JPS62174379A - Formation of thin hard carbon film - Google Patents

Formation of thin hard carbon film

Info

Publication number
JPS62174379A
JPS62174379A JP61015097A JP1509786A JPS62174379A JP S62174379 A JPS62174379 A JP S62174379A JP 61015097 A JP61015097 A JP 61015097A JP 1509786 A JP1509786 A JP 1509786A JP S62174379 A JPS62174379 A JP S62174379A
Authority
JP
Japan
Prior art keywords
film
thin film
thin
carbon film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61015097A
Other languages
Japanese (ja)
Inventor
Shinzo Morita
慎三 森田
Shuzo Hattori
服部 秀三
Kei Ishitani
石谷 炯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP61015097A priority Critical patent/JPS62174379A/en
Publication of JPS62174379A publication Critical patent/JPS62174379A/en
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To suppress the formation of graphite and to improve the light transmittance of a thin hard carbon film by adding gaseous oxygen to a reactive gas system in the stage of forming the thin carbon film by an org. monomer and inert diluting gas by a plasma CVD process. CONSTITUTION:The film is used under adequate process conditions by using a plasma CVD device of a system by parallel plate electrodes, etc. and using the org. monomer which is a film forming molecule, the inert diluting gas such as Ar or Ne and gaseous oxygen as an additive component in reaction for forming the thin film. The film growing speed is slightly decreased by the addition of the gaseous oxygen but the carbon film in which the growth of the graphite component is suppressed is formed. The org. monomer is preferably a hydrocarbon such as methane or propane and the above-mentioned thin film is a thin transparent film and is more preferably thin amorphous carbon film.

Description

【発明の詳細な説明】 (発明の技術的分野) 本発明は、硬質炭素薄膜の形成方法に関し、さらに詳し
くは、プラズマCVDプロレスによるアモルファスカー
ボン等の炭素薄膜の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for forming a hard carbon thin film, and more particularly to a method for forming a carbon thin film such as amorphous carbon by plasma CVD processing.

(発明の技術的背景ならびにその問題点)近年、エレク
トロニクス材料、光学材料などべの応用が期待されてい
る硬質炭素薄膜に苅する関心が高まっている。
(Technical background of the invention and its problems) In recent years, there has been increasing interest in hard carbon thin films, which are expected to be applied to electronic materials, optical materials, and other fields.

炭素薄膜に関連するものとしては、プラズマプロセスに
よって有機上ツマ−から合成される有機重合性薄膜がす
でに知られている。この有機重合性薄膜は、一般に、ア
モルファスポリマーと称されているものであって、架橋
性の高分子でおる。
Related to carbon thin films, organic polymerizable thin films synthesized from organic polymers by a plasma process are already known. This organic polymerizable thin film is generally called an amorphous polymer, and is made of a crosslinkable polymer.

ところが、有機上ツマ−を反応原料とする場合でも、七
ツマ−の種類やプラズマ教電の条イ(1によっては、ダ
イヤモンド状、またはアモルファスカーボンなどの硬質
炭素薄膜が得られることか見出されたことから、有機上
ツマ−を用いるプラズマCVDプロセスが新たな関心を
集めでいる。
However, it has been found that even when organic carbon dioxide is used as a reaction raw material, a hard carbon thin film such as diamond-like or amorphous carbon can be obtained depending on the type of carbon fiber and the method of plasma education. As a result, plasma CVD processes using organic materials are attracting renewed interest.

これらの硬質炭素薄膜としては、ダイヤモンド、アモル
ファスカーボン、グラファイト等の1工々な膜1構造が
考えられる。
As these hard carbon thin films, elaborate film structures such as diamond, amorphous carbon, graphite, etc. can be considered.

しかしながら、薄膜の構造、その生成のプ[1しスと放
電条件との関係については、いまだ充分に明らかにされ
ていないのか現状である。特に、低カス圧下てのプラズ
マCVD法の場合には、有機上ツマーカスと不活性希釈
カスとの反応により、硬質炭素薄膜を形成する際に、薄
膜中にグラフフィトの生成か避けられず、炭素膜の膜質
が不均等となり、X線マスク用薄膜、半導体基板用絶縁
膜、必るいは、ラングミュアブロジェット(LB)膜用
基板として有用なアモルファスカーボンの薄膜等として
は好ましいものではなかった。また、このグラファイト
の生成を抑制する方法も見出されていなかった。
However, the relationship between the structure of the thin film, its formation process, and discharge conditions has not yet been fully clarified. In particular, in the case of the plasma CVD method under a low scum pressure, when a hard carbon thin film is formed due to the reaction between the organic topmarker and the inert diluted scum, the formation of graphite in the thin film is unavoidable. The quality of the film was non-uniform, and it was not preferable as an amorphous carbon thin film useful as a thin film for an X-ray mask, an insulating film for a semiconductor substrate, or a substrate for a Langmuir-Blodgett (LB) film. Furthermore, no method has been found to suppress the production of graphite.

グラフフィトの生成は、薄膜の光透過性が低いため、X
線マスク用などに用いるためには好ましくなく、このた
め、このような問題のないアモルファスカーボン等の硬
質炭素薄膜の形成方法を確立することと、そのためのプ
ラズマCVDプロレスの条件を選択することが強く望ま
れていた。
The generation of graphite is due to the low light transmittance of the thin film.
It is not preferable for use in line masks, etc. Therefore, it is strongly recommended to establish a method for forming a hard carbon thin film such as amorphous carbon that does not have such problems, and to select conditions for plasma CVD wrestling for that purpose. It was wanted.

(発明の目的) 本発明1ユ、上記のような従来技術に伴なう問題点を解
決しようとづるものであり、プラズマCVDプロレスに
より、グラフフィトの生成を抑制した硬質炭素薄膜、特
にアモルファスカーボン薄膜を形成する方法を提供する
ことを目的としている。
(Objective of the Invention) The present invention 1 is aimed at solving the problems associated with the above-mentioned conventional techniques, and it is a hard carbon thin film, especially amorphous carbon, that suppresses the generation of graphite by plasma CVD processing. The purpose is to provide a method for forming thin films.

また、本発明は、薄膜の機能特性としての透光性に優れ
た炭素薄膜を形成する方法を提供することを目的として
いる。
Another object of the present invention is to provide a method for forming a carbon thin film having excellent light transmittance as a functional property of the thin film.

(発明の概要) 本発明に係る硬質炭素薄膜の形成方法は、プラズマCV
Dプロセスによって、有機上ツマ−と不活性希釈ガスと
により炭素薄膜を形成するにあたり、反応ガス系に酸素
ガスを添加することを特徴としている。
(Summary of the Invention) The method for forming a hard carbon thin film according to the present invention includes plasma CV
When a carbon thin film is formed by the D process using an organic layer and an inert diluent gas, oxygen gas is added to the reaction gas system.

この方法によって得られる硬質炭素薄膜、特にアモルフ
ァスカーボン薄膜は、X線マスク用として、あるいは半
導体基板用絶縁物などの広い範囲の機能材料として応用
が期待されるものでおる。
The hard carbon thin film, especially the amorphous carbon thin film obtained by this method, is expected to be applied as a wide range of functional materials such as X-ray masks and insulators for semiconductor substrates.

(発明の詳細な説明) 本発明のプラズマCVDプロセスに用いる装置について
は、平行平板電極による方法、高周波励起による方法な
どの、プラズマプロセスに使用することのできる適宜の
ものを用いることができる。
(Detailed Description of the Invention) As for the apparatus used in the plasma CVD process of the present invention, any suitable apparatus that can be used in a plasma process, such as a method using parallel plate electrodes or a method using high frequency excitation, can be used.

また、硬質炭素薄膜形成用の基板については、3iウエ
ハー、ガラス基板、金属、プラスチックなとの任意のも
のが使用できる。
Further, as for the substrate for forming the hard carbon thin film, any substrate such as a 3i wafer, a glass substrate, metal, or plastic can be used.

薄膜形成のための反応には、成膜分子で必る有機モノマ
ーと、不活性の希釈ガス、及び添加成分としての酸素カ
スを用いる。右は七ツマ−については、メタン、エタン
、プロパン、エチレンなどの炭化水素をはじめとする有
機上ツマ−を適宜に選択することができる。また、不活
性の希釈ガスとしては、アルゴン(Ar>、ネオン(N
e>などを使用する。
The reaction for forming a thin film uses organic monomers necessary for film-forming molecules, an inert diluent gas, and oxygen residue as an additive component. As for the seven-layer compound shown on the right, an organic compound including hydrocarbons such as methane, ethane, propane, and ethylene can be appropriately selected. In addition, as inert diluent gases, argon (Ar>, neon (N
Use e> etc.

プラズマCVDの反応系に導入づるこれらのガス成分の
υ1合は、所望とする炭素薄膜の性状、膜厚、反応容器
、カス圧によって変わってくるが、たとえば、約10.
1!の反応容器ではその流量は、右)幾モノマーが50
−0.1secm、希釈ガスか100〜0.1 sec
m、 酸素が50−0..01secmで必って、成分
の相対比は、有機モノマーに大して希釈ガスが50〜1
、酸素か50〜0.1の範囲とする。反応系のカス圧力
は1〜0゜01”’rorrとするのが好ましい。
The ratio υ1 of these gas components introduced into the plasma CVD reaction system varies depending on the desired properties of the carbon thin film, film thickness, reaction vessel, and gas pressure, but is, for example, about 10.
1! In the reaction vessel, the flow rate is 50
-0.1sec, diluent gas or 100~0.1sec
m, oxygen is 50-0. .. At 0.01 sec, the relative ratio of the components is approximately 50 to 1 of the diluent gas to the organic monomer.
, oxygen is in the range of 50 to 0.1. The scum pressure in the reaction system is preferably 1 to 0.01'''rorr.

なお、酸素ガスの添加は、硬質炭素薄膜中へのグラファ
イトの存在が許容される程度に応じて、適宜にその添加
徂を調整すればよい。
Note that the addition range of oxygen gas may be adjusted as appropriate depending on the extent to which graphite is allowed to exist in the hard carbon thin film.

ざらに、プロセスの放電電力、放電時間についても、使
用する装置、薄膜の膜厚によって適宜に選択することが
できる。たとえば、平行平板電極による装置を用いる場
合には、放電電力は500〜’IOWの範囲が選択でき
る。
In general, the discharge power and discharge time of the process can be appropriately selected depending on the equipment used and the thickness of the thin film. For example, when using a device using parallel plate electrodes, the discharge power can be selected from a range of 500 to 'IOW.

以上のプロセスの諸条件の選択によって、プラズマCV
Dプロセスの反応系への酸素ガスの添加効果は顕著なも
のとなり、グラフフィトの生成か抑制され、炭素薄膜の
光透過度は著しく向上する。
By selecting the above process conditions, plasma CV
The effect of adding oxygen gas to the reaction system in process D is significant, the generation of graphite is suppressed, and the light transmittance of the carbon thin film is significantly improved.

アモルファスカーボン薄膜として優れた膜質のものか得
られる。
An amorphous carbon thin film with excellent film quality can be obtained.

このような本発明による効果は、これまでのプラズマC
VDプロセス技術からは全く予期しえないものである。
The effects of the present invention are as follows:
This is completely unexpected from VD process technology.

以下、本発明の具体的な実施例を説明する。Hereinafter, specific examples of the present invention will be described.

実施例 炭素薄膜の形成は、平行平板電(車を有するプラズマC
VD装置(CPD−1108,ULVAC)を用いて、
13.56M1−12、約0.1Torrのガス圧力、
0.6〜1.6W/rmの放電の条件において行なった
Example Carbon thin film formation was performed using a parallel plate electrode (plasma C with a wheel).
Using a VD device (CPD-1108, ULVAC),
13.56M1-12, gas pressure of about 0.1 Torr,
The test was carried out under conditions of discharge of 0.6 to 1.6 W/rm.

基板としては、Siウェハー、ガラス基板等を用いた。As the substrate, a Si wafer, a glass substrate, etc. were used.

プラズマ診断には、分光器と、マスフィルタ型ガス分析
計を用いた。また、炭素薄膜の評価は、IR,ESCA
等によって行なった。
A spectrometer and a mass filter type gas analyzer were used for plasma diagnosis. In addition, evaluation of carbon thin film is performed by IR, ESCA
etc.

(1)まず、酸素ガスを添加しないで、メタンとアルゴ
ンとの反応によって炭素薄膜を生成させた。
(1) First, a carbon thin film was generated by a reaction between methane and argon without adding oxygen gas.

メタン流15 s e cm、アルゴン流55 Q s
 ccmとし、放電カス圧力的Q、  1Torrの条
件で、200wと400wの放電電力で、各々2時間放
電した。
Methane flow 15 sec cm, argon flow 55 Q s
ccm, discharge scum pressure Q, 1 Torr, and discharge power of 200 W and 400 W for 2 hours each.

200Wの放電の場合には、117aoAの膜厚の薄膜
が得られた(基礎圧力0.011Torr、放電ガス圧
力0.101Torr、基板温度40 ’C)。また、
40Qwの放電の場合には、2回の放電で、各々181
00人及び、16500Aの膜厚の薄膜が(qられだ(
基礎圧力0.033TOrr、M電カス圧力0.096
Torr、1板温度73 ’C)。
In the case of 200 W discharge, a thin film with a film thickness of 117 aoA was obtained (base pressure 0.011 Torr, discharge gas pressure 0.101 Torr, substrate temperature 40'C). Also,
In the case of 40Qw discharge, two discharges each yield 181
00 people and a thin film with a film thickness of 16500A (qreda(
Base pressure 0.033 TOrr, M electric gas pressure 0.096
Torr, 1 plate temperature 73'C).

IRスペクトルによると、200wの場合には、C−H
結合に起因する吸収が見られた。有機重合膜の構造が存
在するものと考えられる。
According to the IR spectrum, at 200w, C-H
Absorption due to binding was observed. It is thought that the structure of an organic polymer film exists.

また、薄膜の外観は、200Wの場合にはこげ茶色であ
るものの、放電電力を400wにした場合はすみ状の黒
色であった。
Further, the appearance of the thin film was dark brown when the discharge power was 200 W, but it was black with corners when the discharge power was 400 W.

放電電力を増大させて400wとする時には、膜成長速
度も増大し、完全に炭素薄膜になっているものの、グラ
ファイトが多辺に生成するということができる。
When the discharge power is increased to 400 W, the film growth rate also increases, and although the film becomes a completely thin carbon film, it can be said that graphite is formed on many sides.

(2)次に、反応系に酸素カスを添加して薄膜を形成し
た。
(2) Next, oxygen residue was added to the reaction system to form a thin film.

前述と同様のメタンとアルゴンの流Ffg (5S C
cmと5Qsccm)で、400wの放電電力で2時間
放電を行なった。
The same methane and argon flow Ffg (5S C
cm and 5Qsccm), and discharge was performed for 2 hours at a discharge power of 400W.

反応系に、酸素ガスを10105e添加した。10105e of oxygen gas was added to the reaction system.

基礎圧力0.033TOrr、放電ガス圧力0゜110
Torr、基板温度73°Cで、2回の放電によって、
各々膜厚が14600A、及び13700への薄膜が得
られた。
Base pressure 0.033 TOrr, discharge gas pressure 0°110
Torr, substrate temperature 73°C, by two discharges,
Thin films with film thicknesses of 14,600 A and 13,700 A were obtained, respectively.

この薄膜の外観は、透明度の大きい黒紫色の鏡面であっ
た。
The appearance of this thin film was a black-purple mirror with high transparency.

酸素の添加によって膜成長速度は、酸素を添加しない場
合よりも10%程度減少するものの、グラファイト成分
の生成が抑えられた炭素膜が生成する。このことは、酸
素添加量が解離水素量に比して著しく多いので、気相に
おいて炭素まで酸化除去することになり、このため膜成
長速度が減少することになり、逆に、グラファイト成分
が除去されて、アモルファスカーボンが堆積しやすくな
るものと考えられる。
Although the addition of oxygen reduces the film growth rate by about 10% compared to when no oxygen is added, a carbon film is produced in which the production of graphite components is suppressed. This means that since the amount of oxygen added is significantly larger than the amount of dissociated hydrogen, even carbon is oxidized and removed in the gas phase, which reduces the film growth rate, and conversely, graphite components are removed. It is thought that this makes it easier for amorphous carbon to accumulate.

Claims (4)

【特許請求の範囲】[Claims] (1)プラズマCVDプロセスにより、有機モノマーを
不活性希釈ガスの存在下に反応させて硬質炭素薄膜を形
成するにあたり、反応系に酸素を添加することを特徴と
する硬質炭素薄膜の形成方法。
(1) A method for forming a hard carbon thin film, which comprises adding oxygen to the reaction system when forming a hard carbon thin film by reacting an organic monomer in the presence of an inert diluent gas by a plasma CVD process.
(2)有機モノマーが炭化水素である特許請求の範囲第
(1)項に記載の方法。
(2) The method according to claim (1), wherein the organic monomer is a hydrocarbon.
(3)硬質炭素薄膜が透明性薄膜である特許請求の範囲
第(1)項に記載の方法。
(3) The method according to claim (1), wherein the hard carbon thin film is a transparent thin film.
(4)硬質炭素薄膜がアモルファスカーボン薄膜である
特許請求の範囲第(1)項ないし第(3)項に記載の方
法。
(4) The method according to claims (1) to (3), wherein the hard carbon thin film is an amorphous carbon thin film.
JP61015097A 1986-01-27 1986-01-27 Formation of thin hard carbon film Expired - Lifetime JPS62174379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61015097A JPS62174379A (en) 1986-01-27 1986-01-27 Formation of thin hard carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61015097A JPS62174379A (en) 1986-01-27 1986-01-27 Formation of thin hard carbon film

Publications (1)

Publication Number Publication Date
JPS62174379A true JPS62174379A (en) 1987-07-31

Family

ID=11879337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61015097A Expired - Lifetime JPS62174379A (en) 1986-01-27 1986-01-27 Formation of thin hard carbon film

Country Status (1)

Country Link
JP (1) JPS62174379A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246115A (en) * 1988-03-26 1989-10-02 Semiconductor Energy Lab Co Ltd Method for forming coating film of carbon or material composed mainly of carbon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246115A (en) * 1988-03-26 1989-10-02 Semiconductor Energy Lab Co Ltd Method for forming coating film of carbon or material composed mainly of carbon

Similar Documents

Publication Publication Date Title
CN1072735C (en) Method of depositing thin group III A metal films
US4397722A (en) Polymers from aromatic silanes and process for their preparation
KR960017936A (en) Method for producing fluorinated silicon oxide
JPS6171626A (en) Method of accumulating hard carbonaceous film by glow discharge and semiconductor device having accumulated film by same method
US9117664B2 (en) CVD precursors
Motta et al. Amorphous hydrogenated carbon-nitride films prepared by RF-PECVD in methane–nitrogen atmospheres
Poll et al. Optical properties of plasma polymer films
JPS62174379A (en) Formation of thin hard carbon film
Clin et al. A correlation between the microstructure and optical properties of hydrogenated amorphous carbon films prepared by RF magnetron sputtering
JPS62174378A (en) Formation of thin hard carbon film
WO1989011556A1 (en) Process for vapor-phase synthesis of diamond
Xin et al. Optical emission study of CH4+ CHF3 ECR plasma and properties of aC: F: H films
JP2005179232A (en) Alkylborazine compound and method for producing the same
Matsuyama et al. Effect of siloxane chain lengths of monomers on characteristics of pervaporation membranes prepared by plasma polymerization
Jiang et al. Structure evolution of fluorinated diamond-like carbon films prepared at varying source gas flow ratios
Valentini et al. Nitrogen doping of fluorinated amorphous carbon thin films: structural and optical properties evolution upon thermal annealing
Therasse et al. Effects of deposition temperature on the structure of amorphous carbon nitride films
FR2650829A1 (en) Aromatic polyimides containing trifluoromethyl groups, their preparations and their applications
Durand-Drouhin et al. Correlation between the microstructure and optical properties of carbon nitride films deposited by rf magnetron sputtering
Huang et al. Deposition of hydrophobic nano-coatings with low-pressure radio frequency CH2F2/Ar plasma processing
US5535905A (en) Etching technique for producing cubic boron nitride films
JP2013159517A (en) Organic carbon film and method for producing the same
JP3057072B2 (en) Method for producing diamond-like carbon film
JPH01317198A (en) Method for synthesizing diamond or the like
JP2007254810A (en) Method for forming film of compound containing boron, carbon, nitrogen and oxygen, and film, substrate and device obtained with the method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term