JPS6354943A - Production for monolithic catalytic carrier for purifying exhaust gas - Google Patents

Production for monolithic catalytic carrier for purifying exhaust gas

Info

Publication number
JPS6354943A
JPS6354943A JP61198476A JP19847686A JPS6354943A JP S6354943 A JPS6354943 A JP S6354943A JP 61198476 A JP61198476 A JP 61198476A JP 19847686 A JP19847686 A JP 19847686A JP S6354943 A JPS6354943 A JP S6354943A
Authority
JP
Japan
Prior art keywords
catalyst
slurry
carbonate
deposition layer
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61198476A
Other languages
Japanese (ja)
Inventor
Naoto Miyoshi
直人 三好
Shinichi Matsumoto
伸一 松本
Yutaka Ishikawa
豊 石川
Masayasu Sato
真康 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Toyota Motor Corp
Original Assignee
Cataler Industrial Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Industrial Co Ltd, Toyota Motor Corp filed Critical Cataler Industrial Co Ltd
Priority to JP61198476A priority Critical patent/JPS6354943A/en
Publication of JPS6354943A publication Critical patent/JPS6354943A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance durability of a catalytic carrier layer and purifying performance of a catalyst by sticking slurry contg. both cerium carbonate and a material for forming a catalytic deposition layer on the surface of a base material for a monolithic catalytic carrier and calcining it to form the catalytic deposition layer. CONSTITUTION:Slurry is prepared by adding cerium carbonate and furthermore lanthanum carbonate more preferably to a material forming a catalytic deposition layer. After sticking the above-mentioned slurry contg. cerium carbonate for forming the catalytic deposition layer on the surface of a monolithic catalytic carrier for purifying exhaust gas, the catalytic deposition layer is formed by calcining it. In this method, micro pores are formed in the deposition layer by CO2 generating from carbonate contained in the slurry in case of calcination and thereby the generation of a crack becoming a cause of peeling of the deposition layer in case of calcination can be prevented. Further when lanthanum carbonate is added to the slurry, the above-mentioned effect is more enhanced and also the formation of composite oxide is facilitated and performance of a catalyst is enhanced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、排ガス浄化用モノリス触媒担体の製造方法に
関し、詳しくは、アルミナ等からなる触媒担持層の耐久
性を高めるとともに、触媒の浄化性能を向上させるもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a monolithic catalyst carrier for exhaust gas purification, and more specifically, a method for improving the durability of a catalyst support layer made of alumina or the like and improving the purification performance of the catalyst. It is intended to improve

[従来技術] 近時、自動車用排ガス浄化用触媒として、ハニカム構造
のモノリス触媒が、一般に用いられている。このモノリ
ス触媒は、例えばハニカム構造のコージェライト製触媒
担体基材表面に、比表面積の大きい活性アルミナの触媒
担持層を形成し、該担持層に触媒金屑を担持させること
によって製造される。
[Prior Art] In recent years, monolithic catalysts with a honeycomb structure have generally been used as exhaust gas purifying catalysts for automobiles. This monolithic catalyst is produced, for example, by forming a catalyst support layer of activated alumina with a large specific surface area on the surface of a cordierite catalyst carrier base material having a honeycomb structure, and by supporting the catalyst gold dust on the support layer.

かかるモノリス触媒の製造工程において、前記活性アル
ミナ触媒担持層の形成は、例えば、モノリス担体基材を
アルミナスラリーに浸漬し、付着させ、その後、乾燥、
焼成することにより行なわれる(特公昭56−2729
5号公報)。
In the manufacturing process of such a monolithic catalyst, the active alumina catalyst supporting layer is formed by, for example, dipping the monolithic carrier base material in an alumina slurry to make it adhere, followed by drying,
This is done by firing (Special Publication No. 56-2729)
Publication No. 5).

[発明が解決しようとする問題点] しかし、前記触媒担持層の焼成時に、活性アルミナ層に
大きなりラックを生じる場合があり、かかるクラックの
ため、排ガス浄化用触媒使用時に排ガスの流れと熱く排
ガス熱及び反応熱)によって、前記アルミナ層が剥離す
るという現象が生じる場合があった。
[Problems to be Solved by the Invention] However, when the catalyst support layer is fired, large racks may be formed in the activated alumina layer, and these cracks cause the flow of exhaust gas and the hot exhaust gas to deteriorate when using a catalyst for exhaust gas purification. In some cases, the alumina layer peels off due to heat (heat and reaction heat).

本発明は、以上の事情に鑑みて案出されたものであり、
触媒使用時に触媒担持層が剥離する原因となるようなり
ラックが、触媒担持層形成工程において発生することを
防止し、耐久性、触媒の浄化率を向上させることを目的
とするものである。
The present invention was devised in view of the above circumstances, and
The purpose of this method is to prevent racks from occurring in the catalyst support layer forming process, which would cause peeling of the catalyst support layer during use of the catalyst, and to improve durability and purification rate of the catalyst.

[問題点を解決するための手段] 本発明に係る排ガス浄化用触媒担体の製造方法は排ガス
浄化用モノリス触媒担体基材表面に、触媒担持層形成材
料を含むスラリーを付着させた後、焼成して触媒担持層
を形成する排ガス浄化用モノリス触媒担体の製造方法に
おいて、 前記スラリー中には、炭酸セリウムが添加されているこ
とを特徴とする。
[Means for Solving the Problems] The method for producing a catalyst carrier for exhaust gas purification according to the present invention involves depositing a slurry containing a material for forming a catalyst support layer on the surface of a monolithic catalyst carrier base material for exhaust gas purification, and then firing the slurry. In the method for producing a monolithic catalyst carrier for exhaust gas purification, the slurry is characterized in that cerium carbonate is added to the slurry.

以下、構成要件をのべる。The configuration requirements are listed below.

モノリス触媒基材は触媒の外形を規定し、その材質とし
ては、一般にコージェライトが用いられるが、その他ム
ライトあるいはスピネル又は、耐熱性金属を用いること
もできる。該基材は排気ガスの流れ方向に伸びる多数の
細孔(例えば、100〜60087平方インチ)を有す
るハニカム構造、又は三次元網目構造の一体成形構造で
あり、その外形は柱状(円柱、四角柱等モノリス触媒の
設置されるべき排気系の内形状に適合した形状)を成す
The monolith catalyst base defines the external shape of the catalyst, and its material is generally cordierite, but other materials such as mullite, spinel, or heat-resistant metals can also be used. The base material is a honeycomb structure having a large number of pores (for example, 100 to 60,087 square inches) extending in the flow direction of the exhaust gas, or an integrally molded three-dimensional network structure, and its outer shape is columnar (cylindrical, square prism, etc.). (e.g., a shape that matches the internal shape of the exhaust system in which the monolithic catalyst is to be installed).

触媒担持層は、前記モノリス触媒基材表面に触媒担持層
形成材料を含有するスラリーを付着させ、その後、乾燥
し、焼成して形成する。触媒担持層形成材料としては、
通常用いられるものでよく、活性アルミナ、ジルコニア
、チタニア、コージェライト、スピネル等を、単独で、
又は組合せて用いることができる。
The catalyst support layer is formed by depositing a slurry containing a catalyst support layer forming material on the surface of the monolithic catalyst base material, followed by drying and firing. As the material for forming the catalyst support layer,
Any commonly used materials may be used, such as activated alumina, zirconia, titania, cordierite, spinel, etc.
Or they can be used in combination.

本発明の特徴は、上記スラリー中に、炭酸セリウムを添
加することにある。セリウム等希土類金属の酸化物を添
加すると、活性アルミナを安定化させα−アルミナへの
転移を抑制することは、従来から知られていた。(特開
昭48−14600号公報)。本発明は、セリウムを炭
酸塩の形で添加することに特徴を有し、この炭酸セリウ
ムを含むスラリーをモノリス触媒基材に付着させること
によって、焼成する際に炭酸塩より発生するC02によ
り担持層に細孔を生ぜしめ、該焼成の際に担持層剥離の
原因となるクラックが発生することを防止するものであ
る。又、炭酸ランタンを炭酸セリウムとともにスラリー
中に添加すると上記効果を奏るとともに、複合酸化物(
Ce、La)02−f−の生成が容易となり、触媒性能
を向上させる。
A feature of the present invention is that cerium carbonate is added to the slurry. It has been known for a long time that adding an oxide of a rare earth metal such as cerium stabilizes activated alumina and suppresses the transition to α-alumina. (Japanese Unexamined Patent Publication No. 14600/1983). The present invention is characterized in that cerium is added in the form of carbonate, and by attaching a slurry containing this cerium carbonate to a monolithic catalyst base material, the C02 generated from the carbonate during firing forms a support layer. This prevents the generation of cracks that cause the support layer to peel off during firing. Additionally, adding lanthanum carbonate to the slurry together with cerium carbonate produces the above effects and also improves the ability of composite oxides (
The production of Ce, La)02-f- is facilitated and the catalyst performance is improved.

[作用] 本発明においては、モノリス触媒担体基材表面に付着さ
せる触媒担持層形成材料を含むスラリーに炭酸セリウム
を添加している。このため、該スラリーを焼成し、安定
化する際に、Cotが発生し、アルミナ等からなる触媒
担持層に細孔を生ぜしめる。この細孔の存在により、剥
離の原因となるクラックの発生が抑シリされる。
[Function] In the present invention, cerium carbonate is added to a slurry containing a material for forming a catalyst support layer to be adhered to the surface of a monolithic catalyst carrier base material. Therefore, when the slurry is fired and stabilized, Cot is generated and pores are generated in the catalyst support layer made of alumina or the like. The presence of these pores suppresses the occurrence of cracks that cause peeling.

[実施例コ (第1実施例) 活性アルミナ粉末500g、炭酸セリウム2009を6
259の硝酸アルミニウム水溶液(0,3m01/又)
に加え、撹拌後、ボールミルで15時時間式粉砕してア
ルミナスラリーを得た。このアルミナスラリーにコージ
ェライト質のモノリス触媒担体基材を浸漬し、引上げ、
空気流で余分なスラリーを吹き払い、120℃で乾燥後
、700℃で2時間焼成してモノリス触媒担体を得た。
[Example 1 (1st example) 500 g of activated alumina powder, 6 ml of cerium carbonate 2009
259 aluminum nitrate aqueous solution (0.3m01/also)
In addition, after stirring, the mixture was ground in a ball mill for 15 hours to obtain an alumina slurry. A cordierite monolith catalyst carrier base material is immersed in this alumina slurry, pulled up,
Excess slurry was blown off with an air stream, dried at 120°C, and then calcined at 700°C for 2 hours to obtain a monolithic catalyst carrier.

このモノリス触媒担体をジニトロアンミン白金[Pt 
(NH3) t <Not ) t ]水溶液中に浸漬
し、引上げて白金19/交−cat(触媒担体の容積1
J2当り白金ff11g>担持させた侵、乾燥させ、さ
らに塩化ロジウム水溶液に浸漬し、ロジウム0゜4a/
又−cat担持させ、120’C乾燥後4゜0℃で焼成
し、モノリス触媒Aを得た。
This monolithic catalyst carrier was made of dinitroammineplatinum [Pt
(NH3) t < Not
Platinum ff11g per J2
In addition, -cat was supported, dried at 120'C, and then calcined at 4°0C to obtain monolithic catalyst A.

(その他の実施例) 第2実施例から第5実施例までは、それぞれアルミナス
ラリーの組成が異なるだけで、他は第1実施例と全く同
様にしてモノリス触媒を製造した場合である。
(Other Examples) In the second to fifth examples, monolithic catalysts were produced in the same manner as in the first example, except that the composition of the alumina slurry was different.

第2実施例は、活性アルミナ粉末500g、炭酸セリウ
ム粉末200Q、炭酸ランタン粉末120gを645g
の硝酸アルミニウム水溶液(0゜3mol/x)に加え
て、撹拌、湿式粉砕して、アルミナスラリーを調整した
場合であり、かかるアルミナスラリーを用いて、その優
男1実!ll!iPlと同様に、焼成して触媒担体を得
て、該担体の担持層に触媒金属を担持したのが触媒Bで
ある。
The second example is 645g of activated alumina powder, 200Q of cerium carbonate powder, and 120g of lanthanum carbonate powder.
This is the case where an alumina slurry is prepared by adding to an aqueous solution of aluminum nitrate (0°3 mol/x), stirring and wet grinding. ll! Similarly to iPl, catalyst B is obtained by firing to obtain a catalyst carrier and supporting the catalyst metal on the support layer of the carrier.

第3実施例は、活性アルミナ500g、炭酸セリウム粉
末100111を645gの硝酸アルミニウム水溶液(
0,5mo l/R) に加えTfi拝し、湿式粉砕し
てアルミナスラナーを得た場合であり、かかるアルミナ
スラナーを用いて触媒担持層を形成し、その後第1実施
例と同様に触媒金属を担持させ、製造したのが触媒Cで
ある。
In the third example, 500 g of activated alumina and 100111 cerium carbonate powder were mixed with 645 g of aluminum nitrate aqueous solution (
This is a case where an alumina laner is obtained by wet grinding in addition to Tfi (0.5 mol/R), and a catalyst supporting layer is formed using such alumina lanner, and then a catalyst is coated in the same manner as in the first example. Catalyst C was produced by supporting a metal.

第4実施例は、活性アルミナ粉末500!It 、炭酸
セリウム粉末200g、無定形アルミナ1159を0.
2mol/文の硝酸アルミニウム水溶液600gに加え
、撹拌、湿式粉砕して得たスラリーを用いた場合である
。かかるスラリーを用いて、触媒担持層を形成し、その
後第1実施例と同様に触媒金属を担持させ、触媒りを得
た。
The fourth example is activated alumina powder 500! It, 200 g of cerium carbonate powder, and 0.0 g of amorphous alumina 1159.
This is the case where a slurry obtained by adding 600 g of a 2 mol/liter aqueous aluminum nitrate solution, stirring and wet pulverization was used. A catalyst support layer was formed using this slurry, and then a catalyst metal was supported in the same manner as in the first example to obtain a catalyst layer.

第5実施例は、活性アルミナ粉末500(+、炭酸セリ
ウム200g、無定形アルミナ115g、炭酸ランタン
120gをQ、2mol/又の硝酸アルミニウム水溶液
600gに加え、撹拌、湿式粉砕して1りたスラリーを
用いた場合である。該スラリーを用いて触媒担持層を形
成し、触媒担体を19で、第1実施例と同様に触媒金属
を担持して、触媒りを得た。
In the fifth example, 500 g of activated alumina powder (+, 200 g of cerium carbonate, 115 g of amorphous alumina, and 120 g of lanthanum carbonate were added to 600 g of an aqueous solution of aluminum nitrate at 2 mol/h), stirred, and wet-pulverized to form a slurry. A catalyst support layer was formed using the slurry, and a catalyst metal was supported on the catalyst support No. 19 in the same manner as in the first example to obtain a catalyst layer.

(比較例) 第1比較例は、炭酸セリウムのかわりに硝酸セリウムを
用いた場合である。即ら、活性アルミナ500gを0.
3mol/又の硝酸アルミニウム水溶液50Clに加え
、撹拌後、15時間ボールミルで湿式粉砕し、アルミナ
スラリーを1qた。このアルミナスラリーに、モノリス
触媒担体基材を浸漬し、引き上げ、乾燥後、焼成した。
(Comparative Example) A first comparative example is a case where cerium nitrate was used instead of cerium carbonate. That is, 500g of activated alumina is 0.
The mixture was added to 50 Cl of a 3 mol/mole aluminum nitrate aqueous solution, stirred, and then wet-pulverized in a ball mill for 15 hours to obtain 1 q of alumina slurry. A monolithic catalyst carrier base material was immersed in this alumina slurry, pulled up, dried, and fired.

このモノリス触媒担体を硝酸セリウム溶液中に浸漬し、
約0.3モル/交−cat  (触媒担体の容積1又当
り0.3モル)分のセリウムを含浸させ、250℃で乾
燥後、700℃で2時間焼成した。その後実施例と同様
に白金及びロジウムを実施例と同量担持させて触媒Fを
得た。
This monolithic catalyst carrier is immersed in a cerium nitrate solution,
It was impregnated with cerium in an amount of about 0.3 mol/cross-cat (0.3 mol per 1 volume of catalyst carrier), dried at 250°C, and then calcined at 700°C for 2 hours. Thereafter, platinum and rhodium were supported in the same amounts as in the example to obtain catalyst F.

第2比較例は、第1比較例のアルミナスラリー中にさら
に炭酸ランタン120gを添加した場合であり、他は、
第1比較例と同様にして、触媒Gを得た。
The second comparative example is a case in which 120 g of lanthanum carbonate is further added to the alumina slurry of the first comparative example, and the others are as follows.
Catalyst G was obtained in the same manner as in the first comparative example.

第3比較例は、第1比較例のアルミナスラリー中に、さ
らに無定形アルミナ115gを添加した場合であり、他
は、第1比較例と同様にして触媒H@:得た。
In the third comparative example, 115 g of amorphous alumina was further added to the alumina slurry of the first comparative example, and the catalyst H@: was obtained in the same manner as in the first comparative example.

第4比較例は、第1比較例のアルミナスラリー中に、さ
らに炭酸ランタン120g1無定形アルミナ115gを
添加した場合であり、他は、第1比較例と同様にして触
媒Iを得た。
A fourth comparative example is a case in which 120 g of lanthanum carbonate and 115 g of amorphous alumina were further added to the alumina slurry of the first comparative example, and catalyst I was obtained in the same manner as in the first comparative example except for the following.

(評価) 上記のようにして製造した実施例及び比較例に係る触媒
A〜■について、各々耐久前後の炭化水素(+−10)
、−酸化炭素(co)、窒素酸化物(NOX )の浄化
率(%)及び耐久後の触媒担持層の剥離率を測定した。
(Evaluation) Hydrocarbons before and after durability (+-10) for catalysts A to ■ according to Examples and Comparative Examples produced as described above.
, - The purification rate (%) of carbon oxide (co) and nitrogen oxide (NOX) and the peeling rate of the catalyst support layer after durability were measured.

ここで耐久は、触媒をコンバーターに充填し、6気筒、
2.8文エンジンの排気系に装着し、理論空燃比下で2
00時間運転することにより行った。尚、このとき触媒
入口における排ガス温度は、700〜750℃であった
。又、浄化率の測定は、触媒をコンバーターに充填し、
6気筒、2.8文エンジンの排気系に装着し、触媒入口
ガス温度が400℃、理論空燃比下で運転することによ
り行った。尚、剥離率(%)−(新品の触媒の重量−耐
久後の触媒の重量)÷(新品の触媒の重量−触媒担体の
みの重量)×100とした。
Here, durability is achieved by filling the converter with a catalyst, 6 cylinders,
2.8 sentences Installed on the exhaust system of the engine, under the stoichiometric air-fuel ratio
This was done by driving for 00 hours. Note that the exhaust gas temperature at the catalyst inlet at this time was 700 to 750°C. In addition, the purification rate can be measured by filling the converter with a catalyst and
The test was carried out by installing the device in the exhaust system of a 6-cylinder, 2.8-liter engine and operating it at a catalyst inlet gas temperature of 400° C. and a stoichiometric air-fuel ratio. The peeling rate (%) - (weight of new catalyst - weight of catalyst after durability test)/(weight of new catalyst - weight of catalyst carrier only) x 100.

測定結果を表に示す。表より明らかに実施例の方が比較
例よりも剥離率が低い。これは、炭酸セリウムを添加す
ることにより、触媒担持層に剥離の原因となるようなり
ラックが発生することが防止されたためと考えられる。
The measurement results are shown in the table. From the table, it is clear that the peeling rate of Examples is lower than that of Comparative Examples. This is considered to be because the addition of cerium carbonate prevented the formation of racks, which would cause peeling, in the catalyst support layer.

又、炭酸セリウムと炭酸ランタンを使用した触媒は硝酸
セリウムと炭酸ランタンを使用した触媒より浄化率が高
い。これは、ランタンとセリウムを共に炭酸塩で添加す
ると、触媒性能を向上ざV8複合酸化物[(Ce、La
)Ox−χ1が極めて容易に生成するためである。
Further, a catalyst using cerium carbonate and lanthanum carbonate has a higher purification rate than a catalyst using cerium nitrate and lanthanum carbonate. This shows that when lanthanum and cerium are added together as carbonates, the catalytic performance is improved and V8 composite oxide [(Ce, La
) Ox-χ1 is generated extremely easily.

[発明の効果] 以上のべたように、本発明においては、モノリス触媒担
体基材に付着させる触媒担持層形成材料を含むスラリー
中に炭酸セリウムを添加することにより、モノリス触媒
担体を焼成する際に、触媒使用時に担持層剥離の原因と
なるクラックが発生することを防止するものである。こ
れにより、触媒使用時の触媒担持層の剥離率は、著しく
減少し、浄化性能及び耐久性能の向上を図ることができ
る。
[Effects of the Invention] As described above, in the present invention, cerium carbonate is added to the slurry containing the catalyst support layer forming material to be adhered to the monolith catalyst carrier base material, so that when the monolith catalyst carrier is fired, , which prevents the occurrence of cracks that may cause peeling of the support layer when using the catalyst. As a result, the peeling rate of the catalyst supporting layer during use of the catalyst is significantly reduced, and purification performance and durability performance can be improved.

又、炭酸セリウムとあわせて炭酸ランタンを前記スラリ
ーに添加すると、触媒担持層の剥離を防止する他、ラン
タンとセリウムの複合酸化物が極めて容易に生成し、浄
化性能を向上ざ「る。
Furthermore, when lanthanum carbonate is added to the slurry together with cerium carbonate, not only does it prevent the catalyst support layer from peeling off, but also a composite oxide of lanthanum and cerium is extremely easily generated, which improves the purification performance.

Claims (2)

【特許請求の範囲】[Claims] (1)排ガス浄化用モノリス触媒担体基材表面に、触媒
担持層形成材料を含むスラリーを付着させた後、焼成し
て触媒担持層を形成する排ガス浄化用モノリス触媒担体
の製造方法において、 前記スラリー中には、炭酸セリウムが添加されているこ
とを特徴とする排ガス浄化用モノリス触媒担体の製造方
法。
(1) A method for producing a monolithic catalyst carrier for exhaust gas purification, in which a slurry containing a material for forming a catalyst support layer is attached to the surface of a base material of a monolithic catalyst carrier for exhaust gas purification, and then fired to form a catalyst support layer, the slurry A method for producing a monolithic catalyst carrier for exhaust gas purification, characterized in that cerium carbonate is added therein.
(2)前記スラリー中には、炭酸セリウムの他、炭酸ラ
ンタンをも添加されている特許請求の範囲第1項記載の
排ガス浄化用モノリス触媒担体の製造方法。
(2) The method for producing a monolithic catalyst carrier for exhaust gas purification according to claim 1, wherein lanthanum carbonate is also added to the slurry in addition to cerium carbonate.
JP61198476A 1986-08-25 1986-08-25 Production for monolithic catalytic carrier for purifying exhaust gas Pending JPS6354943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61198476A JPS6354943A (en) 1986-08-25 1986-08-25 Production for monolithic catalytic carrier for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61198476A JPS6354943A (en) 1986-08-25 1986-08-25 Production for monolithic catalytic carrier for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPS6354943A true JPS6354943A (en) 1988-03-09

Family

ID=16391742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61198476A Pending JPS6354943A (en) 1986-08-25 1986-08-25 Production for monolithic catalytic carrier for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPS6354943A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803755A (en) * 2016-10-07 2019-05-24 韩国电力公社 Solid raw material for carbon-dioxide absorbent, the dioxide absorbent composition comprising solid raw material and the carbon-dioxide absorbent prepared using solid raw material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122044A (en) * 1981-05-30 1983-07-20 Toyota Motor Corp Production of catalyst having porous film containing rare earths for purification of waste gas
JPS60248236A (en) * 1984-05-25 1985-12-07 Nissan Motor Co Ltd Process for forming porous alumina coating film on monolithic carrier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122044A (en) * 1981-05-30 1983-07-20 Toyota Motor Corp Production of catalyst having porous film containing rare earths for purification of waste gas
JPS60248236A (en) * 1984-05-25 1985-12-07 Nissan Motor Co Ltd Process for forming porous alumina coating film on monolithic carrier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803755A (en) * 2016-10-07 2019-05-24 韩国电力公社 Solid raw material for carbon-dioxide absorbent, the dioxide absorbent composition comprising solid raw material and the carbon-dioxide absorbent prepared using solid raw material
US11167261B2 (en) 2016-10-07 2021-11-09 Korea Electric Power Corporation Solid raw material for carbon dioxide absorbent, carbon dioxide absorbent composition comprising same, and carbon dioxide absorbent prepared using same
CN109803755B (en) * 2016-10-07 2022-04-22 韩国电力公社 Solid raw material for carbon dioxide absorbent, composition comprising the same, and carbon dioxide absorbent prepared using the same

Similar Documents

Publication Publication Date Title
JP4838258B2 (en) Exhaust gas purification catalyst
KR101059807B1 (en) Exhaust gas purification catalyst
JP3235640B2 (en) Internal combustion engine exhaust gas purification catalyst
JPS6235812B2 (en)
JP2002177781A (en) Exhaust gas cleaning catalyst
JPS609861B2 (en) Catalyst for exhaust gas purification
US5108978A (en) Multifunctional catalysts containing cerium, uranium and at least one other metal, for converting pollutants emitted by internal combustion engines, and their preparation
JPS59127649A (en) Catalyst for purifying exhaust gas
JPH05237390A (en) Catalyst for purification of exhaust gas
JPH0547263B2 (en)
JP3264697B2 (en) Exhaust gas purification catalyst and purification system using the same
JPS60190236A (en) Preparation of catalyst having high temperature heat resistance
JPH09248458A (en) Catalyst and method for exhaust gas-purifying
JP2758616B2 (en) Heat-resistant catalyst for catalytic combustion and its carrier
JPH10165817A (en) Catalyst for cleaning of exhaust gas
JP3247956B2 (en) Exhaust gas purification catalyst
JPH10249199A (en) Catalyst for purifying exhaust gas
JPS6354943A (en) Production for monolithic catalytic carrier for purifying exhaust gas
JP3272015B2 (en) Exhaust gas purification catalyst
JPH07171392A (en) Catalyst for exhaust gas purification
JP2001162166A (en) Catalyst for purification of discharged gas
JPH0523593A (en) Exhaust emission control system
JPS6214338B2 (en)
JPH06154606A (en) Catalyst for purification of exhaust gas
JPH0523599A (en) Catalyst for decontaminating exhaust gas