JPS62174378A - Formation of thin hard carbon film - Google Patents

Formation of thin hard carbon film

Info

Publication number
JPS62174378A
JPS62174378A JP61015096A JP1509686A JPS62174378A JP S62174378 A JPS62174378 A JP S62174378A JP 61015096 A JP61015096 A JP 61015096A JP 1509686 A JP1509686 A JP 1509686A JP S62174378 A JPS62174378 A JP S62174378A
Authority
JP
Japan
Prior art keywords
film
thin film
hard carbon
carbon
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61015096A
Other languages
Japanese (ja)
Other versions
JPS635468B2 (en
Inventor
Shinzo Morita
慎三 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEIJIYOU UNIV
Original Assignee
MEIJIYOU UNIV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEIJIYOU UNIV filed Critical MEIJIYOU UNIV
Priority to JP61015096A priority Critical patent/JPS62174378A/en
Publication of JPS62174378A publication Critical patent/JPS62174378A/en
Publication of JPS635468B2 publication Critical patent/JPS635468B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To form a thin hard carbon film at a high rate of film formation efficiently by adding gaseous oxygen to a reactive gas system when a thin carbon film is formed by a plasma CVD process with an org. monomer and gaseous hydrogen. CONSTITUTION:A thin film is formed under proper process conditions by introducing an org. monomer and gaseous hydrogen as film forming molecules and gaseous oxygen as an additive into a plasma CVD apparatus provided with parallel plate-shaped electrodes so as to cause a film forming reaction. When gaseous oxygen is added, the rate of film formation and the transparency of the resulting thin film are remarkably increased. The desired org. monomer is a hydrocarbon such as methane or propane and the thin film is preferably formed as a transparent thin film of amorphous carbon.

Description

【発明の詳細な説明】 (発明の技術的分野) 本発明は、硬質炭素薄膜の形成方法に関し、ざらに詳し
くはプラズマCVDプロセスによるrf!質炭素薄膜の
形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for forming a hard carbon thin film, and more particularly, it relates to a method for forming a hard carbon thin film using an RF! The present invention relates to a method for forming a thin carbon film.

(発明の技術的背景ならびにその問題点)近年、エレク
i・ロニクス材料、光学材料、超硬工具などへの応用が
期待されている硬質炭素薄膜に対する関心が高まってい
る。
(Technical background of the invention and its problems) In recent years, there has been increasing interest in hard carbon thin films, which are expected to be applied to electronic materials, optical materials, cemented carbide tools, and the like.

炭素薄膜に関連するものとしては、プラズマプロセスに
よって有機モノマーから合成される有機重合性薄膜がす
でに知られている。この有機重合性薄膜は一般にアモル
ファスポリマーと称されるものであって、架橋性の高分
子でおる。
Related to carbon thin films, organic polymerizable thin films synthesized from organic monomers using a plasma process are already known. This organic polymerizable thin film is generally called an amorphous polymer, and is made of a crosslinkable polymer.

ところが、有機モノマーを反応原料とする場合でも、七
ツマ−の種類やプラズマ放電の条件によってはグイヤモ
ント1人またはアモルファスカーホンなどの硬質炭素薄
膜か1qられることか見出されたことから、有機モノマ
ーを用いるプラス゛マCVDプロセスが新たな関心を集
めている。
However, even when organic monomers are used as reaction raw materials, it has been found that depending on the type of carbon and the conditions of plasma discharge, hard carbon thin films such as Guyamont or amorphous carbon may be reduced by 1q. Plasma CVD processes using plasma are attracting renewed interest.

これらの硬質炭素薄膜としては、ダイヤモンド、アモル
ファスカーホン、グラファイト等の様々な膜@造が考え
られる。しかしながら、薄膜の構造、その生成のプロセ
スと放電条件との関係については、いまだ充分に明らか
にされていない。特にこれまてのプラズマプロセスの場
合には硬質炭素薄膜の生成の速度か遅く、薄膜の機能性
材料への応用を図っていく上で大きな問題であったが、
膜生成の速度を増大させる方策は依然として見出されて
いない。
As these hard carbon thin films, various films such as diamond, amorphous carbon, graphite, etc. can be considered. However, the relationship between the thin film structure, its formation process, and discharge conditions has not yet been fully clarified. In particular, in the case of conventional plasma processes, the production speed of hard carbon thin films was slow, which was a major problem when trying to apply thin films to functional materials.
No strategy has yet been found to increase the rate of film formation.

また、多くの場合、薄膜中にグラフフィトが形成されて
いるため、硬質炭素膜の透光性か好ましくないなと、機
能性材料として応用するための特i生の点で問題があっ
た。
In addition, in many cases, graphite is formed in the thin film, so there are problems in terms of characteristics for application as a functional material, such as unfavorable light transmission of the hard carbon film.

したかって、このような問題のない硬質炭素膜の形成方
法を確立することと、そのためのプラズマCVDプロセ
スの条件を選択することが強く望まれていた。
Therefore, it has been strongly desired to establish a method for forming a hard carbon film that is free from such problems and to select plasma CVD process conditions for this purpose.

(発明の目的) 本発明は、上記のような従来技術に伴なう問題点を解決
しようとするものであり、プラズマCVDプロセスによ
り、大きな薄膜生成速度によってアモルファスカーボン
などの硬質炭素薄膜を効率的に形成する方法を提供する
ことを目的としている。また本発明は、薄膜の職能特性
、待に透光性に優れた硬質炭素薄膜を効率的に形成する
方法を提供することを目的としている。本発明は、殿能
性薄膜、超硬薄膜などとしての応用が期待される硬質炭
素薄膜の製造に関して新たな展望を切拓くものというこ
とかできる。
(Objective of the Invention) The present invention aims to solve the problems associated with the prior art as described above, and it is possible to efficiently form a thin film of hard carbon such as amorphous carbon by using a plasma CVD process at a high thin film production rate. The purpose is to provide a method for forming Another object of the present invention is to provide a method for efficiently forming a hard carbon thin film having excellent functional properties and, first of all, light transmittance. The present invention can be said to open up new prospects for the production of hard carbon thin films that are expected to be applied as functional thin films, superhard thin films, and the like.

(発明の概要) 本発明に係る硬質炭素薄膜の形成方法は、プラズマCV
Dプロセスによって有機モノマーと水素ガスとにより炭
素薄膜を形成するにあたり、反応ガス系に酸素ガスを添
加することを特徴としている。
(Summary of the Invention) The method for forming a hard carbon thin film according to the present invention includes plasma CV
When forming a carbon thin film using an organic monomer and hydrogen gas by the D process, oxygen gas is added to the reaction gas system.

本発明の方法によって形成されるアモルファスカーボン
等の薄膜は、X線マスク用として、あるいは半導体基板
用絶縁物、ラングミュアブロジェット(LB)膜用基板
、超硬工具などへの応用が期待されるものでおる。
Thin films such as amorphous carbon formed by the method of the present invention are expected to be applied to X-ray masks, insulators for semiconductor substrates, substrates for Langmuir-Blodgett (LB) films, cemented carbide tools, etc. I'll go.

(発明の詳細な説明〉 本発明のプラズマCVDプロセスに用いる装置について
は、平行平板電極による方式、高周波励起による方式な
どのプラズマプロセスに使用することのできる適宜のも
のを用いることができる。
(Detailed Description of the Invention) As for the apparatus used in the plasma CVD process of the present invention, any suitable apparatus that can be used in a plasma process, such as a system using parallel plate electrodes or a system using high frequency excitation, can be used.

また、硬質炭素薄膜形成用の基板についても、3iウエ
ハー、カラス基板、プラスチックなど任意のものか使用
できる。
Further, as for the substrate for forming the hard carbon thin film, any substrate such as a 3i wafer, a glass substrate, or plastic can be used.

薄膜形成のための反応には、成膜分子で必る有牧モノマ
ーと、水素ガス及び添加ガス成分としての酸素ガスを用
いるか、有機モノマーについては、メタン、エタン、プ
ロパン、エチレンなどの炭化水素を(まじめとする有機
モノマーを適宜に選択することかできる。
For the reaction to form a thin film, we use Arimaki monomer, which is necessary for the film-forming molecules, and hydrogen gas and oxygen gas as an additive gas component, or for organic monomers, we use hydrocarbons such as methane, ethane, propane, and ethylene. (The organic monomer that takes this seriously can be selected as appropriate.)

プラズマCVDの反応系に導入するこれらのガス成分の
流量は反応・容器、カス圧によって変わってくるか、た
とえば約1(lの容器ては右前モノマーか50−Q、1
secm水素が100〜0.1SCcm、添加成分とし
ての酸素は、100〜1secmの範囲とすることがで
き、これら成分の導入の比率は、有■モノマーに対して
水素か、1000・〜1、酸素か1000〜0.1の範
囲としてよい。
The flow rate of these gas components introduced into the plasma CVD reaction system varies depending on the reaction, container, and gas pressure.
sec hydrogen can be in the range of 100 to 0.1 SCcm, and oxygen as an added component can be in the range of 100 to 1 sec. It may be in the range of 1000 to 0.1.

反応系のカス圧力については1〜○、QlTorrとす
るのか好ましい。
The scum pressure in the reaction system is preferably 1 to 0, QlTorr.

ざらに、プロセスの放電電力、放電時間は、使用する装
置、所望の硬質炭素薄膜の膜厚によって適宜に選択する
ことができる。たとえば平行平板電極による装置を用い
る場合には、放電電力は、500〜10(W)の範囲が
選択できる。
In general, the discharge power and discharge time of the process can be appropriately selected depending on the equipment used and the desired thickness of the hard carbon thin film. For example, when using a device using parallel plate electrodes, the discharge power can be selected from a range of 500 to 10 (W).

以上のプロセス諸条件の選択によって、プラズマCVD
プロセスの反応系への酸素ガスの添加効果は顕著なもの
となり、特に、硬質炭素薄膜の膜成長速度は著しく増大
する。また、炭素薄膜の光透過度も著しく増大する。
By selecting the above process conditions, plasma CVD
The effect of adding oxygen gas to the reaction system of the process becomes remarkable, and in particular, the growth rate of hard carbon thin films increases significantly. Furthermore, the light transmittance of the carbon thin film is also significantly increased.

酸素ガスの添加によりグラフフィトの生成が抑えられ、
ダイヤモンド1大、アモルファスカーホン等の硬質で、
光透過度の大きい炭素薄膜が効率的に形成されるものと
考えられる。
The addition of oxygen gas suppresses the generation of graphite,
A hard material such as a large diamond or amorphous carphone,
It is considered that a carbon thin film with high light transmittance is efficiently formed.

このような本発明による効果は、これまでのプラズマC
VDプロセス技術からは全く予期しえないものでおる。
The effects of the present invention are as follows:
This is completely unexpected from VD process technology.

以下、本発明の異体的な実施例を説明する。Hereinafter, different embodiments of the present invention will be described.

実施例 酸素ノjスを添加しない場合及び反応系に談素ガスを添
加する場合のいずれにおいても、炭素薄膜の形成は、平
行平板電極を有するプラズマCVD装置(CPD−11
08、ULVAC)を用いて、13、’56t4Hz 
、 0. 1〜0. 2Torrのカス圧力、0.6〜
1.6W/CIiの放電の条件において行った。
Example In both the case where oxygen gas is not added and the case where carbon gas is added to the reaction system, the carbon thin film is formed using a plasma CVD apparatus (CPD-11) having parallel plate electrodes.
08, ULVAC), 13,'56t4Hz
, 0. 1~0. 2 Torr scum pressure, 0.6~
The test was carried out under a discharge condition of 1.6 W/CIi.

基板としては3iウエハ、ガラス基板等を用いた。プラ
ズマ診断には、分光器と、マスフィルター型ガス分析計
を用いた。また、炭素薄膜の評価はIR,ESCA等に
よって行った。
A 3i wafer, a glass substrate, or the like was used as the substrate. A spectrometer and a mass filter type gas analyzer were used for plasma diagnosis. Further, the carbon thin film was evaluated by IR, ESCA, etc.

(1)まず酸素ガスを添加しないで、メタンと水素との
反応によって炭素薄膜を生成させた。
(1) First, a carbon thin film was generated by a reaction between methane and hydrogen without adding oxygen gas.

メタン、及び水素のガス流量をそれぞれ2 secm、
及び80 secmとし、ガス圧力Q、2rorr、放
電電力150Wと、400Wで各々2時間放電した。
The gas flow rates of methane and hydrogen were each 2 sec,
and 80 sec, and discharged for 2 hours at a gas pressure Q of 2 rorr and a discharge power of 150 W and 400 W, respectively.

放電電力150Wの場合の膜成長速度のガス圧依存性は
、0.13rorr付近にピークを示すような特徴のあ
る特性を示した。
The gas pressure dependence of the film growth rate when the discharge power was 150 W showed a characteristic characteristic with a peak around 0.13 rorr.

炭素薄膜の膜厚は、150W(2時間)、400W(2
時間)の放電で、各々500人と、1000人でおった
。放電電力400Wで生成させた炭素膜は150Wで生
成させた炭素膜と比べてより)農い黒色を示し、テスタ
ーによる導電試験でもより高い導電度を示した。
The thickness of the carbon thin film was 150W (2 hours) and 400W (2 hours).
There were 500 people and 1000 people, respectively. The carbon film produced with a discharge power of 400 W exhibited a darker black color than the carbon film produced with a discharge power of 150 W, and also showed higher conductivity in a conductivity test using a tester.

(2)次に、メタンと水素の反応系に酸素カスを添加し
て、硬質炭素薄膜を形成した。
(2) Next, oxygen residue was added to the reaction system of methane and hydrogen to form a hard carbon thin film.

メタン及び水素のガス流量は各々5 sccm、50s
ccm (メタンの比率10%)とし、ガス圧力0゜1
 Torr、放電電力400Wで2時間!パ2電した。
Methane and hydrogen gas flow rates are 5 sccm and 50 s, respectively.
ccm (methane ratio 10%), gas pressure 0°1
Torr, 2 hours with discharge power of 400W! I got a Pa2 train.

この条件下において反応系に酸素カスを・ニア人した。Under these conditions, oxygen residue was introduced into the reaction system.

酸素ガスの導入をO〜34 secmで変化させて炭素
薄膜した場合の膜成長速度を第1図に示した。
FIG. 1 shows the film growth rate when a thin carbon film was formed by varying the introduction of oxygen gas from 0 to 34 seconds.

この第1図から明らかなように、酸素ガスを2secm
添加するだけで膜成長速度は2倍近くも増大する。微量
酸素の添加は、硬質炭素薄膜の形成速度を著しく増大す
ることがわかる。
As is clear from this Figure 1, the oxygen gas was
Just adding it increases the film growth rate nearly twice as much. It can be seen that the addition of trace amounts of oxygen significantly increases the rate of formation of hard carbon films.

酸素の添加による炭素膜中の酸化物による顕著なIRの
吸収量の増加は認められなかった。
No significant increase in the amount of IR absorption by oxides in the carbon film due to the addition of oxygen was observed.

また、炭素薄膜の光吸収特性を、光透過度として評価し
た。400W(2時間)の放電を、前)小のメタン及び
水素のガス流量、ガス圧力の条件で行った場合、酸素の
流量を2 sccm、10105c、20 sccmと
変化させると、第2図に示した通りの光透過度の変化が
みられた。酸素ガスの添加によって、より透明な炭素膜
が得られる。
In addition, the light absorption characteristics of the carbon thin film were evaluated as light transmittance. When a discharge of 400W (2 hours) is performed under the conditions of low methane and hydrogen gas flow rates and gas pressures, when the oxygen flow rate is changed to 2 sccm, 10105c, and 20 sccm, the results are shown in Figure 2. A change in light transmittance was observed as expected. A more transparent carbon film can be obtained by adding oxygen gas.

放電電力を変えた場合の光透過度は、第3図に示した通
りに変化した。低放電電力の場合、わずかの酸素の添加
(2secm)が炭素膜の透明性を向上させることかわ
かる。なお、この場合、メタン/水素の比は10%でお
り、酸素流量は2 secm、カス圧力0.1Torr
とした。
The light transmittance varied as shown in FIG. 3 when the discharge power was changed. It can be seen that in the case of low discharge power, the addition of a small amount of oxygen (2 sec) improves the transparency of the carbon film. In this case, the methane/hydrogen ratio is 10%, the oxygen flow rate is 2 sec, and the gas pressure is 0.1 Torr.
And so.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、メタン及び水素の反応系に導入する酸素ガス
の流岳の変化と硬質炭素薄膜の膜成長速度との関係を示
したものである。 また、第2図及び第3図は酸素流量と放電電力の各々に
ついて、その変化と炭素薄膜の光透過度との関係を示し
たものである。 代理人 弁理士  西 澤 利 夫 第  1  図
FIG. 1 shows the relationship between changes in the flow rate of oxygen gas introduced into a reaction system of methane and hydrogen and the growth rate of a hard carbon thin film. Furthermore, FIGS. 2 and 3 show the relationship between the changes in oxygen flow rate and discharge power, respectively, and the light transmittance of the carbon thin film. Agent Patent Attorney Toshio Nishizawa Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1)プラズマCVDプロセスにより有機モノマーを水
素の存在下に反応させて硬質炭素薄膜を形成するにあた
り、反応系に酸素を添加することを特徴とする硬質炭素
薄膜の形成方法。
(1) A method for forming a hard carbon thin film, which comprises adding oxygen to the reaction system when forming a hard carbon thin film by reacting an organic monomer in the presence of hydrogen using a plasma CVD process.
(2)有機モノマーが炭化水素である特許請求の範囲第
(1)項に記載の方法。
(2) The method according to claim (1), wherein the organic monomer is a hydrocarbon.
(3)硬質炭素薄膜が透明性薄膜である特許請求の範囲
第(1)項に記載の方法。
(3) The method according to claim (1), wherein the hard carbon thin film is a transparent thin film.
(4)硬質炭素薄膜がアモルファスカーボン薄膜である
特許請求の範囲第(1)項ないし第(3)項に記載の方
法。
(4) The method according to claims (1) to (3), wherein the hard carbon thin film is an amorphous carbon thin film.
JP61015096A 1986-01-27 1986-01-27 Formation of thin hard carbon film Granted JPS62174378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61015096A JPS62174378A (en) 1986-01-27 1986-01-27 Formation of thin hard carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61015096A JPS62174378A (en) 1986-01-27 1986-01-27 Formation of thin hard carbon film

Publications (2)

Publication Number Publication Date
JPS62174378A true JPS62174378A (en) 1987-07-31
JPS635468B2 JPS635468B2 (en) 1988-02-03

Family

ID=11879307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61015096A Granted JPS62174378A (en) 1986-01-27 1986-01-27 Formation of thin hard carbon film

Country Status (1)

Country Link
JP (1) JPS62174378A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246115A (en) * 1988-03-26 1989-10-02 Semiconductor Energy Lab Co Ltd Method for forming coating film of carbon or material composed mainly of carbon
WO2001032513A1 (en) * 1999-11-04 2001-05-10 Mitsubishi Shoji Plastics Corporation Nitrogen-free dlc film coated plastic container, and method and apparatus for manufacturing the same
JP2006161075A (en) * 2004-12-03 2006-06-22 Shinko Seiki Co Ltd Hard carbon film, and its depositing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259462U (en) * 1988-10-21 1990-05-01
AU3723293A (en) * 1992-02-28 1993-09-13 Dow Chemical Company, The Membrane-based fluid separations apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145994A (en) * 1984-01-06 1985-08-01 テクニオン・リサ−チ・アンド・デベロツプメント・フアウンデ−シヨン・リミテツド Formation of diamond-like carbon film on substrate
JPS61183198A (en) * 1984-12-29 1986-08-15 Kyocera Corp Production of diamond film
JPS61222915A (en) * 1985-03-29 1986-10-03 Asahi Chem Ind Co Ltd Vapor-phase synthesis of diamond

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145994A (en) * 1984-01-06 1985-08-01 テクニオン・リサ−チ・アンド・デベロツプメント・フアウンデ−シヨン・リミテツド Formation of diamond-like carbon film on substrate
JPS61183198A (en) * 1984-12-29 1986-08-15 Kyocera Corp Production of diamond film
JPS61222915A (en) * 1985-03-29 1986-10-03 Asahi Chem Ind Co Ltd Vapor-phase synthesis of diamond

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246115A (en) * 1988-03-26 1989-10-02 Semiconductor Energy Lab Co Ltd Method for forming coating film of carbon or material composed mainly of carbon
WO2001032513A1 (en) * 1999-11-04 2001-05-10 Mitsubishi Shoji Plastics Corporation Nitrogen-free dlc film coated plastic container, and method and apparatus for manufacturing the same
JP2006161075A (en) * 2004-12-03 2006-06-22 Shinko Seiki Co Ltd Hard carbon film, and its depositing method

Also Published As

Publication number Publication date
JPS635468B2 (en) 1988-02-03

Similar Documents

Publication Publication Date Title
CA1191477A (en) X-ray mask substrate and method of fabrication thereof
EP0743375B1 (en) Method of producing diamond-like-carbon coatings
US6132816A (en) Method for producing homoepitaxial diamond thin films
JPS6171626A (en) Method of accumulating hard carbonaceous film by glow discharge and semiconductor device having accumulated film by same method
Jean et al. Characterization of a‐SiC: H films produced in a standard plasma enhanced chemical vapor deposition system for x‐ray mask application
Poll et al. Optical properties of plasma polymer films
JPS62174378A (en) Formation of thin hard carbon film
Clin et al. A correlation between the microstructure and optical properties of hydrogenated amorphous carbon films prepared by RF magnetron sputtering
JPS6189627A (en) Formation of deposited film
CN111847432B (en) Large-area multilayer graphene and preparation method thereof
US5035917A (en) Method of preparing layers of vinylidene fluoride polymers and vinylidene fluoride/trifluoroethylene copolymers on a substrate
JPS62174379A (en) Formation of thin hard carbon film
JP3587622B2 (en) Etching gas
JPS62180073A (en) Amorphous carbon film and its production
Valentini et al. Nitrogen doping of fluorinated amorphous carbon thin films: structural and optical properties evolution upon thermal annealing
Valentini et al. Deposition of hydrogenated amorphous carbon films from CH4/Ar plasmas: Ar dilution effects
Therasse et al. Effects of deposition temperature on the structure of amorphous carbon nitride films
CN111378968A (en) Anti-corrosion nano coating and plasma preparation method thereof
JPH06507672A (en) Method for manufacturing thin, micropore-free conductive polymer membrane
López et al. ArF-excimer laser induced chemical vapour deposition of amorphous hydrogenated SiGeC films
JP3057072B2 (en) Method for producing diamond-like carbon film
JPS59182521A (en) Formation of silicon hydrite thin film
JPH01238024A (en) Manufacture of oxide film for semiconductor device
JPH01223733A (en) Etching of titanium carbide film and titanium nitride film
JPS62177071A (en) Production of coated article

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term