JP6050152B2 - Non-contact evaluation method for damage to bearing parts of railway bridges - Google Patents

Non-contact evaluation method for damage to bearing parts of railway bridges Download PDF

Info

Publication number
JP6050152B2
JP6050152B2 JP2013046106A JP2013046106A JP6050152B2 JP 6050152 B2 JP6050152 B2 JP 6050152B2 JP 2013046106 A JP2013046106 A JP 2013046106A JP 2013046106 A JP2013046106 A JP 2013046106A JP 6050152 B2 JP6050152 B2 JP 6050152B2
Authority
JP
Japan
Prior art keywords
vibration
damage
girder
bearing
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013046106A
Other languages
Japanese (ja)
Other versions
JP2014173313A (en
Inventor
文昭 上半
文昭 上半
慎太郎 箕浦
慎太郎 箕浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2013046106A priority Critical patent/JP6050152B2/en
Publication of JP2014173313A publication Critical patent/JP2014173313A/en
Application granted granted Critical
Publication of JP6050152B2 publication Critical patent/JP6050152B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

本発明は、鉄道橋梁の支承部損傷の非接触評価方法に関するものである。   The present invention relates to a non-contact evaluation method for damage to a bearing portion of a railway bridge.

橋梁の支承部に損傷や異常が発生すると、桁の支持状態が不安定になり、桁に振動が発生することがある。そして橋梁の部材に想定外の変位や応力が発生し、部材の損傷や亀裂を発生させることがある。ある支承部が変状を起こすと、その支承部が支えている桁が三点支持状態となり、桁のばたつきが発生し、桁の変位の増大や支承部やほかの部材にさらなる損傷を引き起こす。そのため、支承部の維持管理は非常に重要であるが、現状の検査は主に目視によって行われており、また支承部の取り付け位置は高所にあることが多いため、検査の安全性の向上や定量的な評価手法が求められている。   If damage or abnormality occurs in the bridge support, the support state of the girder may become unstable and vibration may occur in the girder. In addition, unexpected displacement and stress may occur in the bridge member, which may cause damage and cracking of the member. When a certain support part deforms, the girder supported by the support part becomes a three-point support state, and the girder flutters, increasing the displacement of the girder and causing further damage to the support part and other members. For this reason, the maintenance of the bearing is very important, but the current inspection is mainly performed by visual inspection, and the mounting position of the bearing is often high, improving the safety of the inspection. And quantitative evaluation methods are required.

特開2008−281422号公報JP 2008-281422 A

上記したように、鉄道橋梁の支承部の検査は主に目視で行われているが、その支承部は高所や見難いところに設置してある場合が多く、作業に危険が伴い検査効率が悪い。さらに、支承部の損傷具合を定量的に評価できないという問題があった。   As mentioned above, inspections of railway bridge bearings are mainly carried out by visual inspection, but the bearings are often installed in high places or places that are difficult to see. bad. Furthermore, there has been a problem that the degree of damage to the bearing cannot be quantitatively evaluated.

なお、本願の発明者らは、既に、構造物の振動特性の非接触計測システムについて提案を行っている(上記特許文献1参照)。   Note that the inventors of the present application have already proposed a non-contact measurement system for vibration characteristics of a structure (see Patent Document 1).

本発明は、上記状況に鑑みて、非接触センサを用いて鉄道橋梁の支承部付近の桁の検査を行い、安全で効率的かつ定量的な計測ができる、鉄道橋梁の支承部損傷の非接触評価方法を提供することを目的とする。   In view of the above situation, the present invention performs inspection of a girder in the vicinity of a railway bridge support using a non-contact sensor, and enables safe, efficient, and quantitative measurement. The purpose is to provide an evaluation method.

本発明は、上記目的を達成するために、
〔1〕鉄道橋梁の支承部付近の桁の振動及び変位を非接触センサで計測することにより、鉄道橋梁の支承部の損傷を定量的に評価する鉄道橋梁の支承部損傷の非接触評価方法において、損傷を受けた鉄道橋梁の支承部では振動が大きくなるため、計測したそれぞれの振動の振幅及びスペクトルを解析装置により比較することにより、鉄道橋梁の支承部の損傷の度合いを評価する鉄道橋梁の支承部損傷の非接触評価方法であって、前記非接触センサを1台使用する場合には、非接触センサ本体を橋脚に取り付け、その状態で前記非接触センサ本体を取り付けた橋脚の支承部に近い桁端部の振動計測を行うことを特徴とする。
In order to achieve the above object, the present invention provides
[1] Non-contact evaluation method for damage to railway bridge supports by quantitatively assessing damage to railway bridge supports by measuring vibrations and displacements of girders near railway bridge supports using non-contact sensors. Since the vibration of the bearing part of a damaged railway bridge increases, the degree of damage of the railway bridge support part is evaluated by comparing the measured amplitude and spectrum of each vibration using an analysis device . A non-contact evaluation method for damage to a bearing portion, wherein when one non-contact sensor is used, the non-contact sensor main body is attached to the pier, and in that state, the non-contact sensor main body is attached to the pier support portion. It is characterized by measuring vibration at the end of the near beam .

〕上記〔1〕記載の鉄道橋梁の支承部損傷の非接触評価方法において、前記橋脚の圧縮方向の振動は無視できると仮定し、非接触センサ本体に取り付けてある振動計で前記橋脚の振動を計測することにより、その振動と桁端部の振動を比較することで、損傷を受け橋脚と比較して大きな振動を起こすようになっている支承部を検出することを特徴とする。 [ 2 ] In the non-contact evaluation method for damage to a bearing portion of a railway bridge described in [1] above , assuming that vibration in the compression direction of the pier is negligible, a vibration meter attached to the non-contact sensor body is used to By measuring the vibration and comparing the vibration with the vibration at the end of the girder, it is possible to detect a bearing portion that is damaged and causes a greater vibration than the pier .

〕上記〔1〕記載の鉄道橋梁の支承部損傷の非接触評価方法において、前記橋梁を渡る列車の速度や荷重にほとんど変化がないような場合には、列車通過時のある1つの鉄道橋梁の支承部付近の桁の振動と、違う列車による異なる鉄道橋梁の支承部付近の桁の振動を1台の非接触センサで計測・記録し、それらを比較することを特徴とする。 [ 3 ] In the non-contact evaluation method for damage to a bearing portion of a railway bridge described in [1] above, if there is almost no change in the speed and load of the train crossing the bridge, one railway at the time of passing the train It is characterized by measuring and recording the vibration of the girder near the support part of the bridge and the vibration of the girder near the support part of different railway bridges by different trains and comparing them with one non-contact sensor .

〕上記〔3〕記載の鉄道橋梁の支承部損傷の非接触評価方法において、記録されたそれぞれの支承部付近の桁の振動データより、解析装置によって振動計測結果の比較を行い支承部の損傷を評価することを特徴とする。 [ 4 ] In the non-contact evaluation method for damage to a bearing part of a railway bridge described in [3] above , the vibration measurement result is compared by an analysis device from the recorded vibration data of the girder near each bearing part. It is characterized by evaluating damage .

〕桁の支承部の1つが損傷を受けた場合には、三点支持状態となって桁にばたつきが発生するので、このようなばたつきの発生の有無を簡易に調べる場合には、非接触センサにより列車通過時の桁のたわみ測定を行い、このたわみの時刻歴を記録し、列車通過後には桁の振動は減衰するが、三点支持状態の場合には減衰が小さくなるため、列車通過後の桁の振動の減衰を求めることで三点支持状態の有無を調べる鉄道橋梁の支承部損傷の非接触評価方法において、多主桁橋の場合には、2台以上の非接触センサが使用可能であれば、まず基準とする支承部を一つ決め、その支承部付近の桁の振動と測定対象とする支承部付近の桁の振動を同時に計測し、前記基準とした支承部は変えずに測定対象の支承部を順に変えて振動計測を行っていき、その結果を基準となる支承部付近の桁の計測結果で正規化していくことで支承部の損傷を評価することを特徴とする。 [ 5 ] If one of the support parts of the girder is damaged, the girder will be fluttered in a three-point support state. The deflection of the girder at the time of passing the train is measured by the contact sensor, and the time history of this deflection is recorded. After passing through the train, the vibration of the girder is attenuated. In the non-contact evaluation method for damage to the bearing parts of railway bridges, which examines the presence or absence of three-point support by determining the vibration attenuation of the girder after passing. In the case of multi-main girder bridges, two or more non-contact sensors If it can be used, first determine one reference bearing, and simultaneously measure the vibration of the girder near the bearing and the vibration of the girder near the measurement target, and change the reference bearing. Without changing the support part to be measured in order, Come, and evaluating the damage of the bearing portion by gradually normalized in order of measurement results near bearing as a reference the results.

本発明によれば、高所や確認しづらい場所にある鉄道橋梁の支承部に対しても、その損傷度を安全で効率的かつ定量的に評価することができる。   According to the present invention, it is possible to safely, efficiently, and quantitatively evaluate the degree of damage even for a bearing portion of a railway bridge at a high place or a place that is difficult to check.

本発明の実施例を示す鉄道橋梁の支承部の非接触評価手順を示す図である。It is a figure which shows the non-contact evaluation procedure of the support part of a railway bridge which shows the Example of this invention. 本発明の実施例を示す非接触センサを2台使用した場合の計測の模式図である。It is a schematic diagram of the measurement at the time of using two non-contact sensors which show the Example of this invention. 本発明の実施例を示す非接触センサを1台使用した場合の計測の模式図である。It is a schematic diagram of the measurement at the time of using one non-contact sensor which shows the Example of this invention. 本発明の実施例を示す三点支持状態の有無を1台のセンサによって簡易に確認する場合の計測方法を示す模式図である。It is a schematic diagram which shows the measuring method in the case of confirming the presence or absence of the three-point support state which shows the Example of this invention easily with one sensor. 本発明の実施例を示す橋軸方向から見た主桁が複数ある場合の計測方法を示す模式図である。It is a schematic diagram which shows the measuring method in case there exist multiple main girders seen from the bridge-axis direction which shows the Example of this invention.

本発明の鉄道橋梁の支承部損傷の非接触評価方法は、鉄道橋梁の支承部付近の桁の振動及び変位を非接触センサで計測することにより、鉄道橋梁の支承部の損傷を定量的に評価する鉄道橋梁の支承部損傷の非接触評価方法において、損傷を受けた鉄道橋梁の支承部では振動が大きくなるため、計測したそれぞれの振動の振幅及びスペクトルを解析装置により比較することにより、鉄道橋梁の支承部の損傷の度合いを評価する鉄道橋梁の支承部損傷の非接触評価方法であって、前記非接触センサを1台使用する場合には、非接触センサ本体を橋脚に取り付け、その状態で前記非接触センサ本体を取り付けた橋脚の支承部に近い桁端部の振動計測を行うThe non-contact evaluation method for damage to a bearing part of a railway bridge according to the present invention quantitatively evaluates damage to the support part of a railway bridge by measuring vibration and displacement of a girder near the support part of the railway bridge with a non-contact sensor. In the non-contact evaluation method for damage to railway bridge bearings, the vibrations at the damaged railway bridge bearing parts increase. Therefore, by comparing the measured amplitude and spectrum of each vibration with an analyzer, the railway bridge This is a non-contact evaluation method for damage to a bearing part of a railway bridge that evaluates the degree of damage of the bearing part of the railway. When one of the non-contact sensors is used, the non-contact sensor body is attached to the pier, Vibration measurement is performed at the end of the spar close to the support portion of the pier to which the non-contact sensor body is attached .

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

ここで、対象となる鉄道橋梁の支承部は鋼製の支承部を主たる対象とする。その非接触評価手順は、図1に示すフローチャートに従って行われる。また、非接触センサとしては、レーザドップラー速度計 (LDV) 等の非接触センサを用いる。   Here, steel bearings are the main target of the railway bridges. The non-contact evaluation procedure is performed according to the flowchart shown in FIG. As the non-contact sensor, a non-contact sensor such as a laser Doppler velocimeter (LDV) is used.

(1)非接触センサによる鉄道橋梁の支承部付近の桁の検査を行う(ステップS1)。   (1) A girder near the support portion of the railway bridge is inspected by a non-contact sensor (step S1).

(2)鉄道橋梁の支承部の三点支持状態の簡易な検査を行う(ステップS2)。   (2) A simple inspection of the three-point support state of the support portion of the railway bridge is performed (step S2).

(3)列車通過時のたわみ計測を行う(ステップS3)。   (3) Deflection is measured when the train passes (step S3).

(4)記録装置に計測データを記録する(ステップS4)。   (4) The measurement data is recorded in the recording device (step S4).

(5)解析装置により対数減衰率を求める(ステップS5)。   (5) A logarithmic decay rate is obtained by an analyzer (step S5).

なお、上記ステップS5により異常ありの場合は詳細な検査へ移行し、異常がない場合には検査を終了する。     If there is an abnormality in step S5, the process proceeds to a detailed inspection, and if there is no abnormality, the inspection is terminated.

(6)個々の支承部付近の桁の検査が必要な詳細な場合検査を行う(ステップS6)。   (6) An inspection is performed in the detailed case where an inspection of the girder near the individual bearings is necessary (step S6).

(7)非接触センサの台数は何台か(ステップS7)。   (7) How many non-contact sensors are there (step S7)?

(8)非接触センサを1台使用(ステップS8)。   (8) One non-contact sensor is used (step S8).

(9)鉄道橋梁を通過する列車の速度や荷重は一定か(ステップS9)。   (9) Is the speed and load of the train passing through the railway bridge constant (step S9)?

(10)上記ステップS9において列車の速度や荷重が一定の場合には、支承部付近の桁の振動計測を順に行う(ステップS10)。   (10) When the train speed and load are constant in step S9, vibration measurement of the digits near the support portion is sequentially performed (step S10).

(11)記録装置に計測データを記録する(ステップS11)。   (11) The measurement data is recorded in the recording device (step S11).

(12)一方、列車の速度や荷重は一定ではない場合には、非接触センサを橋脚に固定し、その状態で支承部付近の桁の振動計測を行い(ステップS12)、次いでステップS11へ入る。   (12) On the other hand, when the speed and load of the train are not constant, the non-contact sensor is fixed to the pier, and the vibration of the girder near the support portion is measured in that state (step S12), and then step S11 is entered. .

(13)一方、上記ステップS7において、非接触センサを2台以上使用する場合(ステップS13)。   (13) On the other hand, when two or more non-contact sensors are used in step S7 (step S13).

(14)2台の非接触センサにより同じ桁の支承部付近の振動計測を行い(ステップS14)、次いでステップS11へ入る。   (14) The vibration measurement in the vicinity of the support portion of the same girder is performed by two non-contact sensors (step S14), and then step S11 is entered.

(15)次いで、解析装置により計測結果の比較を行い、損傷度合いを評価し(ステップS15)、検査を終了する(ステップS16)。   (15) Next, the measurement results are compared by the analyzer, the degree of damage is evaluated (step S15), and the inspection is terminated (step S16).

以下、センサの態様毎に詳細に説明する。   Hereinafter, it demonstrates in detail for every aspect of a sensor.

〔1〕非接触センサが複数台である場合
図2は本発明の実施例を示す非接触センサを2台使用した場合の計測の模式図であり、図2(a)は鉄道橋梁の側面図、図2(b)は鉄道橋梁の平面図、図2(c)は計測結果のスペクトルの比較のイメージを示す図である。
[1] When there are a plurality of non-contact sensors FIG. 2 is a schematic diagram of measurement when two non-contact sensors according to an embodiment of the present invention are used, and FIG. 2 (a) is a side view of a railway bridge. FIG. 2 (b) is a plan view of a railway bridge, and FIG. 2 (c) is a diagram showing an image of spectrum comparison of measurement results.

これらの図において、1は橋脚、2は橋脚1上に配置される鉄道橋梁の支承部であり、固定的な支承部2A,2B、可動的な支承部2C,2Dからなる。3は桁、4は非接触センサであり、2台の非接触センサ4A,4Bからなる。これらの2台の非接触センサ4A,4Bは、解析装置5に接続されている。すなわち、図2(a),(b)に示すように、それぞれの非接触センサ4A,4Bで同じ橋脚1や桁3に備え付けられている鉄道橋梁の支承部2付近の桁3上の測定点6A,6Bの振動計測を行う。振動計測は列車通過時に行い、記録されたデータから解析装置5を用いて振動のフーリエスペクトルのピーク値Sp1〜Sp4を求めて比較する。この操作を同一の桁3に備え付けられている全ての支承部2A,2B,2C,2D付近の桁3上の測定点6A,6Bに対して行い、解析結果を比較することで損傷を受けている支承部2を検知し、その度合いを評価する。測定結果のイメージを図2(c)に示す。図2(c)のように損傷を受けていないスペクトルのピーク値(図中のSp1〜Sp3) と比べ、損傷を受けた支承のスペクトルのピーク値(図中のSp4) は高くなる。このスペクトルのピークの大小により、鉄道橋梁の支承部2の損傷の程度を評価することができる。   In these drawings, 1 is a bridge pier, 2 is a bearing portion of a railway bridge disposed on the pier 1, and includes fixed bearing portions 2A and 2B and movable bearing portions 2C and 2D. 3 is a digit, 4 is a non-contact sensor, and comprises two non-contact sensors 4A and 4B. These two non-contact sensors 4A and 4B are connected to the analysis device 5. That is, as shown in FIGS. 2 (a) and 2 (b), the measurement points on the girder 3 near the support portion 2 of the railway bridge provided on the same pier 1 and girder 3 by the non-contact sensors 4A and 4B, respectively. 6A and 6B vibration measurements are performed. Vibration measurement is performed when the train passes, and peak values Sp1 to Sp4 of the Fourier spectrum of vibration are obtained from the recorded data using the analysis device 5 and compared. This operation is performed on the measurement points 6A and 6B on the girders 3 in the vicinity of all the support portions 2A, 2B, 2C, and 2D provided in the same girders 3, and the analysis results are compared to cause damage. The bearing part 2 is detected and its degree is evaluated. An image of the measurement result is shown in FIG. The peak value (Sp4 in the figure) of the damaged support is higher than the peak value (Sp1 to Sp3 in the figure) of the spectrum that is not damaged as shown in FIG. The degree of damage of the support part 2 of the railway bridge can be evaluated by the magnitude of the peak of the spectrum.

〔2〕非接触センサを1台のみ使用可能な場合
図3は本発明の実施例を示す非接触センサを1台使用した場合の計測の模式図であり、図3(a)は鉄道橋梁の側面図、図3(b)は計測結果のスペクトルの比較のイメージを示す図である。
[2] When only one non-contact sensor can be used FIG. 3 is a schematic diagram of measurement when one non-contact sensor according to the embodiment of the present invention is used, and FIG. A side view and FIG.3 (b) are figures which show the image of the comparison of the spectrum of a measurement result.

非接触センサを一台のみ使用可能な場合には、図3(a)に示すように橋脚11に非接触センサ13を固定し、その状態で鉄道橋梁の支承部12付近の桁15端部の桁15上の測定点17の列車通過時の振動計測を行う。非接触センサ13自体にも振動計測装置14が付いており、この振動計測装置14を用いて橋脚11自体の振動を計測して鉄道橋梁の支承部12付近の桁15上の測定点17の振動と比較する。橋脚11は一般的に剛性が高く、橋脚11の上下方向の圧縮は無視でき、橋脚11の非接触センサ13の取り付け位置の振動と鉄道橋梁の支承部12の取り付け位置の振動には大きな差はないと仮定される。そのため、鉄道橋梁の取り付け支承部12付近の桁15に橋脚11の振動と比較して大きな振動が発生している場合、その振動は鉄道橋梁の支承部12の損傷によるものと考えられる。図3(b)に示すように、計測した振動に対し、解析装置16により橋脚11の振動と鉄道橋梁の支承部12付近の桁15の振動のスペクトルを求める。桁15の振動のスペクトルのピーク値(図中のSp1およびSp1’) を橋脚11の振動のスペクトルのピーク値(図中のSp0) で割り、その値が1に近ければ、損傷はなく、値が大きくなるほど損傷度合いが大きいと判断する。   When only one non-contact sensor can be used, the non-contact sensor 13 is fixed to the pier 11 as shown in FIG. 3 (a), and in this state, the end of the beam 15 near the support portion 12 of the railway bridge is used. Vibration measurement at the time of passing the train at the measurement point 17 on the girder 15 is performed. The non-contact sensor 13 itself is also provided with a vibration measuring device 14. The vibration measuring device 14 is used to measure the vibration of the pier 11 itself to vibrate the measurement point 17 on the girder 15 near the support portion 12 of the railway bridge. Compare with The pier 11 is generally high in rigidity, and the compression of the pier 11 in the vertical direction is negligible, and there is a large difference between the vibration at the attachment position of the non-contact sensor 13 on the pier 11 and the vibration at the attachment position of the support portion 12 of the railway bridge. Not assumed. Therefore, when a large vibration is generated in the girder 15 near the mounting support 12 of the railway bridge as compared with the vibration of the pier 11, the vibration is considered to be due to the damage of the support 12 of the railway bridge. As shown in FIG. 3B, the spectrum of vibration of the bridge pier 11 and vibration of the girder 15 near the support portion 12 of the railway bridge is obtained by the analysis device 16 with respect to the measured vibration. Divide the peak value of the spectrum of the vibration of the digit 15 (Sp1 and Sp1 ′ in the figure) by the peak value of the spectrum of the vibration of the pier 11 (Sp0 in the figure), and if the value is close to 1, there is no damage. It is judged that the degree of damage increases as the value of increases.

〔3〕三点支持状態の有無を1台のセンサによって簡易に確認する場合
三点支持状態の有無を1台の非接触センサ21によって簡易に確認する場合には、図4(a)に示すように非接触センサ21を1台を用いて列車通過時の桁24のたわみ計測を行う。22は橋脚、23は鉄道橋梁の支承部である。列車通過後の桁24の振動は、図4(b)に示すように、鉄道橋梁の支承部23が損傷を受け三点支持になっている場合には減衰が低下する(ステップS2)ため、列車通過後の振動の対数減衰率を求め(ステップS5)、その値が低くなっている場合には、鉄道橋梁の支承部23の損傷の可能性があると判断することができる。
[3] Case where the presence / absence of the three-point support state is simply confirmed by one sensor The case where the presence / absence of the three-point support state is simply confirmed by one non-contact sensor 21 is shown in FIG. Thus, the deflection measurement of the digit 24 at the time of train passing is performed using one non-contact sensor 21. 22 is a bridge pier, and 23 is a bearing part of a railway bridge. As shown in FIG. 4B, the vibration of the girder 24 after passing through the train is attenuated when the railway bridge support 23 is damaged and is supported at three points (step S2). The logarithmic decay rate of the vibration after passing through the train is obtained (step S5), and if the value is low, it can be determined that there is a possibility of damage to the support portion 23 of the railway bridge.

〔4〕主桁が複数ある場合
図5に示すように、主桁31が複数ある場合には、非接触センサ32を2台以上用意して検査を行う。基準となる支承部を一つ決め、その支承部付近の桁と計測の対象とする支承部付近の桁の列車通過時の振動計測を行う。基準となる支承部を変えずに計測対象となる支承部を順に変えて行っていき、それぞれの支承部付近の桁の振動のフーリエスペクトルのピークを求める。その後、計測対象とした支承部付近の桁のそれぞれの振動のスペクトルのピークを基準となる支承部付近の桁の振動のスペクトルのピークで割ることで正規化して、その値を比較し、支承部の損傷の有無や程度を判断する。
[4] When there are a plurality of main beams As shown in FIG. 5, when there are a plurality of main beams 31, two or more non-contact sensors 32 are prepared and inspected. Decide one reference base and measure the vibration of the girder near the base and the girder near the target girder when the train passes. Without changing the reference support part, the measurement target support parts are sequentially changed, and the peak of the Fourier spectrum of the vibration of the girder near each support part is obtained. After that, normalize by dividing the peak of vibration spectrum of each digit near the bearing part to be measured by the peak of vibration spectrum of the digit near the standard bearing part, and compare the values. Determine the presence and extent of damage.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の鉄道橋梁の支承部損傷の非接触評価方法は、非接触センサを用いて鉄道橋梁の支承部付近の桁の検査を行い、安全で効率的かつ定量的な計測ができる、鉄道橋梁の支承部損傷の非接触評価方法として利用可能である。   The non-contact evaluation method for damage to a bearing part of a railway bridge according to the present invention is a method for inspecting a girder near a support part of a railway bridge using a non-contact sensor, and enables safe, efficient and quantitative measurement of the railway bridge. It can be used as a non-contact evaluation method for bearing damage.

1,11,22 橋脚
2,2A,2B,2C,2D,12,23 鉄道橋梁の支承部
2a,2b 固定的な支承部
2c,2d 可動的な支承部
3,15,24 桁
4,4A,4B,13,21,32 非接触センサ
5,16 解析装置
6,6A,6B,17 支承部付近の桁上の測定点
14 振動計測装置
31 主桁
1,11,22 Bridge piers 2,2A, 2B, 2C, 2D, 12,23 Railroad bridge bearings 2a, 2b Fixed bearings 2c, 2d Movable bearings 3, 15, 24 Digits 4, 4A, 4B, 13, 21, 32 Non-contact sensor 5, 16 Analyzing device 6, 6A, 6B, 17 Measuring point on beam near bearing part 14 Vibration measuring device 31 Main beam

Claims (5)

鉄道橋梁の支承部付近の桁の振動及び変位を非接触センサで計測することにより、鉄道橋梁の支承部の損傷を定量的に評価する鉄道橋梁の支承部損傷の非接触評価方法において、損傷を受けた鉄道橋梁の支承部では振動が大きくなるため、計測したそれぞれの振動の振幅及びスペクトルを解析装置により比較することにより、鉄道橋梁の支承部の損傷の度合いを評価する鉄道橋梁の支承部損傷の非接触評価方法であって、前記非接触センサを1台使用する場合には、非接触センサ本体を橋脚に取り付け、その状態で前記非接触センサ本体を取り付けた橋脚の支承部に近い桁端部の振動計測を行うことを特徴とする鉄道橋梁の支承部損傷の非接触評価方法。 In a non-contact evaluation method for damage to railway bridge bearings, damage and damage to railway bridge bearings are quantitatively evaluated by measuring vibration and displacement of the girder near the railway bridge bearings with a non-contact sensor. Since the vibration at the bearing part of the received railway bridge increases, the damage of the railway bridge support part is evaluated by comparing the measured amplitude and spectrum of each vibration with an analyzer. In the non-contact evaluation method, when one non-contact sensor is used, the non-contact sensor main body is attached to the pier, and in this state, the girder end close to the support portion of the pier to which the non-contact sensor main body is attached. Non-contact evaluation method for damage to bearing parts of railway bridges, characterized by measuring the vibration of the parts . 請求項1記載の鉄道橋梁の支承部損傷の非接触評価方法において、前記橋脚の圧縮方向の振動は無視できると仮定し、非接触センサ本体に取り付けてある振動計で前記橋脚の振動を計測することにより、その振動と桁端部の振動を比較することで、損傷を受け橋脚と比較して大きな振動を起こすようになっている支承部を検出することを特徴とする鉄道橋梁の支承部損傷の非接触評価方法。 2. The non-contact evaluation method for damage to a bearing part of a railway bridge according to claim 1, wherein vibration of the bridge pier is assumed to be negligible and vibration of the bridge pier is measured with a vibration meter attached to a non-contact sensor body. By comparing the vibration with the vibration at the end of the girder, the damage to the bearing part of the railway bridge, which is damaged and detects the bearing part that causes a greater vibration than the pier, is detected. Non-contact evaluation method. 請求項1記載の鉄道橋梁の支承部損傷の非接触評価方法において、前記橋梁を渡る列車の速度や荷重にほとんど変化がないような場合には、列車通過時のある1つの鉄道橋梁の支承部付近の桁の振動と、違う列車による異なる鉄道橋梁の支承部付近の桁の振動を1台の非接触センサで計測・記録し、それらを比較することを特徴とする鉄道橋梁の支承部損傷の非接触評価方法。 2. A non-contact evaluation method for damage to a bearing part of a railway bridge according to claim 1, wherein if there is almost no change in the speed and load of the train crossing the bridge, the bearing part of one railway bridge when the train passes. The damage of railway bridge bearings is characterized by measuring and recording the vibration of nearby girders and the vibration of girders near different railway bridge bearings by different trains using a single non-contact sensor and comparing them . Non-contact evaluation method. 請求項3記載の鉄道橋梁の支承部損傷の非接触評価方法において、記録されたそれぞれの支承部付近の桁の振動データより、解析装置によって振動計測結果の比較を行い支承部の損傷を評価することを特徴とする鉄道橋梁の支承部損傷の非接触評価方法。 4. A non-contact evaluation method for damage to a bearing part of a railway bridge according to claim 3, wherein the vibration measurement result is compared by an analysis device from the recorded vibration data of the girder near each bearing part to evaluate the damage of the bearing part. A non-contact evaluation method for damage to bearing parts of railway bridges. 桁の支承部の1つが損傷を受けた場合には、三点支持状態となって桁にばたつきが発生するので、このようなばたつきの発生の有無を簡易に調べる場合には、非接触センサにより列車通過時の桁のたわみ測定を行い、該たわみの時刻歴を記録し、列車通過後には桁の振動は減衰するが、三点支持状態の場合には減衰が小さくなるため、列車通過後の桁の振動の減衰を求めることで三点支持状態の有無を調べる鉄道橋梁の支承部損傷の非接触評価方法において、多主桁橋の場合には、2台以上の非接触センサが使用可能であれば、まず基準とする支承部を一つ決め、その支承部付近の桁の振動と測定対象とする支承部付近の桁の振動を同時に計測し、前記基準とした支承部は変えずに測定対象の支承部を順に変えて振動計測を行っていき、その結果を基準となる支承部付近の桁の計測結果で正規化していくことで支承部の損傷を評価することを特徴とする鉄道橋梁の支承部損傷の非接触評価方法。 If one of the support parts of the girder is damaged, the girder will be fluttered with a three-point support, so if you want to easily check for such flutter, use a non-contact sensor. Measure the deflection of the girder when passing through the train and record the time history of the deflection. After passing the train, the vibration of the girder is attenuated. In the non-contact evaluation method for damage to the bearing parts of railway bridges, which examines the presence or absence of three-point support by determining the damping of girder vibrations. In the case of multi-main girder bridges, two or more non-contact sensors can be used. If there is, first determine one reference bearing, and simultaneously measure the vibration of the girder near the bearing and the vibration of the girder near the measurement target, and measure without changing the reference bearing. Change the target support part in order and measure the vibration. Non-contact method for evaluating bearing damage railway bridges and evaluating damage of the bearing portion by fruit going normalized digits of the measurement results near bearing as a reference.
JP2013046106A 2013-03-08 2013-03-08 Non-contact evaluation method for damage to bearing parts of railway bridges Expired - Fee Related JP6050152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013046106A JP6050152B2 (en) 2013-03-08 2013-03-08 Non-contact evaluation method for damage to bearing parts of railway bridges

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013046106A JP6050152B2 (en) 2013-03-08 2013-03-08 Non-contact evaluation method for damage to bearing parts of railway bridges

Publications (2)

Publication Number Publication Date
JP2014173313A JP2014173313A (en) 2014-09-22
JP6050152B2 true JP6050152B2 (en) 2016-12-21

Family

ID=51694845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013046106A Expired - Fee Related JP6050152B2 (en) 2013-03-08 2013-03-08 Non-contact evaluation method for damage to bearing parts of railway bridges

Country Status (1)

Country Link
JP (1) JP6050152B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3306286A4 (en) * 2015-06-02 2018-08-08 Panasonic Intellectual Property Management Co., Ltd. Bridge abnormality sensing device
JP6452246B2 (en) * 2015-06-23 2019-01-16 西日本高速道路株式会社 Monitoring device
WO2020066504A1 (en) 2018-09-27 2020-04-02 パナソニックIpマネジメント株式会社 Detection device and detection method
JP7188553B2 (en) * 2019-03-05 2022-12-13 日本電気株式会社 Bearing diagnostic device, bearing diagnostic method, and program
JP2020201292A (en) * 2020-09-25 2020-12-17 株式会社フジタ Structure soundness evaluation apparatus
CN112697373B (en) * 2021-01-22 2023-03-24 扬州大学 Method for estimating displacement of railway bridge with damaged component
CN118687626B (en) * 2024-08-23 2024-10-29 中裕铁信交通科技股份有限公司 Bridge beam supports non-contact health monitoring system and monitoring devices thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63146704U (en) * 1987-03-19 1988-09-28
JP2007309899A (en) * 2006-05-22 2007-11-29 Keisoku Res Consultant:Kk Noncontact-type vibration/displacement measuring device

Also Published As

Publication number Publication date
JP2014173313A (en) 2014-09-22

Similar Documents

Publication Publication Date Title
JP6050152B2 (en) Non-contact evaluation method for damage to bearing parts of railway bridges
RU2683137C2 (en) Method and apparatus to determine structural parameters of railway track
Alemi et al. Condition monitoring approaches for the detection of railway wheel defects
US8640544B2 (en) Method for analyzing structure safety
Gindy et al. A state‐space approach for deriving bridge displacement from acceleration
JP6839960B2 (en) Bearing monitoring system and monitoring method
JP6735034B2 (en) Structure abnormality detection device, structure abnormality detection method, recording medium and structure abnormality detection system
JP6315810B2 (en) Anomaly detection method for railway bridge support
US20200363287A1 (en) Damage diagnosing device, damage diagnosing method, and recording medium having damage diagnosing program stored thereon
EP3951344A1 (en) Methods and systems for damage evaluation of structural assets
Boumechra Damage detection in beam and truss structures by the inverse analysis of the static response due to moving loads
Ahmadi et al. New damage index based on least squares distance for damage diagnosis in steel girder of bridge's deck
Svendsen et al. Damage Detection Applied to a Full‐Scale Steel Bridge Using Temporal Moments
JP2004184377A (en) Identification method and device by noncontact measurement of vibration characteristic of structure
ElHattab et al. Drive-by bridge damage detection using non-specialized instrumented vehicle
Fayyadh et al. Condition assessment of elastic bearing supports using vibration data
WO2017175692A1 (en) Ultrasonic inspection system, ultrasonic inspection method, and aircraft structure
US20220364842A1 (en) Bridge displacement calculating apparatus, bridge displacement measuring apparatus, bridge displacement calculating method, bridge displacement measuring method, and non-transitory computer-readable recording medium
Scozzese et al. Nonlinear Response Characterization of Post‐Tensioned RC Bridges through Hilbert–Huang Transform Analysis
Sofi et al. Assessment of a pedestrian bridge dynamics using interferometric radar system IBIS-FS
JP2001215148A (en) Diagnostic method for structure
Sitton et al. Damage scenario analysis of bridges using crowdsourced smartphone data from passing vehicles
RU2537747C1 (en) Acoustic-emission method to diagnose metal structures
US20210341352A1 (en) Diagnosis apparatus, diagnosis method, and computer readable recording medium
Allahdadian et al. Sensitivity evaluation of subspace-based damage detection method to different types of damage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160927

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161124

R150 Certificate of patent or registration of utility model

Ref document number: 6050152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees