部品2とその周辺の断面図であり、(b)は電子部品2の接合部6と検出用接合部7の配置を示している。It is a figure explaining the electronic component which concerns on this modification 7, and its periphery, (a) is sectional drawing of the electronic component 2 and its periphery, (b) is the junction part 6 and detection junction part of the electronic component 2 7 is shown. 本変形例8に係る電子部品とその周辺を説明する図であり、(a)は電子部品2とその周辺の断面図であり、(b)は電子部品2の接合部6と検出用接合部7の配置を示すものである。It is a figure explaining the electronic component which concerns on this modification 8, and its periphery, (a) is sectional drawing of the electronic component 2 and its periphery, (b) is the junction part 6 and detection junction part of the electronic component 2 7 is shown. 第2の実施形態における、損傷指標予測システムの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the damage parameter | index prediction system in 2nd Embodiment. 現象解析から接合部と検出用接合部のひずみ範囲のデータベース構築の構成概略を示すブロック図である。It is a block diagram which shows the structure outline of the database construction of the distortion range of a junction part and a junction part for a detection from a phenomenon analysis. 第2の実施形態における電子部品の接合部6の寿命予測手法の流れを示している。The flow of the lifetime prediction method of the junction part 6 of the electronic component in 2nd Embodiment is shown. 接合部の疲労特性のデータベースの修正方法を説明するための模式図である。It is a schematic diagram for demonstrating the correction method of the database of the fatigue characteristic of a junction part. 疲労特性データベースの修正手法を説明するための模式図である。It is a schematic diagram for demonstrating the correction method of a fatigue characteristic database. 変形例における接合部と検出用接合部のひずみ範囲のデータベースを構築のための概略構成を示すブロック図である。It is a block diagram which shows schematic structure for constructing | assembling the database of the distortion range of the junction part in a modification, and the junction part for a detection.

以下、本発明の一実施の形態について図面を参照しながら説明する。各図において同一箇所については同一の符号を付すとともに、重複した説明は省略する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the drawings, the same portions are denoted by the same reference numerals, and redundant description is omitted.

(第1の実施形態)
図1は、第1の実施形態に係り、搭載した回路基板上の電子部品の接合部の損傷情報を利用する損傷指標予測システムの概略構成を示すブロック図である。この損傷指標予測システムは、電子機器の内部に組み込むことも出来るし、また電子機器の外部に配置されて、接続することもできる。
(First embodiment)
FIG. 1 is a block diagram illustrating a schematic configuration of a damage index prediction system according to the first embodiment, which uses damage information of a joint portion of an electronic component on a mounted circuit board. This damage index prediction system can be incorporated inside the electronic device, or can be arranged and connected outside the electronic device.

図1に示すように、損傷指標予測システム100は、接合部と検出用接合部の損傷に関する関係についてのデータベース11、検出用接合部の損傷を検出する損傷検出部12、接合部の損傷に関する指標を演算する演算部13、表示出力部14を備えている。ただし、この表示出力部14はあえて設けなくてもよい。   As shown in FIG. 1, the damage index prediction system 100 includes a database 11 regarding the relationship between the joint and the detection joint damage, a damage detection unit 12 that detects the damage of the detection joint, and an index about the joint damage. Is provided with a calculation unit 13 and a display output unit 14. However, the display output unit 14 may not be provided.

データベース11には、例えば、あらかじめ、電子機器について温度サイクル試験などの加速試験や、応力解析などの現象解析を行い、その結果から、電子部品の接合部と検出用接合部(後述する)について、損傷に関する関係を算出した結果を蓄積する。   In the database 11, for example, an acceleration test such as a temperature cycle test and a phenomenon analysis such as stress analysis are performed on the electronic device in advance, and from the result, the joint part of the electronic component and the joint part for detection (described later) Accumulate the results of calculating the relationship for damage.

また、電子部品の接合部と検出用接合部の損傷に関する関係は、例えば、両者の損傷に関する指標の関数式で表され、検出用接合部の損傷に関する指標から電子部品の接合部の損傷に関する指標を算出できる。   In addition, the relationship regarding the damage between the joint of the electronic component and the joint for detection is expressed by, for example, a function expression of the index regarding the damage between the two, and the index regarding the damage of the joint of the electronic component from the index regarding the damage of the joint for detection Can be calculated.

ここで、損傷に関する指標について説明する。一般的に、電子機器は使用の都度、電源が投入され、使用が終了すると電源断となる。このような電源ON/OFFの繰り返しに伴う電子機器内部の実装部品に熱応力が生じる。また、移動中の車内で使用する場合や、電子機器を落下させた場合には、電子機器内部の電子部品にも振動が加わる。このような電子部品に生じる熱応力や振動は損傷あるいは寿命を左右することになり、これを指標として表したものを損傷に関する指標とする。損傷に関する指標としては、例えば、破損寿命、損傷値、破損寿命を用いた関数、損傷値を用いた関数などがある。   Here, the index regarding damage will be described. In general, an electronic device is turned on every time it is used, and is turned off when the use is finished. Thermal stress is generated in the mounted components inside the electronic device due to such repeated power ON / OFF. In addition, when used in a moving vehicle or when an electronic device is dropped, vibration is also applied to the electronic components inside the electronic device. Thermal stress and vibration generated in such an electronic component will affect the damage or life, and what is expressed as an index is used as an index for damage. Examples of the damage index include a breakage life, a damage value, a function using the breakage life, a function using the damage value, and the like.

ここで、破損寿命とは、破損までの期間を表すもので、例えば、破損までのサイクル数や破損時間などで表される。   Here, the breakage life represents a period until breakage, and is represented by, for example, the number of cycles until breakage or breakage time.

また、損傷値は次のように定義することができる。繰返し負荷が1サイクル加わった際の損傷値は、同一の繰返し負荷を与えたときの寿命サイクル数の逆数で表され、負荷が繰返し生じた場合の損傷値は、各サイクルで生じる損傷値を累積したものである。累計した損傷値が1に達したとき、接合部が破損したことを表す。   The damage value can be defined as follows. The damage value when one cyclic load is applied is represented by the reciprocal of the number of life cycles when the same cyclic load is applied. The damage value when the load is repeatedly generated is the cumulative damage value generated in each cycle. It is a thing. When the cumulative damage value reaches 1, it indicates that the joint has been damaged.

仮に、損傷に関する指標を破損寿命とし、損傷に関する指標の関係を寿命比とし、検出用接合部は温度変動などに対する破損寿命が電子部品の接合部のそれの半分として設計・製造されたとする。寿命比を電子部品の接合部の予測寿命を1としたときの検出用接合部の予測寿命の比率であると定義すると、このときの検出用接合部の寿命比は、0.5となる。このとき、検出用接合部が2000回の繰り返し使用に耐えたならば、当該電子部品の接合部は4000回の繰り返し使用に耐えると、予測することができる。尚、予測寿命は、温度変動の繰り返しサイクル数だけに限って寿命予測するものではない。すなわち、検出用接合部の破損寿命と使用時間で把握したとすると、予測寿命を当該電子機器の寿命に至るまでの時間として予測することができる。   Assume that the damage index is the failure life, the relationship of the damage index is the life ratio, and the detection joint is designed and manufactured with a damage life against temperature fluctuation of half of that of the electronic component joint. If the life ratio is defined as the ratio of the predicted life of the joint for detection when the predicted life of the joint of the electronic component is 1, the life ratio of the joint for detection at this time is 0.5. At this time, if the detection joint can withstand repeated use 2000 times, it can be predicted that the joint of the electronic component can withstand 4000 repeated use. Note that the predicted life is not limited to the number of repeated cycles of temperature fluctuation. That is, if it is grasped by the broken life and the usage time of the detection joint, the predicted life can be predicted as the time until the life of the electronic device.

検出用接合部の損傷検出部12は、検出用接合部の損傷を検出するためのものである。検出の手法については後述する。例えば、損傷検出部12は、電気回路として構成することができる。   The damage detection unit 12 of the detection joint is for detecting damage of the detection joint. The detection method will be described later. For example, the damage detection unit 12 can be configured as an electric circuit.

また、検出用接合部は、電子部品の接合部と構造的に同様な接合部、すなわち電子部品の機能を発動するための電気的信号は通らないが、構造的には電子部品の接合部の一部として形成してもよく、これらの検出部は例えばはんだ材料で構成される。   In addition, the detection joint is structurally similar to the joint of the electronic component, i.e., an electrical signal for invoking the function of the electronic component does not pass through. You may form as a part and these detection parts are comprised, for example with a solder material.

接合部の損傷に関する指標の演算部13は、まず、損傷検出部12から検出用接合部の情報を入力する一方、データベース11から蓄積されている損傷に関する関係を取り込んで、電子部品の接合部の損傷に関する指標の予測値、例えば破損に至るまでのサイクル数の予測値を算出する。この演算部13は、例えばCPUで構成することができる。なお、算出された電子部品の接合部の損傷に関する指標の予測値は、表示出力部14に表示するようにしても良い。   First, the index calculation unit 13 relating to the damage of the joint part inputs the information on the joint part for detection from the damage detection unit 12, while taking in the relation regarding the damage accumulated from the database 11, A predicted value of an index related to damage, for example, a predicted value of the number of cycles until failure is calculated. This calculating part 13 can be comprised by CPU, for example. Note that the predicted value of the index related to the damage of the joint portion of the electronic component may be displayed on the display output unit 14.

個々の電子機器は、使用される環境がそれぞれ異なり、また、個体差も有していることから、使用前の一律な予測では、確からしさとの観点からは十分とは言えず、機器の使用経過と個体差を予測に反映させることにより、適切な損傷指標予測ができる。   Since individual electronic devices are used in different environments and have individual differences, uniform prediction before use is not sufficient from the perspective of accuracy, and the use of devices By reflecting the progress and individual differences in the prediction, an appropriate damage index can be predicted.

表示出力部14は、当該電子機器の操作者に対して、寿命に関する情報を提示するためのものであって、電子機器のディスプレイを共用することが好適である。例えば、「繰り返し使用可能回数は4000回、現在までの使用回数は2000回です。」と表示する。ただし、この表示出力部14はあえて設けなくてもよい。   The display output unit 14 is for presenting information on the lifetime to the operator of the electronic device, and it is preferable to share the display of the electronic device. For example, “The number of times that it can be used is 4000 times, and the number of times it can be used is 2000 times.” Is displayed. However, the display output unit 14 may not be provided.

次に、検出用接合部の構成について説明する。図2は、実施形態に関する電子部品とその周辺の断面図である。図2に示すように、電子部品2は回路基板1に実装され、回路基板1を介してその裏面側に検出用デバイス3が実装されている。検出用デバイス3は、検出用接合部7によって回路基板1に電気的に接続されている。検出用接合部7は電子機器2の接合部6より低寿命で、例えば、接合部6が繰り返し使用1万回に耐える寿命であるとき、検出用接合部7は接合部6の寿命の半分である繰り返し使用5000回に耐える寿命となるように設計されている。   Next, the configuration of the detection joint will be described. FIG. 2 is a cross-sectional view of the electronic component and its surroundings according to the embodiment. As shown in FIG. 2, the electronic component 2 is mounted on the circuit board 1, and the detection device 3 is mounted on the back surface side of the circuit board 1. The detection device 3 is electrically connected to the circuit board 1 by a detection joint 7. The joint 7 for detection has a life shorter than that of the joint 6 of the electronic device 2. For example, when the joint 6 has a lifetime that can withstand repeated use 10,000 times, the joint 7 for detection has half the life of the joint 6. It is designed to have a lifetime that can withstand 5000 repeated uses.

寿命に相違が生じるような設計手法としては、多様なものがある。例えば、回路基板1の曲率が特徴的に変化する電子部品2コーナー直下、もしくは、電子部品2が半導体パッケージの場合には、チップコーナー直下付近の回路基板の裏面側に、検出用デバイス3を配置する。このような配置にすると、検出用接合部7への負荷は、接合部6への負荷に比べて大きくなるため、低寿命になる。   There are a variety of design methods that may cause differences in the service life. For example, the detection device 3 is arranged immediately below the corner of the electronic component 2 where the curvature of the circuit board 1 changes characteristically or when the electronic component 2 is a semiconductor package, on the back side of the circuit board near the chip corner. To do. With such an arrangement, the load on the detection junction 7 becomes larger than the load on the junction 6, so the life is shortened.

また、回路基板1と電子部品2のパッケージ基板4と各検出用デバイス基板5は、線膨張率の異なる材料で作成し、その線膨張率は回路基板1、パッケージ基板4、検出用デバイス基板5の順に大きくし、パッケージ基板4と回路基板1の線膨張率差より、検出用デバイス基板5と回路基板1の線膨張率差の方を大きくする。例えば、回路基板1とパッケージ基板4は樹脂基板とし、検出用デバイス基板5はセラミックス基板とする。これにより、接合部の形状および境界条件が同一の場合には、線膨張率差が大きいほど接合部に生じる熱応力が大きくなるので、検出用接合部7の方が電子部品2の接合部6に比べて、より低寿命になるようにできる。また、検出用デバイス基板5もそれぞれ線膨張率が異なる材料を使用することで、段階的に寿命を設定することができ、回路基板1との線膨張率差が大きいデバイスほど低寿命になる。   The circuit board 1, the package substrate 4 of the electronic component 2, and each detection device substrate 5 are made of materials having different linear expansion coefficients, and the linear expansion coefficients are the circuit board 1, the package substrate 4, and the detection device substrate 5. The difference in linear expansion coefficient between the package substrate 4 and the circuit board 1 is made larger than the difference in linear expansion coefficient between the package substrate 4 and the circuit board 1. For example, the circuit substrate 1 and the package substrate 4 are resin substrates, and the detection device substrate 5 is a ceramic substrate. As a result, when the shape and boundary conditions of the joint are the same, the greater the difference in linear expansion coefficient, the greater the thermal stress generated at the joint, so that the detection joint 7 is the joint 6 of the electronic component 2. Compared to, it can be made to have a shorter life. Further, by using materials with different linear expansion coefficients for the detection device substrate 5, the lifetime can be set in stages, and a device having a larger difference in linear expansion coefficient from the circuit board 1 has a shorter lifetime.

次に、検出用接合部の寿命の把握に不可欠となる検出用接合部7の損傷検出について説明する。ここでは、例えば電気特性値の変化を利用する。電気特性値として電気抵抗を用いるとすると、導通がとれず抵抗値が無限大となる、あるいは、抵抗値が従前から著しく変化した場合には、検出用接合部は破損したものと把握することができる。電気特性値の他の例としては、静電容量が上げられ、その変化によって検出用接合部は損傷を検出することもできる
本実施形態において、検出用接合部7は、複数箇所に設けることも可能であり、検出用接合部7を1箇所設けた場合に比して、より確からしい損傷指標予測が可能となる。
Next, the detection of damage of the detection joint 7 which is indispensable for grasping the life of the detection joint will be described. Here, for example, a change in electrical characteristic value is used. Assuming that electrical resistance is used as the electrical characteristic value, continuity cannot be obtained and the resistance value becomes infinite, or if the resistance value has changed significantly from the past, it can be understood that the detection joint has been damaged. it can. As another example of the electric characteristic value, the capacitance can be increased, and the detection junction can detect damage due to the change. In this embodiment, the detection junction 7 can be provided at a plurality of locations. This is possible, and a more reliable damage index can be predicted as compared with the case where one joint 7 for detection is provided.

図3は、例えば損傷に関する指標を破損寿命、損傷に関する関係を寿命比とした場合において、温度サイクル試験などの加速試験から接合部6と検出用接合部7の寿命比のデータベース構築の構成概略を示すブロック図である。また寿命比は、電子部品の接合部の予測寿命を1としたときの検出用接合部の予測寿命の比率であるとする。加速試験結果のデータベース31、接合部6と検出用接合部7の寿命比の演算部32と接合部6と検出用接合部7の寿命比のデータベース33を備えている。予め温度サイクル試験などの加速試験が行われ、加速試験における接合部6と検出用接合部7の破損寿命を加速試験結果データベース31に蓄積する。上記したように破損寿命は、例えば試験時間やサイクル数などである。加速試験結果31の接合部6と検出用接合部7の加速試験における破損寿命から、演算部32で接合部と検出用接合部7の寿命比を算出し、接合部と検出用接合部7の寿命比のデータベース33に蓄積する。   FIG. 3 shows an outline of the construction of a database construction of the life ratio of the joint 6 and the detection joint 7 from an accelerated test such as a temperature cycle test when the damage index is the failure life and the damage relation is the life ratio. FIG. Further, the life ratio is assumed to be a ratio of the predicted life of the joint for detection when the predicted life of the joint of the electronic component is 1. The database includes an acceleration test result database 31, a life ratio calculation unit 32 between the joint 6 and the detection joint 7, and a life ratio database 33 between the joint 6 and the detection joint 7. An accelerated test such as a temperature cycle test is performed in advance, and the damage life of the joint 6 and the detection joint 7 in the accelerated test is stored in the accelerated test result database 31. As described above, the failure life is, for example, a test time or the number of cycles. From the damage life in the accelerated test of the joint portion 6 and the detection joint portion 7 of the acceleration test result 31, the life ratio of the joint portion and the detection joint portion 7 is calculated by the calculation portion 32, and the joint portion and the detection joint portion 7 are calculated. It accumulates in the life ratio database 33.

図4は、検出用接合部7を1個とした場合の、電子部品の接合部6の損傷に基づく損傷指標予測手法の流れを示している。図4に示すように、検出用接合部7の電気特性値が測定される(S401)。検出用接合部7における電気特性値が規定範囲内でない場合には、検出用接合部7が破損したと判定する(S402)。検出用接合部7が破損を検出した(S403)ときは、実際の検出用接合部7の破損寿命と、予め構築されたデータベース33から接合部6と検出用接合部7の寿命比のデータを取り込み、接合部6の寿命予測値が算出され(S404)、電子部品2の接合部6の寿命予測値として、適宜出力される(S405)。   FIG. 4 shows the flow of the damage index prediction method based on the damage of the joint 6 of the electronic component when the number of detection joints 7 is one. As shown in FIG. 4, the electrical characteristic value of the detection joint 7 is measured (S401). If the electrical characteristic value in the detection joint 7 is not within the specified range, it is determined that the detection joint 7 is damaged (S402). When the joint 7 for detection detects breakage (S403), the actual life of the joint 7 for detection and the life ratio data of the joint 6 and the joint 7 for detection from the database 33 constructed in advance are obtained. The life expectancy value of the joint 6 is calculated (S404), and is appropriately output as the life expectancy value of the joint 6 of the electronic component 2 (S405).

本システムは、使用中常時稼動する場合や、機器立ち上げ時といった一定使用回数毎に稼動する場合や、週一回など一定期間毎に稼動する場合などがある。   The system may operate constantly during use, operate at a certain number of times of use such as when the device is started up, or operate at regular intervals such as once a week.

本実施形態によれば、電子機器の使用中に、検出用接合部の破損寿命をもとに、電子部品の接合部の寿命を予測することで、機器周辺の環境および使用状況、機器の個体差を加味した高精度な損傷指標予測が可能になる。   According to this embodiment, during use of an electronic device, by predicting the life of the joint of the electronic component based on the damage life of the joint for detection, the environment and usage situation around the device, the individual of the device It is possible to predict damage index with high accuracy considering the difference.

次に、第1の実施形態の変形例1について説明する。図5は、変形例1における電子部品の接合部6の損傷指標予測手法の流れを示している。図5に示すように、本変形例1では、各検出用接合部が破損する毎に電子部品2の接合部6の損傷に関する指標の予測値を算出する手法以外は、第1の実施形態と同様である。本変形例では、電子部品2の接合部6の損傷に関する指標を損傷値、接合部6と検出用接合部7との損傷に関する関係を寿命比として説明する。本変形例1では、検出用接合部7の電気特性値が測定される(S501)。検出用接合部7における電気特性値が規定値範囲内でない場合には、検出用接合部7が破損したと判定する(S502)。検出用接合部7が破損した(S503)ときは、データベース33からの接合部6と検出用接合部7の寿命比のデータを取り込んで、電子部品2の接合部6の損傷値が算出され(S504)、電子部品2の接合部6の予測損傷値として、適宜出力される(S505)。仮に、検出用接合部7と接合部6の寿命比を0.5としたとき、検出用接合部7が破損した時点で、接合部6の損傷値は、0.5であると予測することができる。また、表示出力部14を有する場合は、例えば「現在使用可能時間の50%です。」と表示できる。   Next, Modification 1 of the first embodiment will be described. FIG. 5 shows a flow of a technique for predicting a damage index of the joint 6 of the electronic component in the first modification. As shown in FIG. 5, in the first modification, the first embodiment is the same as the first embodiment except for a method for calculating a predicted value of an index related to damage to the joint 6 of the electronic component 2 every time each detection joint is damaged. It is the same. In this modification, an index relating to damage of the joint 6 of the electronic component 2 is described as a damage value, and a relationship regarding damage between the joint 6 and the detection joint 7 is described as a life ratio. In the first modification, the electrical characteristic value of the detection joint 7 is measured (S501). If the electrical characteristic value in the detection joint 7 is not within the specified value range, it is determined that the detection joint 7 is damaged (S502). When the detection joint 7 is damaged (S503), the life ratio data of the joint 6 and the detection joint 7 from the database 33 is taken in, and the damage value of the joint 6 of the electronic component 2 is calculated ( In step S504, the predicted damage value of the joint 6 of the electronic component 2 is output as appropriate (S505). If the life ratio between the detection joint 7 and the joint 6 is 0.5, the damage value of the joint 6 is predicted to be 0.5 when the detection joint 7 is damaged. Can do. When the display output unit 14 is provided, for example, “50% of the currently available time” can be displayed.

本変形例1によれば、検出用接合部の破損寿命を用いずに、検出用接合部が破損した時点で、検出用接合部の破損に関する情報と、電子部品の接合部6と検出用接合部7の破損に関する関係である寿命比に基づき、電子部品2の接合部6の予測損傷値が算出されるため、検出用接合部のサイクル数や使用時間を測定する必要がない。したがって、サイクル数や使用時間を測定するための装置およびサイクル数や使用時間を記憶する装置を要することなく、損傷指標予測が可能になる。本変形例1は検出用接合部が1個の場合であるが、複数個にすることも可能であり、より高精度な寿命予測が可能になる。   According to the first modification example, when the detection joint is damaged without using the failure life of the detection joint, information on the damage of the detection joint, the electronic component joint 6 and the detection joint Since the predicted damage value of the joint 6 of the electronic component 2 is calculated based on the life ratio, which is a relationship related to the breakage of the part 7, it is not necessary to measure the cycle number and usage time of the detection joint. Therefore, it is possible to predict the damage index without requiring a device for measuring the number of cycles and usage time and a device for storing the number of cycles and usage time. Although this modification 1 is a case where the number of detection joints is one, it is possible to use a plurality of detection joints, and it is possible to predict the life with higher accuracy.

次に、第1の実施形態の変形例2について説明する。図6は、変形例2における電子部品とその周辺の断面図である。本変形例2の構造は、検出用接合部7が複数個存在すること以外は、第1の実施形態と同様である。いずれの検出用接合部7も電子部品2の接合部6より低寿命であるように設計されている。   Next, Modification 2 of the first embodiment will be described. FIG. 6 is a cross-sectional view of an electronic component and its periphery in Modification 2. The structure of the second modification is the same as that of the first embodiment except that there are a plurality of detection joints 7. Any of the detection joints 7 is designed to have a shorter lifetime than the joint 6 of the electronic component 2.

図7は接合部6の損傷指標予測手法の流れを示している。図7に示すように、本変形例2では検出用接合部7がn個存在し、各検出用接合部7が破損する毎に接合部6の損傷に関する指標の予測値を修正する手法以外は、第1の実施形態と同様である。xは検出用接合部の状況を示し、正常の場合0、破損した場合に1の値であるとする。また、kは破損した接合部の順番を示す。kとすべての接合部のxの初期値を0とする(S701)。kの値は検出用接合部が破損する毎に1ずつ増加していき、xの値は検出用接合部の破損を検出した際に1となるように設定されている(S706)。n個の検出用接合部7のそれぞれについて電気特性値が測定される(S702〜S708)。検出用接合部7が破損していないかを判断し(S703)、破損していない検出用接合部の電気特性値を測定する(S704)。検出用接合部7の電気特性値が規定範囲内でない場合には、検出用接合部7が破損したと判定する(S705)。その破損を検出したときは(S706)、破損検出された検出用接合部7の破損寿命と、接合部6と検出用接合部7の寿命比のデータベース33から取り込んだ接合部6と破損した検出用接合部7の寿命比から、接合部6の寿命を予測し、その値をNfkとする(S707)。Nf1〜Nfkの統計値、たとえば本変形例2では平均値を算出し、寿命予測値Nfとし(S710)、修正された寿命予測値として表示する(S711)。検出用接合部が1個も破損していない場合には、寿命予測値は表示されない(S709)。以降、検出用接合部7が破損する毎に、それまでに破損した各検出用接合部7の破損寿命と、接合部6と破損した検出用接合部7の寿命比から算出された、接合部6の各寿命予測値の平均値を算出し、接合部6の寿命予測値Nfを修正していく。 FIG. 7 shows the flow of the damage index prediction method for the joint 6. As shown in FIG. 7, in the second modification, there are n detection joints 7, and a method other than the method of correcting the predicted value of the index related to the damage of the joints 6 every time each detection joint 7 is damaged. This is the same as in the first embodiment. x indicates the state of the detection joint, and is 0 when normal and 1 when broken. Moreover, k shows the order of the damaged junction part. The initial values of k and x of all joints are set to 0 (S701). The value of k is incremented by 1 every time the detection joint is broken, and the value of x is set to be 1 when the breakage of the detection joint is detected (S706). Electrical characteristic values are measured for each of the n detection joints 7 (S702 to S708). It is determined whether or not the detection joint 7 is damaged (S703), and the electrical characteristic value of the detection joint that is not damaged is measured (S704). If the electrical characteristic value of the detection joint 7 is not within the specified range, it is determined that the detection joint 7 is damaged (S705). When the breakage is detected (S706), the breakage life of the detection joint 7 where the breakage is detected and the joint 6 taken from the database 33 of the life ratio of the joint 6 and the detection joint 7 and the breakage detection are detected. The life of the joint 6 is predicted from the life ratio of the joint 7 for use, and the value is set to N fk (S707). Statistical values of N f1 to N fk , for example, in the second modification, an average value is calculated, and is used as a predicted life value N f (S710), and is displayed as a corrected predicted life value (S711). If none of the detection joints are damaged, the predicted life value is not displayed (S709). Thereafter, each time the detection joint 7 is damaged, the joint calculated from the damage life of each of the detection joints 7 that has been damaged so far and the life ratio of the joint 6 and the detection joint 7 that has been damaged. the average value of each life prediction value of 6, will modify the life prediction value N f of the joint 6.

本変形例2では、損傷に関する指標として破損寿命を用いたが、代わりに変形例1で説明した損傷値を用いても良い。   In the second modification, the failure life is used as an index related to damage, but the damage value described in the first modification may be used instead.

本変形例2によれば、複数の検出用接合部の破損検出により、損傷指標予測の修正を段階的に行うことでより高精度な予測が可能になる。   According to the second modification, more accurate prediction can be performed by correcting damage index prediction step by step by detecting breakage of a plurality of detection joints.

次に、第1の実施形態の変形例3について説明する。図8は、変形例3における接合部6の損傷指標予測手法の流れを示している。図8に示すように、本変形例3では、複数の検出用接合部の破損寿命から算出された複数の接合部の寿命予測値から接合部の寿命予測値を決定する処理方法以外は、第1の実施形態の変形例2と同様である。n個の検出用接合部7の破損を検出するため、それぞれについて電気特性値が測定される(S802〜S808)。その破損を検出したときは(S806)、実際に得られた検出用接合部7の破損寿命と、接合部6と破損した検出用接合部7の寿命比データ(33)から、接合部6の寿命予測値Nfkを算出する(S807)。N1〜Nfkで最小値を接合部6の寿命予測値Nfとし(S810)、修正された寿命予測値として表示する(S811)。以降、それまでに破損した各検出用接合部7の破損寿命と、接合部6と破損した検出用接合部7の寿命比から算出された、接合部6の各寿命予測値の最小値を算出し、接合部6の寿命予測値Nfを修正していく。 Next, Modification 3 of the first embodiment will be described. FIG. 8 shows a flow of a technique for predicting a damage index of the joint 6 in the third modification. As shown in FIG. 8, in the third modification, except for the processing method for determining the predicted life of the joint from the predicted life of the plurality of joints calculated from the failure lives of the plurality of joints for detection, This is the same as the second modification of the first embodiment. In order to detect the breakage of the n detection joints 7, electrical characteristic values are measured for each of them (S802 to S808). When the damage is detected (S806), from the actually obtained damage life of the detection joint 7 and the life ratio data (33) between the joint 6 and the detection joint 7 that has been damaged, The predicted life value N fk is calculated (S807). The minimum value of N 1 to N fk is set as the predicted life value N f of the joint 6 (S810), and is displayed as a corrected predicted life value (S811). Thereafter, the minimum value of each life prediction value of the joint 6 calculated from the failure life of each of the joints for detection 7 damaged so far and the life ratio of the joint 6 to the joints for detection 7 damaged is calculated. Then, the life expectancy value N f of the joint 6 is corrected.

本変形例3によれば、複数の破損寿命データの中で最低寿命のデータを反映させるので、より安全側の損傷指標予測が可能になる。   According to the third modification, since the data of the minimum life is reflected among the plurality of pieces of damage life data, it is possible to predict the damage index on the safer side.

複数の検出用接合部の破損寿命から算出された複数の接合部の寿命予測値から接合部の寿命予測値を決定する処理方法は上記に限ったものではなく、他に、各寿命予測値の中央値とする場合や、最後に破損した検出用接合部の破損寿命から算出された寿命予測値を使用する場合などがある。最後に破損した検出用接合部の破損寿命は、当該電子機器の使用開始から破損時点までの使用履歴を反映したものであるため、その時点で最後に破損した検出用接合部7の破損寿命をもとに予測する場合は、より使用履歴に応じた損傷指標予測の修正を段階的に行うことができる。   The processing method for determining the life prediction value of the joint from the life prediction value of the plurality of joints calculated from the failure life of the plurality of detection joints is not limited to the above. In some cases, the median value is used, or in other cases, a life prediction value calculated from the failure life of the last damaged joint for detection is used. The damage life of the detection joint that has been damaged last reflects the usage history from the start of use of the electronic device to the time of breakage. In the case of prediction based on this, the damage index prediction can be corrected step by step according to the usage history.

本変形例3では、損傷に関する指標として破損寿命を用いたが、代わりに変形例1で説明した損傷値を用いても良い。   In the third modification, the failure life is used as an index related to damage, but the damage value described in the first modification may be used instead.

次に、第1の実施形態において、接合部6と検出用接合部7の寿命比のデータベースを構築する方法を変えた変形例4について説明する。図9は、例えば損傷に関する指標を破損寿命、損傷に関する指標の関係を寿命比とした場合において、FEM解析などの現象解析から接合部6と検出用接合部7の寿命比のデータベース構築の構成概略を示すブロック図である。設計情報、材料のデータベース91、現象解析モジュール92、接合部6と検出用接合部7の状態パラメータのデータベース93、疲労特性データベース94、接合部6と検出用接合部7の寿命比の演算部95、接合部6と検出用接合部7の寿命比のデータベース33を備えている。設計情報、材料データベース91には、現象解析に必要な情報、例えば、各部品のサイズや配置、各部品の材料物性値などを蓄積しておく。現象解析モジュール92は、データベース91の設計情報および材料情報から、電子機器の使用状況を模擬した現象解析を実施し、電子部品の接合部と検出用接合部について、状態パラメータを算出し、データベース93に蓄積しておく。仮に状態パラメータを接合部のひずみ範囲とすると、データベース93に蓄積されている電子部品の接合部6と検出用接合部7に生じるひずみ範囲のデータと、疲労特性データベース94に蓄積されている接合部のひずみ範囲と寿命の関係を表すデータを用いて、演算部95で接合部6と検出用接合部7の寿命比を算出し、データベース33に蓄積する。   Next, a modified example 4 in which the method of constructing the life ratio database of the joint 6 and the detection joint 7 in the first embodiment will be described. FIG. 9 is a schematic configuration diagram of database construction of the life ratio of the joint 6 and the detection joint 7 from a phenomenon analysis such as FEM analysis when the damage index is a failure life and the relationship of the damage index is a life ratio. FIG. Design information, material database 91, phenomenon analysis module 92, state parameter database 93 of joint 6 and detection joint 7, fatigue characteristic database 94, life ratio calculation unit 95 of joint 6 and detection joint 7 The life ratio database 33 of the joint 6 and the detection joint 7 is provided. In the design information and material database 91, information necessary for the phenomenon analysis, for example, the size and arrangement of each part, the material property value of each part, and the like are accumulated. The phenomenon analysis module 92 performs a phenomenon analysis simulating the use state of the electronic device from the design information and material information of the database 91, calculates state parameters for the joint part of the electronic component and the joint part for detection, and the database 93 To accumulate. Assuming that the state parameter is the strain range of the joint, the strain range data generated in the electronic component joint 6 and the detection joint 7 stored in the database 93 and the joint stored in the fatigue characteristic database 94 are stored. The life ratio between the joint 6 and the detection joint 7 is calculated by the calculation unit 95 using the data representing the relationship between the strain range and the life, and stored in the database 33.

本変形例4によれば、実験装置を要することなく、比較的短時間で容易に接合部6と検出用接合部7の寿命比のデータベースを構築することができる。   According to the fourth modification, a life ratio database of the joint 6 and the detection joint 7 can be easily constructed in a relatively short time without requiring an experimental device.

次に、第1の実施形態において、電子部品2と回路基板1を電気的に接続する接合部6の損傷に関する指標を予測するための検出用デバイス3の配置を変えた変形例5について説明する。図10は、変形例5における電子部品とその周辺の断面図である。図10に示すように、電子部品2は回路基板1に実装され、回路基板1の電子部品2と同一面上に、電子部品2の近隣に複数個の検出用デバイス3が実装されている。複数個の検出用デバイス3は、検出用接合部7によって回路基板1に電気的に接続されている。いずれの検出用接合部7も、電子機器2の接合部6より低寿命で、かつそれぞれの寿命に相違が生じるように設計されている。本変形例5によれば、検出用デバイス3の配置が回路基板1の電子部品2と同一面上に配置しているので、電子機器全体の厚さを薄くすることができる。しかも、段階的な損傷に関する指標を有する複数の検出用デバイスの接合部における損傷に関する指標を利用することで、より高精度な損傷指標予測が可能になる。   Next, in the first embodiment, a description will be given of a modified example 5 in which the arrangement of the detection device 3 for predicting an index related to damage of the joint 6 that electrically connects the electronic component 2 and the circuit board 1 is changed. . FIG. 10 is a cross-sectional view of an electronic component and its surroundings in Modification 5. As shown in FIG. 10, the electronic component 2 is mounted on the circuit board 1, and a plurality of detection devices 3 are mounted in the vicinity of the electronic component 2 on the same surface as the electronic component 2 of the circuit board 1. The plurality of detection devices 3 are electrically connected to the circuit board 1 through detection joints 7. Each of the detection joints 7 is designed to have a lower lifetime than the junction 6 of the electronic device 2 and to have a difference in the respective lifetimes. According to the fifth modification, since the detection device 3 is arranged on the same plane as the electronic component 2 of the circuit board 1, the thickness of the entire electronic device can be reduced. In addition, the damage index can be predicted with higher accuracy by using the index regarding damage at the joints of the plurality of detection devices having the index regarding damage in stages.

次に、接合部の寿命を予測するための検出部の配置を変えた更なる変形例6について説明する。図11は、変形例6に係る電子部品とその周辺を説明する図であり、(a)は電子部品2とその周辺の断面図であり、(b)は電子部品2の接合部6と検出用接合部7の配置を示している。   Next, a description will be given of a further modified example 6 in which the arrangement of the detection units for predicting the lifetime of the joint is changed. 11A and 11B are diagrams for explaining an electronic component and its surroundings according to the modified example 6. FIG. 11A is a cross-sectional view of the electronic component 2 and its surroundings, and FIG. The arrangement | positioning of the junction part 7 is shown.

図11に示すように、パッケージ基板4上に搭載された電子部品2はBGA型半導体パッケージであり、回路基板1に実装されている。回路基板1とパッケージ基板4との間には、電子部品2と回路基板1を電気的に接続する接合部6が配設され、接合部6は格子状に位置している。また、パッケージコーナー部には、接合部6の寿命を予測するための検出用接合部7が配設されている。検出用接合部7は2個で1組とし、1組で一つの回路に組み込まれ、その回路の電気特性値をモニターすることによって、2個のうち片方もしくは両方が破損したことを検出することができるように構成されている。   As shown in FIG. 11, the electronic component 2 mounted on the package substrate 4 is a BGA type semiconductor package and is mounted on the circuit substrate 1. Between the circuit board 1 and the package substrate 4, a joint portion 6 that electrically connects the electronic component 2 and the circuit board 1 is disposed, and the joint portion 6 is positioned in a lattice shape. In addition, a detection junction 7 for predicting the lifetime of the junction 6 is disposed at the package corner. Detecting one or both of the two joints 7 for detection by damaging one or both of them by monitoring the electrical characteristics of the circuit. It is configured to be able to.

いずれの検出用接合部7も、接合部6より低寿命になるように、かつ各検出用接合部7のそれぞれ寿命が異なるように設計されている。図11に示す変形例6では、一般的に回路基板1の曲率変化が大きく、負荷が大きい電子部品2のコーナー周辺に検出用接合部7を配置させている。しかも、検出用接合部7の直径を接合部6の直径より小さくすることで、接合部6より低寿命になるように設計している。また、検出用接合部7の各組の大きさを異なるようにすることで、検出用接合部7の各組の寿命に相違を生じさせることが可能である。   Each of the detection joints 7 is designed so as to have a shorter life than the joints 6, and the life of each of the detection joints 7 is different. In Modification 6 shown in FIG. 11, the detection joint 7 is arranged around the corner of the electronic component 2 that generally has a large curvature change of the circuit board 1 and a large load. In addition, the detection joint 7 is designed to have a shorter life than the joint 6 by making the diameter of the joint 7 to be smaller than the diameter of the joint 6. Moreover, it is possible to make a difference in the lifetime of each pair of the detection joints 7 by making the sizes of the respective pairs of the detection joints 7 different.

本変形例6によれば、検出用接合部7を含めた外形サイズを、コンパクトなものとすることができる。   According to the sixth modification, the outer size including the detection joint 7 can be made compact.

更に、検出用接合部7の配置等についての変形が可能である。図12は、本変形例7に係る電子部品とその周辺を説明する図であり、(a)は電子部品2とその周辺の断面図であり、(b)は電子部品2の接合部6と検出用接合部7の配置を示している。図12に示すように、検出用接合部7の直径を接合部6の直径より小さくすることで、接合部6より低寿命になるように設計している。一般的に、電子機器2のコーナー周辺は回路基板1の曲率変化が大きく、負荷が大きくなる。そこで、本変形例7においては、各組の検出用接合部7のパッケージコーナー部からの距離が異なるように配置することで、検出用接合部7の各組の寿命に相違を生じさせるものである。   Further, the arrangement or the like of the detection joint 7 can be modified. FIG. 12 is a view for explaining the electronic component and its periphery according to the modified example 7, (a) is a cross-sectional view of the electronic component 2 and its periphery, and (b) is a joint portion 6 of the electronic component 2. The arrangement of the detection joint 7 is shown. As shown in FIG. 12, the detection joint 7 is designed to have a shorter life than the joint 6 by making the diameter of the joint 7 smaller than the diameter of the joint 6. Generally, the curvature change of the circuit board 1 is large around the corner of the electronic device 2, and the load is large. Therefore, in the present modification example 7, by disposing the pairs of detection joints 7 of the sets so that the distances from the package corners are different, the lifetimes of the pairs of the detection joints 7 are made different. is there.

本変形例7によれば、パッケージ基板4上のレイアウト設計の自由度が確保しやすくなる。   According to the seventh modification, it is easy to ensure the degree of freedom in layout design on the package substrate 4.

更に、検出用接合部7の配置等についての変形が可能である。図13は、本変形例8に係る電子部品とその周辺を説明する図であり、(a)は電子部品2とその周辺の断面図であり、(b)は電子部品2の接合部6と検出用接合部7の配置を示すものである。本変形例8においても、検出用接合部7はいずれも接合部6より低寿命になるように、かつ各検出用接合部7それぞれの寿命が異なるように設計されている。本変形例8では、一般的に負荷が大きい電子部品2のコーナー付近に検出用接合部7を配置し、かつ検出用接合部7の直径を接合部6の直径より小さくすることで、接合部6より低寿命になるように設計している。一般的に、回路基板1を固定するための固定部8周辺は、それ以外の領域に比べて変形が大きい。そこで、検出用接合部7の各組の固定部8位置からの距離が異なるように配置することで、検出用接合部7の各組の寿命に相違を生じさせることが可能である。   Further, the arrangement or the like of the detection joint 7 can be modified. FIG. 13 is a view for explaining an electronic component and its periphery according to the modified example 8, (a) is a cross-sectional view of the electronic component 2 and its periphery, and (b) is a joint portion 6 of the electronic component 2. The arrangement | positioning of the junction part 7 for a detection is shown. Also in the present modification 8, the detection joints 7 are all designed to have a lower life than the joints 6 and have different lifetimes. In the present modification 8, the joint portion for detection 7 is arranged near the corner of the electronic component 2 that is generally heavily loaded, and the diameter of the joint portion 7 for detection is made smaller than the diameter of the joint portion 6, thereby Designed to have a lifespan lower than 6. Generally, the periphery of the fixing portion 8 for fixing the circuit board 1 is greatly deformed as compared to other regions. Therefore, by disposing the detection joints 7 so that the distances from the positions of the fixed portions 8 of the respective sets are different, it is possible to make a difference in the life of each set of the detection joints 7.

本変形例8によっても、パッケージ基板上のレイアウト設計の自由度が確保しやすくなる。   This modification 8 also makes it easy to ensure the degree of freedom in layout design on the package substrate.

(第2の実施形態)
次に、第2の実施形態について説明する。
(Second Embodiment)
Next, a second embodiment will be described.

本実施形態は、電子部品における接合部の損傷指標予測を行うに際し、電子機器の使用状況を模擬した現象解析等を利用するものである。図14は、第2の実施形態における、損傷指標予測システムの概略構成を示すブロック図である。この損傷指標予測システムは、電子機器の内部に組み込むことも出来るし、また電子機器の外部に配置されて、接続することもできる。図14に示すように、損傷指標予測システム200は、検出用接合部の損傷検出部141、疲労特性データベースを修正する修正演算部142、疲労特性データベース143、接合部6と検出用接合部7の状態パラメータを蓄積した状態パラメータデータベース144と、接合部6の損傷に関する指標の予測値の演算部145、表示出力部146を備えている。ただし、この表示出力部146はあえて設けなくてもよい。   In the present embodiment, when predicting a damage index of a joint in an electronic component, a phenomenon analysis or the like that simulates the usage state of the electronic device is used. FIG. 14 is a block diagram illustrating a schematic configuration of a damage index prediction system according to the second embodiment. This damage index prediction system can be incorporated inside the electronic device, or can be arranged and connected outside the electronic device. As shown in FIG. 14, the damage index prediction system 200 includes a damage detection unit 141 for a detection joint, a correction calculation unit 142 for correcting a fatigue characteristic database, a fatigue characteristic database 143, a joint 6, and a detection joint 7. A state parameter database 144 that stores state parameters, a calculation unit 145 of a predicted value of an index related to damage of the joint 6, and a display output unit 146 are provided. However, the display output unit 146 may not be provided.

損傷検出部141は、検出用接合部7の損傷を検出するためのものである。状態パラメータデータベース144には、予め接合部6と検出用接合部7の状態パラメータ、例えば温度、荷重、応力、変位、ひずみなどのデータを蓄積している。修正演算部142では、損傷検出部141から検出用接合部7の損傷検出情報が入力されると、検出用接合部7の損傷に関する指標のデータと状態パラメータデータベース144から取り込んだ検出用接合部7の状態パラメータに基づいて、疲労特性データベース143を修正する(詳細は後述する)。疲労特性データベース143には、接合部6の状態パラメータと損傷に関する指標との関係を表す疲労特性データを蓄積している。状態パラメータデータベース144から接合部6と検出用接合部7の状態パラメータ、データベース143から接合部の状態パラメータと損傷に関する指標の関係を表す疲労特性データを取り込んで、演算部145で接合部6の損傷に関する指標の予測値を算出する。表示出力部146を設ける場合は、接合部6の損傷に関する指標の予測値を表示するようにしても良い。これによって、当初予測した値よりも、より確からしい損傷指標予測を可能とする。   The damage detection unit 141 is for detecting damage to the detection joint 7. In the state parameter database 144, state parameters of the joint 6 and the detection joint 7 such as temperature, load, stress, displacement, and strain are stored in advance. When the damage detection information of the detection joint 7 is input from the damage detection unit 141, the correction calculation unit 142 receives index data relating to damage of the detection joint 7 and the detection joint 7 captured from the state parameter database 144. The fatigue characteristic database 143 is corrected based on the state parameters (details will be described later). In the fatigue characteristic database 143, fatigue characteristic data representing the relationship between the state parameters of the joint 6 and the indexes related to damage is accumulated. The fatigue parameter data representing the relationship between the state parameter of the joint 6 and the detection joint 7 from the state parameter database 144 and the relationship between the state parameter of the joint and the index related to damage is taken from the database 143, and the damage of the joint 6 is calculated by the calculation unit 145. Calculate the predicted value of the index. When the display output unit 146 is provided, a predicted value of an index related to damage to the joint 6 may be displayed. As a result, it is possible to predict a damage index that is more certain than the originally predicted value.

図15は、第2の実施形態において、接合部の状態パラメータを例えば接合部に生じるひずみ範囲とし、接合部の損傷に関する指標を破損寿命とした場合における、FEM解析などの現象解析から接合部6と検出用接合部7のひずみ範囲に関する状態パラメータデータベースを構築する際の構成概略を示すブロック図である。   FIG. 15 is a diagram illustrating a case in which, in the second embodiment, the state parameter of the joint is set to a strain range generated in the joint, for example, and the joint 6 is obtained from a phenomenon analysis such as FEM analysis when the index related to damage of the joint is a failure life. It is a block diagram which shows the outline of a structure at the time of constructing | assembling the state parameter database regarding the distortion range of the junction part 7 for a detection.

設計情報、材料のデータベース151、現象解析モジュール152、接合部6と検出用接合部7のひずみ範囲のデータベース(状態パラメータデータベース)153を備えている。設計情報、材料データベース151には、現象解析に必要な情報、例えば、各部品のサイズや配置、各部品の材料物性値などを蓄積しておく。現象解析モジュール152ではデータベース151から現象解析に必要な情報を取り込んで、例えば使用環境もしくは加速試験を模擬したFEM解析などの現象解析を実施して各接合部のひずみ範囲を算出し、データベース153に蓄積する。   A design information, material database 151, a phenomenon analysis module 152, and a strain range database (state parameter database) 153 of the joint 6 and the detection joint 7 are provided. In the design information and material database 151, information necessary for the phenomenon analysis, for example, the size and arrangement of each part, the material property value of each part, and the like are stored. The phenomenon analysis module 152 takes in information necessary for the phenomenon analysis from the database 151, performs a phenomenon analysis such as an FEM analysis simulating the use environment or an acceleration test, and calculates the strain range of each joint, and stores it in the database 153. accumulate.

図16は、第2の実施形態における電子部品の接合部6の寿命予測手法の流れを示している。ここでは、状態パラメータデータベースとして図15に示した接合部6と検出用接合部7のひずみ範囲のデータベース153を用いることとする。   FIG. 16 shows a flow of a method for predicting the lifetime of the joint part 6 of the electronic component in the second embodiment. Here, the strain range database 153 of the joint 6 and the detection joint 7 shown in FIG. 15 is used as the state parameter database.

検出用接合部7の電気特性値が測定され(S1601)、検出用接合部7の電気特性値が規定範囲外の場合に破損を検出する(S1602)。ここで、電気特性値は上記したように電気抵抗値や静電容量値などが用いられる。検出用接合部7の破損を検出(S1603)したときは、検出用接合部7の実際の破損寿命とデータベース153から取り込んだ検出用接合部7のひずみ範囲のデータに基づいて、疲労特性データベース143を修正する(S1604)。修正方法の詳細は後述する。データベース153から接合部6のひずみ範囲のデータを、疲労特性データベース143から接合部のひずみ範囲と寿命との関係のデータを取り込み、接合部6と検出用接合部7の寿命予測値を算出し(S1605)、接合部6の寿命予測値を表示する(S1606)。   The electrical characteristic value of the detection joint 7 is measured (S1601), and the breakage is detected when the electrical characteristic value of the detection joint 7 is outside the specified range (S1602). Here, as described above, an electrical resistance value, a capacitance value, or the like is used as the electrical characteristic value. When breakage of the detection joint 7 is detected (S1603), based on the actual damage life of the detection joint 7 and the strain range data of the detection joint 7 taken from the database 153, the fatigue characteristic database 143 Is corrected (S1604). Details of the correction method will be described later. Data on the strain range of the joint 6 from the database 153 and data on the relationship between the strain range and life of the joint from the fatigue property database 143 are calculated, and life prediction values of the joint 6 and the detection joint 7 are calculated ( S1605), the predicted life value of the joint 6 is displayed (S1606).

第2の実施形態によれば、第1の実施形態と同様の効果が奏されることに加えて、予め構築された疲労特性データベースを使用状況に応じて修正することにより、より高精度な損傷予測が可能になる。   According to the second embodiment, in addition to the same effects as those of the first embodiment, more accurate damage can be achieved by correcting a pre-constructed fatigue property database according to the use situation. Prediction becomes possible.

本実施形態では、検出用接合部7は1個であるが、複数箇所に設けることも可能であり、検出用接合部7を1箇所設けた場合に比して、より確からしい損傷指標予測が可能となる。   In the present embodiment, the number of detection joints 7 is one, but it is also possible to provide a plurality of detection joints, and a more reliable damage index prediction is possible as compared with the case where one detection joint 7 is provided. It becomes possible.

図17は、接合部の疲労特性のデータベースの修正方法を説明するための模式図である。状態パラメータを接合部のひずみ範囲Δε、損傷に関する指標を破損寿命サイクル数Nfとし、疲労特性データベースのデータがひずみ範囲Δεと破損寿命サイクル数Nfとの関係式とする。図17の縦軸は、接合部のひずみ範囲Δεを表し、横軸は破損寿命サイクル数Nfの予測値を表す。また、黒色のプロットは、破損した各検出用接合部7の、現象解析や回路基板の状態に関する情報などから予測されたひずみ範囲Δεと実際の破損寿命サイクル数Nfのデータを示している。例えば、一般的な金属材料の疲労特性は、低サイクル疲労ではCoffin-Manson則、高サイクル疲労ではBaskin則、低サイクル疲労と高サイクル疲労の両方を考慮するとCoffin-Manson則とBaskin則の組み合わせなどで表せる。本実施形態では、疲労特性データベースが、図17のグラフのように1本の直線で表すことができるひずみ範囲と破損寿命の関係式を有するとする。図17において、finitialは例えば電子機器の設計時における疲労特性データを示す直線である。 FIG. 17 is a schematic diagram for explaining a method for correcting a database of fatigue characteristics of joints. The state parameter is the strain range Δε of the joint, the damage index is the failure life cycle number N f , and the fatigue characteristic database data is the relational expression between the strain range Δε and the failure life cycle number N f . The vertical axis in FIG. 17 represents the joint strain range Δε, and the horizontal axis represents the predicted value of the failure life cycle number N f . Further, the black plot indicates data of the strain range Δε and the actual failure life cycle number N f predicted from the information on the phenomenon analysis and the state of the circuit board, etc. of each of the broken detection joints 7. For example, fatigue characteristics of general metal materials include Coffin-Manson law for low cycle fatigue, Baskin law for high cycle fatigue, and a combination of Coffin-Manson law and Baskin law for both low cycle fatigue and high cycle fatigue. It can be expressed as In the present embodiment, it is assumed that the fatigue characteristic database has a relational expression between a strain range and a failure life that can be represented by one straight line as in the graph of FIG. In FIG. 17, f initial is a straight line indicating fatigue characteristic data at the time of designing an electronic device, for example.

破損した検出用接合部7のひずみ範囲Δεと破損寿命Nfの各プロットがひずみ範囲Δεと破損寿命サイクル数Nfの関係を示す直線上に乗るように、すべてのプロットに対して直線を横方向に平行移動させ、プロットの数だけの直線f1~fnを得る。移動後のn本の直線f1~fnに対し、その時点での接合部6の予測ひずみ範囲Δεpと直線f1~fnそれぞれから推定される接合部6の破損寿命予測値Nf1~Nfnについて、統計処理を行う。接合部6の破損寿命予測値Nfを算出し、ひずみ範囲がΔεpのときに破損寿命予測値がNfとなるように、ひずみ範囲Δεと破損寿命サイクル数Nfの関係を示す直線を平行にシフトさせることで、疲労特性データベースが修正される。 The straight line is horizontal for all plots so that each plot of strain range Δε and failure life N f of broken joint 7 is on a straight line showing the relationship between strain range Δε and failure life cycle number N f. Translate in the direction to obtain straight lines f 1 to f n as many as the number of plots. For the n straight lines f 1 to f n after the movement, the predicted failure life value N f1 of the joint 6 estimated from the predicted strain range Δε p of the joint 6 and the straight lines f 1 to f n at that time, respectively. Perform statistical processing on ~ N fn . Calculate the failure life prediction value N f of the joint 6 and show a straight line indicating the relationship between the strain range Δε and the failure life cycle number N f so that the failure life prediction value becomes N f when the strain range is Δε p. The fatigue property database is modified by shifting in parallel.

統計処理については、破損寿命予測値Nf1~Nfnが対数正規分布のときは、その平均値を破損寿命予測値Nfとするのが適している。破損寿命予測値Nf1~Nfnがワイブル分布のときは、その中央値を破損寿命予測値Nfとするのが適している。図17は、Nf1~Nfnの中央値をNfとした場合の例であり、Nf3が中央値となるため、破損寿命予測値Nf = Nf3、損傷予測用モデルベースの直線はf3となる。尚、上述の説明では、損傷指標予測用の直線を、図17に示すグラフの横方向に平行移動させているが、縦方向に平行移動させるケースも可能である。
次に、疲労特性のデータベース修正方法の変形例について説明する。この変形例においても、損傷指標予測用データベースを直線で表現している。図18は、本変形例における疲労特性データベースの修正手法を説明するための模式図である。
For statistical processing, when the failure life prediction values N f1 to N fn are lognormally distributed, it is appropriate to set the average value as the failure life prediction value N f . When the failure life prediction values N f1 to N fn have a Weibull distribution, it is suitable to set the median value as the failure life prediction value N f . FIG. 17 is an example in which the median value of N f1 to N fn is N f , and since N f3 is the median value, the failure life prediction value N f = N f3 , the damage prediction model-based straight line is f 3 In the above description, the straight line for predicting the damage index is translated in the horizontal direction of the graph shown in FIG. 17, but it is also possible to translate it in the vertical direction.
Next, a modification of the database correction method for fatigue characteristics will be described. Also in this modification, the damage index prediction database is expressed by a straight line. FIG. 18 is a schematic diagram for explaining a technique for correcting a fatigue characteristic database in the present modification.

状態パラメータを接合部のひずみ範囲Δε、損傷に関する指標を破損寿命サイクル数Nfとし、疲労特性データベースのデータが、ひずみ範囲Δεと破損寿命Nfの関係式とする。図18のグラフに示すような1本の直線finitialを例えば電子機器の設計時における疲労特性データとする。破損した検出用接合部7のひずみ範囲Δεと実際の破損寿命Nfの各プロット(黒色のプロット)の最小二乗法で決定される直線fを求め、接合部6の予測ひずみ範囲Δεpと直線fから、接合部6の寿命予測値Nfを算出する。検出用接合部7の破損が検出される毎に、ひずみ範囲Δεと破損寿命Nfのデータが拡充され、直線fが変化し、疲労特性データベースが修正される。 The state parameter is the strain range Δε of the joint, the damage index is the failure life cycle number N f , and the fatigue characteristic database data is a relational expression between the strain range Δε and the failure life N f . One straight line f initial as shown in the graph of FIG. 18 is used as fatigue characteristic data at the time of designing an electronic device, for example. Obtains a straight line f, which is determined by the least squares method of damaged each plot of the actual damage life N f a strain range [Delta] [epsilon] of the detection joint 7 (black plot), the predicted strain range [Delta] [epsilon] p and the straight junction 6 From f, the life expectancy value N f of the joint 6 is calculated. Each time a failure of the detection joint 7 is detected, the data of the strain range Δε and the failure life N f are expanded, the straight line f changes, and the fatigue characteristic database is corrected.

次に、第2の実施形態の変形例について説明する。本変形例においては、電子部品における接合部の損傷指標予測を行うに際し、電子機器の使用中に測定される状態に関する情報を利用するもので、図19は、本変形例における接合部6と検出用接合部7のひずみ範囲のデータベース153を構築のための概略構成を示すブロック図である。本変形例では、接合部6と検出用接合部7のひずみ範囲のデータベース153を構築する手法以外は、第2の実施形態と同様である。図19に示すように、回路基板の状態に関する情報を測定する測定部191と、設計情報データベース192、応答曲面データベース193、接合部6と検出用接合部7のひずみ範囲を算出する演算部194、接合部6と検出用接合部7のひずみ範囲のデータベース153を備えており、電子機器使用中にリアルタイムでデータベース153にデータが蓄積される。回路基板の状態に関する情報の測定部191では、たとえば回路基板の温度やひずみ、応力、加速度、電気抵抗値などを測定する。設計情報データベース192には、例えば、各構成部材のサイズや配置などを蓄積しておく。応答曲面データベース193には、回路基板の状態に関する情報および設計情報から各接合部のひずみ範囲を算出するための応答曲面データを蓄積している。演算部194は、測定部191から回路基板の状態に関する情報を、設計情報データベース192から設計情報を、応答曲面データベース193から回路基板の状態に関する情報と設計情報と各接合部のひずみ範囲の関係を表す応答曲面データを取り込み、接合部6と検出用接合部7のひずみ範囲を算出し、データベース153に蓄積する。これによって、当初予測した値よりも、より確からしい寿命予測を可能とする。   Next, a modification of the second embodiment will be described. In this modification, information on the state measured during use of the electronic device is used when predicting the damage index of the joint in the electronic component. FIG. 19 shows the detection of the joint 6 in this modification. It is a block diagram which shows schematic structure for construction | assembly of the database 153 of the distortion | strain range of the junction part 7 for an object. This modification is the same as that of the second embodiment except for the method of constructing the strain range database 153 of the joint 6 and the detection joint 7. As shown in FIG. 19, a measurement unit 191 that measures information on the state of the circuit board, a design information database 192, a response surface database 193, a calculation unit 194 that calculates the strain range of the joint 6 and the detection joint 7; A strain range database 153 of the joint 6 and the detection joint 7 is provided, and data is accumulated in the database 153 in real time while the electronic device is used. The information measurement unit 191 relating to the state of the circuit board measures, for example, the temperature, strain, stress, acceleration, electrical resistance value, and the like of the circuit board. In the design information database 192, for example, the size and arrangement of each component are stored. The response surface database 193 stores response surface data for calculating the strain range of each joint from information related to the state of the circuit board and design information. The calculation unit 194 obtains information on the state of the circuit board from the measurement unit 191, design information from the design information database 192, information on the state of the circuit board from the response surface database 193, design information, and the relationship between the strain ranges of the joints. Response surface data to be expressed is taken in, the strain range of the joint 6 and the detection joint 7 is calculated, and stored in the database 153. This makes it possible to predict the lifetime more reliably than the initially predicted value.

電子機器の使用中に接合部に生じるひずみ範囲は、使用時間や使用時の周囲環境等が同一でないため、使用の都度、変動する。そこで、電子機器の繰り返し使用に応じて変動するひずみ範囲Δεの繰り返しを、使用毎の損傷が等価になるように一定のひずみ範囲Δεeqの繰り返しに換算し、Δεeqを累積等価ひずみ範囲と呼ぶことにする。本変形例では、疲労特性データベースの疲労特性データを接合部の累積等価ひずみ範囲Δεeqと破損寿命の関係式とし、接合部6の累積等価ひずみΔεeqと接合部の累積等価ひずみ範囲Δεeqと破損寿命の関係式から寿命予測値を算出する。 The range of strain generated at the joint during use of an electronic device varies with each use because the use time and the surrounding environment during use are not the same. Therefore, the repetition of the strain range Δε that fluctuates according to the repeated use of the electronic device is converted into a constant strain range Δε eq so that the damage for each use becomes equivalent, and Δε eq is called the cumulative equivalent strain range. I will decide. In this modification, the fatigue characteristic data in the fatigue characteristic database is a relational expression between the cumulative equivalent strain range Δε eq of the joint and the failure life, and the cumulative equivalent strain Δε eq of the joint 6 and the cumulative equivalent strain range Δε eq of the joint are Calculate the life prediction value from the relational expression of the broken life.

本変形例によれば、使用中に測定したデータに基づいてリアルタイムで損傷指標予測を行い、かつ損傷指標予測に用いるデータベースも随時更新していくため、より使用履歴に応じた高精度な接合部の損傷指標予測が可能である。   According to this modification, the damage index prediction is performed in real time based on the data measured during use, and the database used for damage index prediction is updated as needed. It is possible to predict the damage index.

本実施形態によれば、電子機器の使用中に、検出用接合部の破損指標をもとに、電子部品の接合部の寿命を予測することで、機器周辺の環境および使用状況、機器の個体差を加味した高精度な損傷指標予測が可能になる。   According to this embodiment, during use of an electronic device, by predicting the life of the joint part of the electronic component based on the damage index of the joint part for detection, the environment and usage situation around the device, the individual device It is possible to predict damage index with high accuracy considering the difference.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1・・・回路基板、2・・・電子部品、3・・・検出用デバイス、4・・・パッケージ基板、5・・・検出用デバイス基板、6・・・接合部、7・・・検出用接合部、11・・・接合部と検出用接合部の損傷に関する指標の関係についてのデータベース、12・・・損傷検出部、13・・・演算部、14・・・表示出力部、100・・・損傷指標予測システム。   DESCRIPTION OF SYMBOLS 1 ... Circuit board, 2 ... Electronic component, 3 ... Detection device, 4 ... Package substrate, 5 ... Detection device substrate, 6 ... Joint part, 7 ... Detection For joints, 11... Database about the relationship between the joints and the indicators for damage of the joints for detection, 12... Damage detection unit, 13... Arithmetic unit, 14. ..Damage index prediction system.

Claims (20)

電子部品を実装用の回路基板と電気的に接続する接合部と、この接合部よりも低寿命に設計された検出用接合部とを有する電子機器の前記接合部の損傷に関する指標を予測する損傷予測システムであって、
前記検出用接合部の損傷に関する情報を取得する損傷検出部と、
この損傷検出部で得られる前記検出用接合部の損傷に関する情報と、前記検出用接合部の損傷に関する指標と前記接合部の損傷に関する指標との関係から、前記接合部の損傷に関する指標の予測値を演算する演算部と、
を備えたことを特徴とする損傷指標予測システム。
Damage that predicts an index related to damage of an electronic device having a joint that electrically connects an electronic component to a circuit board for mounting, and a detection joint that is designed to have a lower lifetime than the joint. A prediction system,
A damage detection unit for obtaining information on damage of the detection joint;
From the relationship between the information on the detection joint damage obtained by the damage detection unit, the index on the detection joint damage, and the index on the joint damage, the predicted value of the index on the joint damage A computing unit for computing
A damage index prediction system characterized by comprising:
前記演算部で演算された前記予測値を表示する表示出力部をさらに備えたことを特徴とする請求項1に記載の損傷指標予測システム。   The damage index prediction system according to claim 1, further comprising a display output unit that displays the predicted value calculated by the calculation unit. 前記接合部の損傷に関する指標が破損寿命であり、前記演算部は前記接合部が破損に至るまでの寿命予測値を演算することを特徴とする請求項1または2に記載の損傷指標予測システム。   The damage index prediction system according to claim 1, wherein an index related to damage of the joint is a failure life, and the calculation unit calculates a life prediction value until the joint is damaged. 前記接合部の損傷に関する指標は、繰返し負荷が1サイクル加わった場合は同一の繰返し負荷を与えたときの寿命サイクル数の逆数で表される損傷値、または負荷が繰返し生じた場合は各サイクルで生じる損傷値を累積した損傷値のいずれかであり、前記演算部は前記検出用接合部が破損した時点での前記接合部の予測損傷値を演算することを特徴とする請求項1または2に記載の損傷指標予測システム。   The index regarding the damage of the joint is a damage value represented by the reciprocal of the number of life cycles when the same repeated load is applied when a repeated load is applied for one cycle, or each cycle when a load is repeatedly generated. 3. The damage value obtained by accumulating the damage values generated, wherein the calculation unit calculates a predicted damage value of the joint at the time when the detection joint is broken. The described damage index prediction system. 前記検出用接合部は複数個所に配設され、
前記演算部は前記検出用接合部が破損する毎に、前記接合部の損傷に関する指標の平均値を算出し、前記予測値を修正することを特徴とする請求項1または2に記載の損傷指標予測システム。
The detection joints are arranged at a plurality of locations,
3. The damage index according to claim 1, wherein the calculation unit calculates an average value of an index related to damage of the joint every time the joint for detection breaks, and corrects the predicted value. Prediction system.
前記検出用接合部は複数個所に配設され、
前記演算部は前記検出用接合部が破損する毎に、前記寿命予測値のうち最も低寿命の寿命予測値を前記接合部の寿命予測値として演算することを特徴とする請求項3に記載の損傷指標予測システム。
The detection joints are arranged at a plurality of locations,
The said calculating part calculates the lifetime prediction value of the lowest lifetime among the said lifetime prediction values, as the lifetime prediction value of the said junction, whenever the said junction for a detection breaks. Damage index prediction system.
前記検出用接合部は、それぞれに付加される負荷が異なり、該電子機器の繰り返し使用に対する強度が相違するように形成されていることを特徴とする請求項5または6に記載の損傷指標予測システム。   7. The damage index prediction system according to claim 5, wherein the detection joints are formed so that loads applied thereto are different and strengths against repeated use of the electronic device are different. . 電子部品を実装用の回路基板と電気的に接続する接合部と、この接合部よりも低寿命に設計された検出用接合部とを有する電子機器の前記接合部の損傷に関する指標を予測する損傷予測システムであって、
前記検出用接合部の損傷に関する情報を取得する損傷検出部と、
前記損傷検出部で取得される前記検出用接合部の損傷に関する情報から該検出用接合部の損傷に関する指標と該検出用接合部の状態パラメータに基づいて、前記接合部の状態パラメータと前記接合部の損傷に関する指標との関係を表わす材料特性データを修正する修正演算部と、
前記接合部の状態パラメータ及び修正された前記材料特性データを取り込んで、前記接合部の損傷に関する指標の予測値を演算する演算部と、
を備えたことを特徴とする損傷指標予測システム。
Damage that predicts an index related to damage of an electronic device having a joint that electrically connects an electronic component to a circuit board for mounting, and a detection joint that is designed to have a lower lifetime than the joint. A prediction system,
A damage detection unit for obtaining information on damage of the detection joint;
Based on an index relating to damage of the detection joint from the information relating to damage of the detection joint acquired by the damage detection unit and a state parameter of the detection joint, the state parameter of the joint and the joint A correction calculation unit for correcting material property data representing a relationship with an index related to damage of
A calculation unit that takes in the state parameters of the joint and the modified material property data, and calculates a predicted value of an index related to damage of the joint;
A damage index prediction system characterized by comprising:
前記演算部で演算された前記接合部の損傷に関する指標を表示する表示出力部をさらに備えたことを特徴とする請求項8に記載の損傷指標予測システム。   The damage index prediction system according to claim 8, further comprising a display output unit that displays an index related to damage of the joint calculated by the calculation unit. 前記状態パラメータは、温度、荷重、応力、変位、ひずみの少なくとも一つであることを特徴とする請求項8または9に記載の損傷指標予測システム。   10. The damage index prediction system according to claim 8, wherein the state parameter is at least one of temperature, load, stress, displacement, and strain. 現象解析や回路基板の状態に関する情報から予測された前記接合部のひずみ範囲と実際に得られた前記接合部の損傷に関する指標に応じて、前記接合部の材料特性データを修正することを特徴とする請求項8または9に記載の損傷指標予測システム。   The material characteristic data of the joint is corrected in accordance with the strain range of the joint predicted from information on the phenomenon analysis and information on the state of the circuit board and the index regarding the damage of the joint actually obtained. The damage index prediction system according to claim 8 or 9. 前記電子部品のコーナー直下付近、あるいは前記電子部品が半導体パッケージの場合にはチップコーナー直下付近の回路基板の裏面側に、前記検出用接合部が配置され、前記検出用接合部への負荷を、前記接合部への負荷に比べて大きくしていることを特徴とする請求項1、2、8、9のいずれか一項に記載の損傷指標予測システム。   Near the corner of the electronic component, or when the electronic component is a semiconductor package, the detection junction is disposed on the back side of the circuit board near the chip corner, and the load on the detection junction is The damage index prediction system according to claim 1, wherein the damage index prediction system is larger than a load applied to the joint. 前記検出用接合部が、前記電子部品の側と前記回路基板の側とを電気的に接続するように複数個設けられ、少なくとも2個が前記回路基板に設けられた配線を介して電気的に直列接続されていることを特徴とする請求項1、2、8、9のいずれか一項に記載の損傷指標予測システム。   A plurality of the detection joints are provided so as to electrically connect the electronic component side and the circuit board side, and at least two are electrically connected via wiring provided on the circuit board. The damage index prediction system according to any one of claims 1, 2, 8, and 9, wherein the damage index prediction system is connected in series. 前記検出用接合部が、前記回路基板上にパッケージ基板を介して載置される前記電子部品と同一面上に配設されていることを特徴とする請求項1、2、8、9のいずれか一項に記載の損傷指標予測システム。   10. The detection joint portion is provided on the same plane as the electronic component placed on the circuit board via a package substrate. The damage index prediction system according to claim 1. 前記検出用接合部は、2個で1組として、パッケージコーナー部に配設され、2個のうち片方もしくは両方が破損したことを検出して、前記検出用接合部の破損と判定することを特徴とする請求項1、2、8、9のいずれか一項に記載の損傷指標予測システム。   The two detection joints are arranged at a package corner portion as a set, and it is determined that one or both of the two joints are damaged, and it is determined that the detection joint is damaged. The damage index prediction system according to any one of claims 1, 2, 8, and 9. 前記検出用接合部は、前記接合部の直径よりも小さくし、各組の前記検出用接合部のパッケージコーナー部からの距離がそれぞれ異なるように配置されていることを特徴とする請求項15に記載の損傷指標予測システム。   The detection joint portion is smaller than the diameter of the joint portion, and is arranged so that the distance from the package corner portion of each detection joint portion is different. The described damage index prediction system. 前記回路基板を固定するための固定部が形成され、各組の前記検出用接合部の前記固定部の位置からの距離がそれぞれ異なるように配置されていることを特徴とする請求項15に記載の損傷指標予測システム。   The fixing part for fixing the circuit board is formed, and the distance from the position of the fixing part of each of the joints for detection of each set is different, respectively. Damage index prediction system. 電子部品を実装用の回路基板と電気的に接続する接合部と、この接合部よりも低寿命に設計され検出用接合部とを有する電子機器の前記接合部の損傷に関する指標を予測する損傷予測方法であって、
前記検出用接合部の損傷に関する情報を取得し、
この損傷検出で取得される前記検出用接合部の前記損傷に関する指標と、前記検出用接合部の損傷に関する指標と前記接合部の損傷に関する指標との関係から、前記接合部の損傷に関する指標の予測値を演算することを特徴とする損傷指標予測方法。
Damage prediction for predicting an index related to damage of an electronic device having a joint that electrically connects an electronic component to a circuit board for mounting, and a detection joint that is designed to have a lower life than the joint A method,
Obtain information on damage to the detection joint,
Prediction of the index relating to the damage of the joint from the relationship between the index relating to the damage of the joint for detection acquired by this damage detection, the index relating to the damage of the joint for detection and the index relating to the damage of the joint A damage index predicting method comprising calculating a value.
前記検出用接合部の損傷に関する情報が、前記検出用接合部の破損の検出情報であることを特徴とする請求項1乃至17のいずれか1項に記載の損傷指標予測システム。   18. The damage index prediction system according to claim 1, wherein the information related to damage of the detection joint is detection information of breakage of the detection joint. 前記損傷に関する指標は、破損寿命、損傷値、破損寿命を用いた関数、損傷値を用いた関数のいずれかであることを特徴とする請求項1乃至3及び5乃至17のいずれか1項に記載の損傷指標予測システム。   18. The damage index is any one of a failure life, a damage value, a function using the failure life, and a function using the damage value. The described damage index prediction system.
JP2013129353A 2013-06-20 2013-06-20 Damage index prediction system and damage prediction method Expired - Fee Related JP5572741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013129353A JP5572741B2 (en) 2013-06-20 2013-06-20 Damage index prediction system and damage prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013129353A JP5572741B2 (en) 2013-06-20 2013-06-20 Damage index prediction system and damage prediction method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011044015A Division JP2011109145A (en) 2011-03-01 2011-03-01 Damage index prediction system and damage prediction method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014131457A Division JP2014197705A (en) 2014-06-26 2014-06-26 Damage index prediction system, damage prediction method, electronic apparatus, and processing program

Publications (2)

Publication Number Publication Date
JP2013191888A true JP2013191888A (en) 2013-09-26
JP5572741B2 JP5572741B2 (en) 2014-08-13

Family

ID=49391774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013129353A Expired - Fee Related JP5572741B2 (en) 2013-06-20 2013-06-20 Damage index prediction system and damage prediction method

Country Status (1)

Country Link
JP (1) JP5572741B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220276104A1 (en) * 2020-03-24 2022-09-01 Hitachi, Ltd. Board analysis supporting method and board analysis supporting system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022024A (en) * 1998-07-02 2000-01-21 Pfu Ltd Semiconductor surface-mounting part
JP2000100851A (en) * 1998-09-25 2000-04-07 Sony Corp Semiconductor substrate and manufacture thereof and structure and method for mounting semiconductor parts
JP2002101668A (en) * 2000-09-26 2002-04-05 Meidensha Corp Life time estimation method of semiconductor power converter and semiconductor power converter
JP2002122640A (en) * 2000-10-13 2002-04-26 Fuji Xerox Co Ltd Service life decision device and service life decision method
JP2006337144A (en) * 2005-06-01 2006-12-14 Kawasaki Heavy Ind Ltd Fatigue life diagnostic method and diagnostic support device of bridge

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022024A (en) * 1998-07-02 2000-01-21 Pfu Ltd Semiconductor surface-mounting part
JP2000100851A (en) * 1998-09-25 2000-04-07 Sony Corp Semiconductor substrate and manufacture thereof and structure and method for mounting semiconductor parts
JP2002101668A (en) * 2000-09-26 2002-04-05 Meidensha Corp Life time estimation method of semiconductor power converter and semiconductor power converter
JP2002122640A (en) * 2000-10-13 2002-04-26 Fuji Xerox Co Ltd Service life decision device and service life decision method
JP2006337144A (en) * 2005-06-01 2006-12-14 Kawasaki Heavy Ind Ltd Fatigue life diagnostic method and diagnostic support device of bridge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220276104A1 (en) * 2020-03-24 2022-09-01 Hitachi, Ltd. Board analysis supporting method and board analysis supporting system

Also Published As

Publication number Publication date
JP5572741B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
JP4703702B2 (en) Damage index prediction system and damage index prediction method
US8321157B2 (en) Monitoring device and monitoring method
JP5175911B2 (en) Solder joint life prediction method, solder joint life prediction device
JP6081055B2 (en) Electronic component and measuring method
US9086267B2 (en) Real time strain sensing solution
JP5615282B2 (en) Electronic device and damage detection method
JP5568586B2 (en) Electronic device, failure determination method, life estimation method
US7514941B2 (en) Method and apparatus for predicting the reliability of electronic systems
JP5572741B2 (en) Damage index prediction system and damage prediction method
JP2011109145A (en) Damage index prediction system and damage prediction method
CN110089203B (en) Failure prediction element and circuit board using the same
JP2014197705A (en) Damage index prediction system, damage prediction method, electronic apparatus, and processing program
JP5481551B2 (en) Solder joint life prediction method, solder joint life prediction apparatus, and electronic device
JP6139619B2 (en) Electronic component and measuring method
JP2020016456A (en) Quality determination method, quality determination device, quality determination system and quality determination program
JP5816340B2 (en) Electronic device, failure determination method, life estimation method, program
US20220276104A1 (en) Board analysis supporting method and board analysis supporting system
US20210396606A1 (en) Printed circuit board having a strain gauge
JP2011109145A5 (en)
Line et al. Prognostics and maintenance modeling for electronic components
Wu et al. Condition Monitoring of Automotive Smart Systems utilizing Piezoresistive Stress Sensor
JP2010122114A (en) Method for measuring life time of electronic component, and method for determining quality of substrate and design thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140630

R151 Written notification of patent or utility model registration

Ref document number: 5572741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees