JPS635468B2 - - Google Patents

Info

Publication number
JPS635468B2
JPS635468B2 JP61015096A JP1509686A JPS635468B2 JP S635468 B2 JPS635468 B2 JP S635468B2 JP 61015096 A JP61015096 A JP 61015096A JP 1509686 A JP1509686 A JP 1509686A JP S635468 B2 JPS635468 B2 JP S635468B2
Authority
JP
Japan
Prior art keywords
thin film
carbon thin
hard carbon
film
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61015096A
Other languages
Japanese (ja)
Other versions
JPS62174378A (en
Inventor
Shinzo Morita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO CHOKAN KANBO
Original Assignee
KAGAKU GIJUTSUCHO CHOKAN KANBO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO CHOKAN KANBO filed Critical KAGAKU GIJUTSUCHO CHOKAN KANBO
Priority to JP61015096A priority Critical patent/JPS62174378A/en
Publication of JPS62174378A publication Critical patent/JPS62174378A/en
Publication of JPS635468B2 publication Critical patent/JPS635468B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 (発明の技術的分野) 本発明は、硬質炭素薄膜の形成方法に関し、さ
らに詳しくはプラズマCVDプロセスによる硬質
炭素薄膜の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for forming a hard carbon thin film, and more particularly to a method for forming a hard carbon thin film by a plasma CVD process.

(発明の技術的背景ならびにその問題点) 近年、エレクトロニクス材料、光学材料、超硬
工具などへの応用が期待されている硬質炭素薄膜
に対する関心が高まつている。
(Technical background of the invention and its problems) In recent years, there has been increasing interest in hard carbon thin films, which are expected to be applied to electronic materials, optical materials, cemented carbide tools, and the like.

炭素薄膜に関連するものとしては、プラズマプ
ロセスによつて有機モノマーから合成される有機
重合性薄膜がすでに知られている。この有機重合
性薄膜は一般にアモルフアスポリマーと称される
ものであつて、架橋性の高分子である。
Related to carbon thin films, organic polymerizable thin films synthesized from organic monomers by a plasma process are already known. This organic polymerizable thin film is generally called an amorphous polymer, and is a crosslinkable polymer.

ところが、有機モノマーを反応原料とする場合
でも、モノマーの種類やプラズマ放電の条件によ
つてはダイヤモンド状またはアモルフアスカーボ
ンなどの硬質炭素薄膜が得られることが見出され
たことから、有機モノマーを用いるプラズマ
CVDプロセスが新たな関心を集めている。
However, it has been discovered that even when organic monomers are used as reaction raw materials, hard carbon thin films such as diamond-like or amorphous carbon can be obtained depending on the type of monomer and plasma discharge conditions. plasma used
CVD processes are receiving renewed interest.

これらの硬質炭素薄膜としては、ダイヤモン
ド、アモルフアスカーボン、グラフアイト等の
様々な膜構造が考えられる。しかしながら、薄膜
の構造、その生成のプロセスと放電条件との関係
については、いまだ充分に明らかにされていな
い。特にこれまでのプラズマプロセスの場合には
硬質炭素薄膜の生成の速度が遅く、薄膜の機能性
材料への応用を図つていく上で大きな問題であつ
たが、膜生成の速度を増大させる方策は依然とし
て見出されていない。
As these hard carbon thin films, various film structures such as diamond, amorphous carbon, graphite, etc. can be considered. However, the relationship between the thin film structure, its formation process, and discharge conditions has not yet been fully clarified. Particularly in the case of conventional plasma processes, the rate of production of hard carbon thin films was slow, which was a major problem in applying thin films to functional materials.However, there are no measures to increase the rate of film production. It has not yet been discovered.

また、多くの場合、薄膜中にグラフアイトが形
成されているため、硬質炭素膜の透光性が好まし
くないなど、機能性材料として応用するための特
性の点で問題があつた。
In addition, in many cases, graphite is formed in the thin film, which causes problems in terms of properties for application as a functional material, such as unfavorable light transmittance of the hard carbon film.

したがつて、このような問題のない硬質炭素膜
の形成方法を確立することと、そのためのプラズ
マCVDプロセスの条件を選択することが強く望
まれていた。
Therefore, it has been strongly desired to establish a method for forming a hard carbon film that does not have such problems, and to select conditions for the plasma CVD process for this purpose.

(発明の目的) 本発明は、上記のような従来技術に伴なう問題
点を解決しようとするものであり、プラズマ
CVDプロセスにより、大きな薄膜生成速度によ
つてアモルフアスカーボンなどの硬質炭素薄膜を
効率的に形成する方法を提供することを目的とし
ている。また本発明は、薄膜の機能特性、特に透
光性に優れた硬質炭素薄膜を効率的に形成する方
法を提供することを目的としている。本発明は、
機能性薄膜、超硬薄膜などとしての応用が期待さ
れる硬質炭素薄膜の製造に関して新たな展望を切
拓くものということができる。
(Object of the Invention) The present invention aims to solve the problems associated with the prior art as described above.
The purpose of this study is to provide a method for efficiently forming hard carbon thin films such as amorphous carbon at a high thin film formation rate using a CVD process. Another object of the present invention is to provide a method for efficiently forming a hard carbon thin film having excellent thin film functional properties, particularly light transmittance. The present invention
This can be said to open up new prospects for the production of hard carbon thin films, which are expected to be applied as functional thin films, ultra-hard thin films, etc.

(発明の概要) 本発明に係る硬質炭素薄膜の形成方法は、プラ
ズマCVDプロセスによつて有機モノマーと水素
ガスとにより炭素薄膜を形成するにあたり、反応
ガス系に酸素ガスを添加することを特徴としてい
る。
(Summary of the Invention) The method for forming a hard carbon thin film according to the present invention is characterized by adding oxygen gas to the reaction gas system when forming a carbon thin film using an organic monomer and hydrogen gas by a plasma CVD process. There is.

本発明の方法によつて形成されるアモルフアス
カーボン等の薄膜は、X線マスク用として、ある
いは半導体基板用絶縁物、ラングミユアブロジエ
ツト(LB)膜用基板、超硬工具などへの応用が
期待されるものである。
Thin films such as amorphous carbon formed by the method of the present invention can be used for X-ray masks, insulators for semiconductor substrates, substrates for Langmuir Blossom film (LB) films, carbide tools, etc. is expected.

(発明の具体的説明) 本発明のプラズマCVDプロセスに用いる装置
については、平行平板電極による方式、高周波励
起による方式などのプラズマプロセスに使用する
ことのできる適宜のものを用いることができる。
(Specific Description of the Invention) As for the apparatus used in the plasma CVD process of the present invention, any suitable apparatus that can be used in a plasma process, such as a system using parallel plate electrodes or a system using high frequency excitation, can be used.

また、硬質炭素薄膜形成用の基板についても、
Siウエハー、ガラス基板、プラスチツクなど任意
のものが使用できる。
Also, regarding substrates for forming hard carbon thin films,
Any materials such as Si wafers, glass substrates, and plastics can be used.

薄膜形成のための反応には、成膜分子である有
機モノマーと、水素ガス及び添加ガス成分として
の酸素ガスを用いるが、有機モノマーについて
は、メタン、エタン、プロパン、エチレンなどの
炭化水素をはじめとする有機モノマーを適宜に選
択することができる。
The reaction for forming a thin film uses an organic monomer, which is a film-forming molecule, and hydrogen gas and oxygen gas as an additive gas component. An organic monomer can be selected as appropriate.

プラズマCVDの反応系に導入するこれらのガ
ス成分の流量は反応容器、ガス圧によつて変わつ
てくるが、たとえば約10の容器では有機モノマ
ーが50〜0.1sccm水素が100〜0.1sccm、添加成分
としての酸素は、100〜1sccmの範囲とすること
ができ、これら成分の導入の比率は、有機モノマ
ーに対して水素が、1000〜1、酸素が1000〜0.1
の範囲としてよい。
The flow rate of these gas components introduced into the plasma CVD reaction system varies depending on the reaction vessel and gas pressure, but for example, in about 10 vessels, organic monomer is 50 to 0.1 sccm, hydrogen is 100 to 0.1 sccm, and additive components are 50 to 0.1 sccm. Oxygen as can be in the range of 100 to 1 sccm, and the ratio of introduction of these components is hydrogen to organic monomer: 1000 to 1 sccm, oxygen to organic monomer: 1000 to 0.1 sccm.
Good range.

反応系のガス圧力については1〜0.01Torrと
するのが好ましい。
The gas pressure in the reaction system is preferably 1 to 0.01 Torr.

さらに、プロセスの放電電力、放電時間は、使
用する装置、所望の硬質炭素薄膜の膜厚によつて
適宜に選択することができる。たとえば平行平板
電極による装置を用いる場合には、放電電力は、
500〜10(W)の範囲が選択できる。
Furthermore, the discharge power and discharge time of the process can be appropriately selected depending on the equipment used and the desired thickness of the hard carbon thin film. For example, when using a device with parallel plate electrodes, the discharge power is
A range of 500 to 10 (W) can be selected.

以上のプロセス諸条件の選択によつて、プラズ
マCVDプロセスの反応系への酸素ガスの添加効
果は顕著なものとなり、特に、硬質炭素薄膜の膜
成長速度は著しく増大する。また、炭素薄膜の光
透過度も著しく増大する。
By selecting the above process conditions, the effect of adding oxygen gas to the reaction system of the plasma CVD process becomes remarkable, and in particular, the growth rate of the hard carbon thin film is significantly increased. Furthermore, the light transmittance of the carbon thin film is also significantly increased.

酸素ガスの添加によりグラフアイトの生成が抑
えられ、ダイヤモンド状、アモルフアスカーボン
等の硬質で、光透過度の大きい炭素薄膜が効率的
に形成されるものと考えられる。
It is thought that the addition of oxygen gas suppresses the generation of graphite, and that a hard carbon thin film such as diamond-like or amorphous carbon with high light transmittance is efficiently formed.

このような本発明による効果は、これまでのプ
ラズマCVDプロセス技術からは全く予期しえな
いものである。
Such effects of the present invention are completely unexpected from conventional plasma CVD process technology.

以下、本発明の具体的な実施例を説明する。 Hereinafter, specific examples of the present invention will be described.

実施例 酸素ガスを添加しない場合及び反応系に酸素ガ
スを添加する場合のいずれにおいても炭素薄膜の
形成は、平行平板電極を有するプラズマCVD装
置(CPD―1108、ULVAC)を用いて、13.56M
Hz、0.1〜0.2Torrのガス圧力、0.6〜1.6W/cm2
放電の条件において行つた。
Example In both the case where oxygen gas is not added and the case where oxygen gas is added to the reaction system, a carbon thin film is formed using a plasma CVD device (CPD-1108, ULVAC) with parallel plate electrodes at 13.56M.
The test was carried out under the following conditions: Hz, gas pressure of 0.1 to 0.2 Torr, and discharge of 0.6 to 1.6 W/cm 2 .

基板としてはSiウエハ、ガラス基板等を用い
た。プラズマ診断には、分光器と、マスフイルタ
ー型ガス分析計を用いた。また、炭素薄膜の評価
はIR、ESCA等によつて行つた。
As the substrate, a Si wafer, a glass substrate, etc. were used. A spectrometer and a mass filter type gas analyzer were used for plasma diagnosis. In addition, the carbon thin film was evaluated by IR, ESCA, etc.

(1) まず酸素ガスを添加しないで、メタンと水素
との反応によつて炭素薄膜を生成させた。
(1) First, a carbon thin film was generated by the reaction between methane and hydrogen without adding oxygen gas.

メタン、及び水素のガス流量をそれぞれ
2sccm、及び80sccmとし、ガス圧力0.2Torr、
放電電力150Wと、400Wで各々2時間放電し
た。
The gas flow rates of methane and hydrogen are respectively
2sccm, and 80sccm, gas pressure 0.2Torr,
Discharge was performed at a discharge power of 150W and 400W for 2 hours each.

放電電力150Wの場合の膜成長速度のガス圧
依存性は、0.13Torr付近にピークを示すよう
な特徴のある特性を示した。
The gas pressure dependence of the film growth rate at a discharge power of 150 W showed a characteristic characteristic with a peak around 0.13 Torr.

炭素薄膜の膜厚は、150W(2時間)、400W
(2時間)の放電で、各々500Åと、1000Åであ
つた。放電電力400Wで生成させた炭素膜は
150Wで生成させた炭素膜と比べてより濃い黒
色を示し、テスターによる導電試験でもより高
い導電度を示した。
The thickness of the carbon thin film is 150W (2 hours), 400W
(2 hours) of discharge, they were 500 Å and 1000 Å, respectively. The carbon film produced with a discharge power of 400W is
Compared to the carbon film produced at 150W, it exhibited a deeper black color and higher conductivity in a conductivity test using a tester.

(2) 次に、メタンと水素の反応系に酸素ガスを添
加して、硬質炭素薄膜を形成した。
(2) Next, oxygen gas was added to the reaction system of methane and hydrogen to form a hard carbon thin film.

メタン及び水素のガス流量は各々5sccm、
50sccm(メタンの比率10%)とし、ガス圧力
0.1Torr、放電電力400Wで2時間放電した。こ
の条件下において反応系に酸素ガスを導入した。
The gas flow rate of methane and hydrogen is 5 sccm each.
50 sccm (methane ratio 10%), gas pressure
It was discharged for 2 hours at 0.1Torr and discharge power of 400W. Under these conditions, oxygen gas was introduced into the reaction system.

酸素ガスの導入を0〜34sccmで変化させて炭
素薄膜した場合の膜成長速度を第1図に示した。
この第1図から明らかなように、酸素ガスを
2sccm添加するだけで膜成長速度は2倍近くも増
大する。微量酸素の添加は、硬質炭素薄膜の形成
速度を著しく増大することがわかる。
Figure 1 shows the film growth rate when a thin carbon film was formed by changing the introduction of oxygen gas from 0 to 34 sccm.
As is clear from this figure 1, oxygen gas
Adding only 2 sccm increases the film growth rate nearly twice as much. It can be seen that the addition of trace amounts of oxygen significantly increases the rate of formation of hard carbon films.

酸素の添加による炭素膜中の酸化物による顕著
なIRの吸収量の増加は認められなかつた。
No significant increase in the amount of IR absorption by oxides in the carbon film was observed due to the addition of oxygen.

また、炭素薄膜の光吸収特性を、光透過度とし
て評価した。400W(2時間)の放電を、前述のメ
タン及び水素のガス流量、ガス圧力の条件で行つ
た場合、酸素の流量を2sccm、10sccm、20sccm
と変化させると、第2図に示した通りの光透過度
の変化がみられた。酸素ガスの添加によつて、よ
り透明な炭素膜が得られる。
In addition, the light absorption characteristics of the carbon thin film were evaluated as light transmittance. When a 400W (2 hours) discharge is performed under the conditions of the methane and hydrogen gas flow rates and gas pressures described above, the oxygen flow rate is 2 sccm, 10 sccm, and 20 sccm.
2, the light transmittance changed as shown in FIG. A more transparent carbon film can be obtained by adding oxygen gas.

放電電力を変えた場合の光透過度は、第3図に
示した通りに変化した。低放電電力の場合、わず
かの酸素の添加(2sccm)が炭素膜の透明性を向
上させることがわかる。なお、この場合、メタ
ン/水素の比は10%であり、酸素流量は2sccm、
ガス圧力0.1Torrとした。
The light transmittance varied as shown in FIG. 3 when the discharge power was changed. It can be seen that for low discharge power, a small amount of oxygen addition (2 sccm) improves the transparency of the carbon film. In this case, the methane/hydrogen ratio is 10%, the oxygen flow rate is 2 sccm,
The gas pressure was set to 0.1 Torr.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、メタン及び水素の反応系に導入する
酸素ガスの流量の変化と硬質炭素薄膜の膜成長速
度との関係を示したものである。また、第2図及
び第3図は酸素流量と放電電力の各々について、
その変化と炭素薄膜の光透過度との関係を示した
ものである。
FIG. 1 shows the relationship between changes in the flow rate of oxygen gas introduced into a reaction system of methane and hydrogen and the growth rate of a hard carbon thin film. In addition, Figures 2 and 3 show the oxygen flow rate and discharge power, respectively.
This figure shows the relationship between this change and the light transmittance of the carbon thin film.

Claims (1)

【特許請求の範囲】 1 プラズマCVDプロセスにより有機モノマー
を水素の存在下に反応させて硬質炭素薄膜を形成
するにあたり、反応系に酸素を添加することを特
徴とする硬質炭素薄膜の形成方法。 2 有機モノマーが炭化水素である特許請求の範
囲第1項に記載の方法。 3 硬質炭素薄膜が透明性薄膜である特許請求の
範囲第1項に記載の方法。 4 硬質炭素薄膜がアモルフアスカーボン薄膜で
ある特許請求の範囲第1項ないし第3項に記載の
方法。
[Claims] 1. A method for forming a hard carbon thin film, which comprises adding oxygen to the reaction system when forming a hard carbon thin film by reacting an organic monomer in the presence of hydrogen using a plasma CVD process. 2. The method according to claim 1, wherein the organic monomer is a hydrocarbon. 3. The method according to claim 1, wherein the hard carbon thin film is a transparent thin film. 4. The method according to claims 1 to 3, wherein the hard carbon thin film is an amorphous carbon thin film.
JP61015096A 1986-01-27 1986-01-27 Formation of thin hard carbon film Granted JPS62174378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61015096A JPS62174378A (en) 1986-01-27 1986-01-27 Formation of thin hard carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61015096A JPS62174378A (en) 1986-01-27 1986-01-27 Formation of thin hard carbon film

Publications (2)

Publication Number Publication Date
JPS62174378A JPS62174378A (en) 1987-07-31
JPS635468B2 true JPS635468B2 (en) 1988-02-03

Family

ID=11879307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61015096A Granted JPS62174378A (en) 1986-01-27 1986-01-27 Formation of thin hard carbon film

Country Status (1)

Country Link
JP (1) JPS62174378A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259462U (en) * 1988-10-21 1990-05-01
JPH07506899A (en) * 1992-02-28 1995-07-27 ザ ダウ ケミカル カンパニー Membrane fluid separation device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2852380B2 (en) * 1988-03-26 1999-02-03 株式会社半導体エネルギー研究所 Method for forming carbon or carbon-based coating
AU1055801A (en) * 1999-11-04 2001-05-14 Mitsubishi Shoji Plastics Corporation Nitrogen-free dlc film coated plastic container, and method and apparatus for manufacturing the same
JP2006161075A (en) * 2004-12-03 2006-06-22 Shinko Seiki Co Ltd Hard carbon film, and its depositing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145994A (en) * 1984-01-06 1985-08-01 テクニオン・リサ−チ・アンド・デベロツプメント・フアウンデ−シヨン・リミテツド Formation of diamond-like carbon film on substrate
JPS61183198A (en) * 1984-12-29 1986-08-15 Kyocera Corp Production of diamond film
JPS61222915A (en) * 1985-03-29 1986-10-03 Asahi Chem Ind Co Ltd Vapor-phase synthesis of diamond

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145994A (en) * 1984-01-06 1985-08-01 テクニオン・リサ−チ・アンド・デベロツプメント・フアウンデ−シヨン・リミテツド Formation of diamond-like carbon film on substrate
JPS61183198A (en) * 1984-12-29 1986-08-15 Kyocera Corp Production of diamond film
JPS61222915A (en) * 1985-03-29 1986-10-03 Asahi Chem Ind Co Ltd Vapor-phase synthesis of diamond

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259462U (en) * 1988-10-21 1990-05-01
JPH07506899A (en) * 1992-02-28 1995-07-27 ザ ダウ ケミカル カンパニー Membrane fluid separation device

Also Published As

Publication number Publication date
JPS62174378A (en) 1987-07-31

Similar Documents

Publication Publication Date Title
JPS6171626A (en) Method of accumulating hard carbonaceous film by glow discharge and semiconductor device having accumulated film by same method
US6132816A (en) Method for producing homoepitaxial diamond thin films
JPS63307196A (en) Diamond multilayered thin film and its production
JPS62103367A (en) Synthesizing method for carbon film
JPS635468B2 (en)
WO1989011556A1 (en) Process for vapor-phase synthesis of diamond
JP3587622B2 (en) Etching gas
JPS62180073A (en) Amorphous carbon film and its production
Ianno et al. Plasma-enhanced chemical vapor deposition of molybdenum
JPS62174379A (en) Formation of thin hard carbon film
JP2799849B2 (en) Diamond synthesis by chemical vapor deposition
JPH01246115A (en) Method for forming coating film of carbon or material composed mainly of carbon
JP2617374B2 (en) Diamond thin film and its preparation method
JPS59182521A (en) Formation of silicon hydrite thin film
JPS6240375A (en) Hard carbon film
Chen et al. Photoluminescence and Raman studies of hydrogenated amorphous carbon films deposited by the rf plasma-enhanced CVD method
Ang et al. Effects of nitrogen trifluoride on the growth and properties of plasma-enhanced chemical-vapor-deposited diamond-like carbon films
JP2642418B2 (en) Manufacturing method of electronic element
JPH03218682A (en) Hydrogenated crystal silicon thin film and solar cell
JP3051240B2 (en) Manufacturing method of hard color thin film
JPH0267719A (en) Formation of silicon carbide crystallite thin film
JPH01238024A (en) Manufacture of oxide film for semiconductor device
Kashem et al. Formation of carbon-gold-sulfide conductive granular molecules by a cooperation process of plasma CVD and sputtering
CN118083970A (en) Method for preparing diamond by treating vertical graphene through plasma
JPH01281720A (en) Manufacture of semiconductor thin film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term