JPS6353661B2 - - Google Patents

Info

Publication number
JPS6353661B2
JPS6353661B2 JP16217980A JP16217980A JPS6353661B2 JP S6353661 B2 JPS6353661 B2 JP S6353661B2 JP 16217980 A JP16217980 A JP 16217980A JP 16217980 A JP16217980 A JP 16217980A JP S6353661 B2 JPS6353661 B2 JP S6353661B2
Authority
JP
Japan
Prior art keywords
cathode
grating
electron gun
heater wire
control grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16217980A
Other languages
Japanese (ja)
Other versions
JPS5787041A (en
Inventor
Akio Oogoshi
Shoichi Muramoto
Kazumasa Nomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP16217980A priority Critical patent/JPS5787041A/en
Publication of JPS5787041A publication Critical patent/JPS5787041A/en
Publication of JPS6353661B2 publication Critical patent/JPS6353661B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/485Construction of the gun or of parts thereof

Description

【発明の詳細な説明】 本発明は、陰極線管用の電子銃特に先に提案し
た低消費電力の陰極を具備して成る電子銃の改良
に係わるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an electron gun for a cathode ray tube, particularly an electron gun equipped with a low power consumption cathode as previously proposed.

先ず、本発明の理解を容易にするために第1図
乃至第3図を用いて先に提案した陰極について述
べる。第1図は低消費電力の直熱型の陰極1の全
体を示し、之は熱容量の極めて小さいヒータ線を
その必要な部分において密に且つ互いに接触せざ
る状態でコイル状に巻き、そのコイルヒータ線2
のコイル部を含んで直接熱電子放射物質、例えば
(Ba,Ca,Sr)O3等の如き金属の酸化物3を電
着又は吹付法等にて被着して構成される。この場
合、コイルヒータ線2は酸化物3の還元剤として
働き、且つ高温強度が大きく、比抵抗が大きく熱
膨張係数が小さい材質にて形成されるもので、例
えばタングステン(W)のコイルヒータ線が用い
られる。この陰極1は第2図及び第3図に示すよ
うに中心開孔4を有したセラミツク等の絶縁支持
体5に植立した一対のコバールピン6a及び6b
の上面間に圧着、かしめ付あるいは溶接等にて取
付けられ、所謂陰極構体7として構成される。な
お、コバールピン6a及び6b上にコイルヒータ
線2を溶接して後酸化物3を塗布するようにして
もよい。この陰極1によれば、従来のベースメタ
ルが省略され、コイルヒータ線2そのものの熱容
量が非常に小さく且つ酸化物3の被着された必要
部分のみがコイル状に巻回されて高抵抗となるた
めに、局部加熱され、熱電子放出に必要な温度が
従来のものに比して著しく小さくなり、陰極消費
電力が著しく低減される。又コイルヒータ線2の
酸化物被着部分がコイル状で抵抗値が高くなるた
めに、コバールピン6a及び6bとの接触部の抵
抗バラツキが無視できる様になり、陰極温度も均
一になり寿命のバラツキも少ない。又この陰極1
においては陰極線管の螢光面に1〜2μA程度しか
電流を取らない場合には陰極1のワーキング・エ
リアが微小面積であるため円柱状の陰極であつて
も問題はなくカツトオフが一定となる。更にスイ
ツチをオンしてから安定した画像ができるまでの
時間が短く瞬時安定画像が得られる。
First, in order to facilitate understanding of the present invention, the previously proposed cathode will be described using FIGS. 1 to 3. Figure 1 shows the entire structure of a directly heated cathode 1 with low power consumption, in which a heater wire with an extremely small heat capacity is wound into a coil in the necessary parts tightly and without contact with each other, and the coil heater is line 2
It is constructed by directly depositing a thermionic emitting material, for example, a metal oxide 3 such as (Ba, Ca, Sr) O 3 by electrodeposition or spraying. In this case, the coil heater wire 2 is made of a material that acts as a reducing agent for the oxide 3 and has high high-temperature strength, high specific resistance, and a small coefficient of thermal expansion. For example, the coil heater wire 2 is made of tungsten (W). is used. As shown in FIGS. 2 and 3, this cathode 1 consists of a pair of Kovar pins 6a and 6b planted in an insulating support 5 made of ceramic or the like having a central opening 4.
The cathode assembly 7 is attached between the upper surfaces of the cathode assembly 7 by crimping, caulking, welding, or the like. Note that the coil heater wire 2 may be welded onto the Kovar pins 6a and 6b, and then the oxide 3 may be applied. According to this cathode 1, the conventional base metal is omitted, the heat capacity of the coil heater wire 2 itself is very small, and only the necessary portion coated with the oxide 3 is wound into a coil shape, resulting in high resistance. Therefore, the temperature required for local heating and thermionic emission is significantly lower than in the conventional case, and the power consumption of the cathode is significantly reduced. In addition, since the oxide-coated portion of the coil heater wire 2 is coiled and has a high resistance value, variations in resistance at the contact portion with the Kovar pins 6a and 6b can be ignored, and the cathode temperature becomes uniform, reducing variations in life. There are also few. Also, this cathode 1
In this case, when a current of only about 1 to 2 .mu.A is applied to the fluorescent surface of the cathode ray tube, the working area of the cathode 1 is minute, so there is no problem even with a cylindrical cathode, and the cutoff remains constant. Furthermore, the time from turning on the switch to producing a stable image is short, and an instantaneous stable image can be obtained.

ところで、通常電子銃においては、各電極格子
が相互間の位置決めをなした状態でビードガラス
により支持固定されて組立てられる。しかし乍
ら、電子銃が小型化された場合には、このように
ビードガラスに支持して高精度に組立てることが
極めて難しい。
Incidentally, an electron gun is usually assembled by supporting and fixing the electrode grids with bead glass in a state in which the respective electrode grids are positioned relative to each other. However, when electron guns are miniaturized, it is extremely difficult to support them on bead glass and assemble them with high precision in this way.

本発明は、上述の点に鑑み、低消費電力の陰極
を具備すると共に、小型化した場合においても高
精度に組立てることができる電子銃を提供するも
のである。
In view of the above points, the present invention provides an electron gun that is equipped with a cathode of low power consumption and that can be assembled with high precision even when downsized.

以下、図面を参照して本発明による電子銃を説
明する。
Hereinafter, an electron gun according to the present invention will be explained with reference to the drawings.

第4図は本発明の一実施例である。 FIG. 4 shows an embodiment of the present invention.

本発明においては、中央に透孔を有し、両面に
銀ろう等のメタライズ層10を付したセラミツク
スペーサ11を設ける。そして電子銃を構成する
制御格子G1と加速格子G2とをビーム透過孔h2
びh1が対向するように所定間隔d12を保持して、
両面にメタライズ層10を付したセラミツクスペ
ーサ11を介して接合して一体部品とする。次に
カソード高さHを測定し制御格子G1と陰極1間
が所定間隔d01となるようにセラミツクスペーサ
8を選定し、制御格子G1内にセラミツクスペー
サ8、第3図で示したと同様の陰極構体7を挿入
しリテーナ9で制御格子G1と溶接し電子銃15
を完成する。尚、12は制御格子G1のリード、
13は加速格子G2のリード、14a及び14b
は夫々対のコバールピン6a及び6bに接続した
カソードリード及びヒータリードである。
In the present invention, a ceramic spacer 11 having a through hole in the center and having metallized layers 10 such as silver solder on both sides is provided. Then, the control grating G1 and the accelerating grating G2 constituting the electron gun are maintained at a predetermined distance d12 so that the beam transmission holes h2 and h1 face each other.
They are joined together via ceramic spacers 11 having metallized layers 10 on both sides to form an integral part. Next, the cathode height H is measured and a ceramic spacer 8 is selected so that a predetermined distance d 01 is maintained between the control grid G 1 and the cathode 1. Insert the cathode structure 7 and weld it to the control grid G1 with the retainer 9, and then connect the electron gun 15.
complete. In addition, 12 is the lead of control grid G1 ,
13 is the lead of acceleration grating G2 , 14a and 14b
are a cathode lead and a heater lead connected to a pair of Kovar pins 6a and 6b, respectively.

かかる構成によれば、両面にメタライズ層10
を付したセラミツクスペーサ11によつて制御格
子G1と加速格子G2を接合して一体化部品とした
後に陰極構体7を組込むので電子銃が極めて小型
化された場合にも、精度よく組立てることができ
る。即ち制御格子G1と加速格子G2間の間隔d12
セラミツクスペーサの厚さで一義的に高精度に定
まる。そして、制御格子G1と加速格子G2が一体
化して一部品として取り扱えるので組立てが高精
度に且つ容易となる。そして、陰極1としてはコ
イルヒータ線に熱電子放出物質を塗布したものを
用いるので陰極消費電力は低減する。
According to this configuration, the metallized layer 10 is provided on both sides.
Since the cathode structure 7 is assembled after the control grating G 1 and the acceleration grating G 2 are joined together to form an integrated component using the ceramic spacer 11 with the mark, even when the electron gun is extremely miniaturized, the assembly can be performed with high precision. Can be done. That is, the distance d 12 between the control grating G 1 and the acceleration grating G 2 is uniquely determined with high precision by the thickness of the ceramic spacer. Furthermore, since the control grating G1 and the accelerating grating G2 can be integrated and handled as one piece, assembly becomes highly accurate and easy. Since the cathode 1 is made of a coil heater wire coated with a thermionic emission material, the power consumption of the cathode is reduced.

なお、第4図の電子銃では、カソード高さHが
バラツク毎に間隔d01を規定するセラミツクスペ
ーサ8を選定しなければならず部品点数、コスト
面で不利となる。絶縁支持体5のコバールピン6
a及び6bの上面にてコイルヒータ線2を溶接す
るために位置精度が出しにくい。制御格子G1
陰極構体の絶縁支持体5間には少なからずガタが
あるため、いくらコバールピン6a及び6bにコ
イルヒータ線2を精度よく取付けても制御格子
G1内に絶縁支持体5を挿入した時点でそのガタ
が影響し制御格子G1のビーム透過孔h1とコイル
ヒータ線即ち陰極1の位置精度が出しにくい。陰
極構体7,セラミツクスペーサ8及びリテーナ9
を制御格子G1内に組み込むために制御格子G1
深さ(電子銃の軸心方向の長さ)が大きくなり電
子銃を、より小型化しにくい。
In the electron gun shown in FIG. 4, the ceramic spacer 8 that defines the interval d 01 must be selected for each variation in cathode height H, which is disadvantageous in terms of the number of parts and cost. Kovar pin 6 of insulating support 5
Since the coil heater wire 2 is welded on the upper surfaces of a and 6b, it is difficult to achieve positional accuracy. Since there is quite a bit of play between the control grid G1 and the insulating support 5 of the cathode structure, no matter how accurately the coil heater wires 2 are attached to the Kovar pins 6a and 6b, the control grid
When the insulating support 5 is inserted into G 1 , its backlash affects the positioning accuracy of the beam transmission hole h 1 of the control grid G 1 and the coil heater wire, that is, the cathode 1 . Cathode structure 7, ceramic spacer 8 and retainer 9
In order to incorporate this into the control grid G1 , the depth of the control grid G1 (length in the axial direction of the electron gun) increases, making it difficult to downsize the electron gun.

次に、この点を改善した実施例を示す。 Next, an embodiment that improves this point will be shown.

第5図乃至第7図はその実施例である。この例
においては、第5図に示すように中央に透孔21
を有し且つフランジ部22を有した凸型筒状をな
し、その凸面に制御格子G1が配される浅い段部
23を形成して成る例えばセラミツクからなる絶
縁スペーサ24を設ける。この絶縁スペーサ24
の段部23とフランジ部22の面22aと反対側
の端面24aには夫々メタライズ層25を形成す
る。そして、この絶縁スペーサ24の1の端面2
4a側に加速格子G2を配し、その段部23に透
孔21を通してビーム透過孔h2及びh1が対向する
ように制御格子G1を配し、さらにフランジ部2
2の面に一対のコバールピン6a及び6bを配
し、この状態で同時にろう付けを行なつて絶縁ス
ペーサ24に対して制御格子G1,加速格子G2
びコバールピン6a,6bを一対に取付ける。こ
の場合、制御格子G1と加速格子G2間の間隔d12
絶縁スペーサ24の内縁の厚さl1によつて一義的
に精度よく定まる。又、コバールピン6a及び6
bのろう付位置は第7図に示す如く絶縁スペーサ
24の軸心と直交する中心線26から外れる位
置、即ち中心線26にコバールピン6a及び6b
の外周縁が接する位置とする。このコバールピン
6a及び6bの側面には陰極を取付ける際の陰極
と制御格子G1間の間隔d01を規定し且つ陰極の取
付作業を向上させるための溝27を夫々形成す
る。そして、制御格子G1,加速格子G2と共に一
体化されたコバールピン6a及び6bに対して、
第1図で示したと同様の陰極、即ち熱容量の小さ
いヒータ線を密に互いに接触せざる状態でコイル
状に巻いたコイルヒータ線2に熱電子放射物質例
えば(Ba,Ca,Sr)O3等の如き金属の酸化物3
を被着して成る陰極1を、その溝27を通してコ
バールピンの側面で溶接する。この陰極1の溶接
に際しては所謂通り違い顕微鏡(光学的に芯出し
する装置)を用いて酸化物3が塗布されたコイル
ヒータ線2と制御格子G1のビーム透過孔h1の位
置とを合せ、両者の位置合せ後に必要あらばコバ
ールピン6a,6b側を微調整して(微かに曲げ
る等して)接合する。陰極1を制御格子G1間の
間隔d01はコバールピン6a,6bの溝27の位
置で精度よく定まる。一方、制御格子G1は第6
図に示す如く浅いカツプ状をなし一部コイルヒー
タ線2が通る切欠28を設けた形状とし、電子ビ
ームの回り込み(所謂ストレー)の防止を計つて
いる。
FIGS. 5 to 7 show examples thereof. In this example, a through hole 21 is provided in the center as shown in FIG.
An insulating spacer 24 made of, for example, ceramic is provided, which has a convex cylindrical shape with a flange portion 22, and has a shallow stepped portion 23 on its convex surface on which the control grid G1 is disposed. This insulating spacer 24
A metallized layer 25 is formed on the step portion 23 and the end surface 24a of the flange portion 22 opposite to the surface 22a. The end face 2 of this insulating spacer 24 is
An acceleration grating G 2 is disposed on the 4a side, a control grating G 1 is disposed through the step 23 of the acceleration grating G 2 so that the beam transmission holes h 2 and h 1 face each other through the through hole 21, and the flange portion 2
A pair of Kovar pins 6a and 6b are disposed on the surfaces of 2, and brazing is performed simultaneously in this state to attach the control grid G 1 , acceleration grid G 2 and Kovar pins 6a, 6b to the insulating spacer 24 as a pair. In this case, the distance d 12 between the control grating G 1 and the acceleration grating G 2 is uniquely and accurately determined by the thickness l 1 of the inner edge of the insulating spacer 24 . Also, Kovar pins 6a and 6
As shown in FIG. 7, the brazing position b is a position away from the center line 26 perpendicular to the axis of the insulating spacer 24, that is, the Kovar pins 6a and 6b are connected to the center line 26.
The position where the outer periphery of the Grooves 27 are formed on the side surfaces of the Kovar pins 6a and 6b, respectively, to define the distance d 01 between the cathode and the control grid G 1 when the cathode is attached, and to improve the work of attaching the cathode. Then, for the Kovar pins 6a and 6b integrated with the control grid G 1 and the acceleration grid G 2 ,
A cathode similar to that shown in FIG. 1, that is, a coil heater wire 2 in which heater wires with a small heat capacity are wound into a coil without closely contacting each other, is coated with a thermionic emitting substance such as (Ba, Ca, Sr) O 3 . Metal oxides such as 3
The cathode 1 is welded to the side surface of the Kovar pin through its groove 27. When welding the cathode 1, the coil heater wire 2 coated with the oxide 3 is aligned with the position of the beam transmission hole h1 of the control grid G1 using a so-called misalignment microscope (device for optical centering). After aligning the two, if necessary, finely adjust the Kovar pins 6a and 6b (by slightly bending them, etc.) and join them. The spacing d 01 between the control grids G 1 for the cathode 1 is determined with high precision by the positions of the grooves 27 of the Kovar pins 6a, 6b. On the other hand, the control grid G 1 is the sixth
As shown in the figure, it has a shallow cup shape with a notch 28 through which the coil heater wire 2 partially passes, in order to prevent the electron beam from going around (so-called stray).

このような構成の電子銃によれば、第4図で示
した絶縁支持体5,セラミツクスペーサ8及びリ
テーナ9等を使用せずに組立てられるために部品
点数が少なくコスト面で非常に有利となると同時
に、長さの短い小型軽量の電子銃が得られる。又
陰極1の溶接以前の工程、即ち制御格子G1,加
速格子G2及びコバールピン6a,6bを取付け
る工程が1回のろう付け工程で済み、その後陰極
1を溶接するだけで全て完了するので、作業能率
が向上する。又、第4図の如く制御格子G1内に
陰極構体7を組込むという工程がないため、ガタ
による精度不良という問題が全く発生しない。
According to the electron gun having such a configuration, it can be assembled without using the insulating support 5, the ceramic spacer 8, the retainer 9, etc. shown in FIG. 4, so the number of parts is small and it is very advantageous in terms of cost. At the same time, a compact and lightweight electron gun with short length is obtained. In addition, the process before welding the cathode 1, that is, the process of attaching the control grating G 1 , the accelerating grating G 2 and the Kovar pins 6a, 6b, only requires one brazing process, and then all is completed by simply welding the cathode 1. Work efficiency improves. Furthermore, since there is no step of assembling the cathode structure 7 into the control grid G1 as shown in FIG. 4, there is no problem of poor accuracy due to backlash.

さらに第4図のようにコバールピン6a,6b
の上面にコイルヒータ線2を溶接した場合はそれ
だけで0.3mmの位置ずれ分が発生する可能性があ
つたが、この例ではコバールピン6a,6bその
ものが精度よく植立されているのでコバールピン
6a,6bの側面で溶接するだけで位置精度が確
保される。又、第4図の例ではコバールピン6
a,6bの上面にコイルヒータ線2を溶接する工
程と、制御格子G1に陰極構体7を挿入する工程
の2回をそれぞれ注意深く行なわないと位置精度
が補償されなかつたが、この例はコイルヒータ線
2を直接制御格子G1のビーム透過孔h1に対して
位置精度を出しながら溶接するという方法を取る
ため、上記問題は発生せず位置精度が保証され
る。
Furthermore, as shown in Fig. 4, Kovar pins 6a, 6b
If the coil heater wire 2 were welded to the top surface, there was a possibility that a positional deviation of 0.3 mm would occur, but in this example, the Kovar pins 6a, 6b themselves are planted with high precision, so the Kovar pins 6a, Positional accuracy is ensured simply by welding on the side surface of 6b. In addition, in the example shown in Fig. 4, the Kovar pin 6
The positional accuracy could not be guaranteed unless the steps of welding the coil heater wire 2 to the upper surfaces of a and 6b and the step of inserting the cathode structure 7 into the control grid G1 were performed carefully twice. Since the heater wire 2 is directly welded to the beam transmission hole h1 of the control grid G1 while maintaining positional accuracy, the above-mentioned problem does not occur and positional accuracy is guaranteed.

第8図乃至第10図は特にコバールピンを使用
せずに構成した実施例である。本例に於ては、第
8図に示すように中央に透孔21を有しその一端
面に第6図と同様の浅いカツプ状の制御格子G1
が嵌着される段部23を形成して成る筒状の例え
ばセラミツクからなる絶縁スペーサ31を設け
る。絶縁スペーサ31の段部23,一端面31a
及び他端面31bには夫々メタライズ層25を被
着形成する。そして、この絶縁スペーサ31の他
端面31bに加速格子G2を配し、之と対向して
段部23に制御格子G1を配し同時にろう付けし
て一体化する。次いで第1図と同様の陰極1を制
御格子G1のビーム透過孔h1の位置に精度よく合
せながら直接絶縁スペーサ31の一端面31a上
の対のメタライズ層25にAgペイント又は無機
接着剤を介して取付ける。即ち第9図及び第10
図に示すように例えばニツケル板32でコイルヒ
ータ線2の端部を挟みつけ、その上からAgペイ
ント又は無機接着剤33で接着する。そして、コ
イルヒータ線2の両端より例えばニツケル板32
を介してカソードリード14a及びヒータリード
14bを導出し、又制御格子G1及び加速格子G2
から夫々リード12及び13を導出する。34は
保持リードである。この場合、制御格子G1と加
速格子G2間の間隔d12は絶縁スペーサ31の内縁
の厚さl1で精度よく規定され、制御格子G1と陰極
1間の間隔d01も段部23の高さl2で精度よく規
定される。かかる構成によれば、第5図の場合に
比してさらにコバールピンが省略され構造の簡素
化が計れ、しかも陰極1の制御格子G1に対する
位置精度がよく、短く小型軽量の電子銃が得る等
第5図と同様の作用効果を奏するものである。
FIGS. 8 to 10 show embodiments in which no Kovar pins are used. In this example, as shown in FIG. 8, there is a through hole 21 in the center, and a shallow cup-shaped control grid G 1 similar to that shown in FIG. 6 is provided on one end surface.
A cylindrical insulating spacer 31 made of, for example, ceramic is provided, which has a stepped portion 23 into which the spacer is fitted. Step portion 23 of insulating spacer 31, one end surface 31a
A metallized layer 25 is formed on the other end surface 31b, respectively. Then, an acceleration grating G2 is arranged on the other end surface 31b of this insulating spacer 31, and a control grating G1 is arranged on the stepped portion 23 facing the acceleration grating G2, and are simultaneously brazed and integrated. Next, Ag paint or inorganic adhesive is directly applied to the pair of metallized layers 25 on one end surface 31a of the insulating spacer 31 while accurately aligning the cathode 1 as shown in FIG. 1 with the beam transmission hole h1 of the control grid G1 . Attach via. That is, Figures 9 and 10
As shown in the figure, the ends of the coil heater wires 2 are sandwiched between, for example, nickel plates 32, and bonded thereon with Ag paint or an inorganic adhesive 33. For example, a nickel plate 32 is connected to both ends of the coil heater wire 2.
The cathode lead 14a and the heater lead 14b are led out through the control grating G1 and the acceleration grating G2.
Leads 12 and 13 are derived from the respective leads 12 and 13. 34 is a holding lead. In this case, the spacing d 12 between the control grating G 1 and the acceleration grating G 2 is precisely defined by the thickness l 1 of the inner edge of the insulating spacer 31, and the spacing d 01 between the control grating G 1 and the cathode 1 is also determined by the step 23. is precisely defined by the height l 2 . According to this configuration, compared to the case of FIG. 5, the Kovar pin is further omitted and the structure is simplified, and the positional accuracy of the cathode 1 with respect to the control grid G1 is good, and a short, small and lightweight electron gun can be obtained. This provides the same effect as in FIG. 5.

上述せる如く、本発明は低消費電力の陰極を具
備した電子銃においてその高精度にして且つ作業
能率よく構成でき、又小型軽量に得られるもの
で、小型陰極線管に適して好適ならしめるもので
ある。
As mentioned above, the present invention enables an electron gun equipped with a cathode with low power consumption to be configured with high accuracy and high working efficiency, and is small and lightweight, making it suitable and suitable for small cathode ray tubes. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に適用される陰極の例を示す断
面図、第2図及び第3図は本発明の説明に供する
陰極構体を示す平面図及び側面図、第4図は本発
明の電子銃の要部の一実施例を示す断面図、第5
図は本発明の電子銃の要部の他実施例を示す断面
図、第6図及び第7図はその要部の斜視図及び平
面図、第8図は本発明の電子銃の要部の他実施例
を示す断面図、第9図及び第10図はその要部の
平面図及び断面図である。 1は陰極、2はコイルヒータ線、3は熱電子放
射物質、G1は制御格子、G2は加速格子、24,
31は絶縁スペーサである。
FIG. 1 is a sectional view showing an example of a cathode applied to the present invention, FIGS. 2 and 3 are a plan view and side view showing a cathode structure for explaining the present invention, and FIG. 4 is a cross-sectional view showing an example of a cathode applied to the present invention. Sectional view showing one embodiment of the main part of the gun, No. 5
The figure is a sectional view showing another embodiment of the main part of the electron gun of the present invention, FIGS. 6 and 7 are perspective views and plan views of the main part, and FIG. 8 is a cross-sectional view of the main part of the electron gun of the present invention. A sectional view showing another embodiment, FIGS. 9 and 10 are a plan view and a sectional view of the main parts thereof. 1 is a cathode, 2 is a coil heater wire, 3 is a thermionic emitting material, G 1 is a control grid, G 2 is an acceleration grid, 24,
31 is an insulating spacer.

Claims (1)

【特許請求の範囲】[Claims] 1 制御格子と加速格子がその対向面のビーム透
過領域を除く周囲領域に金属層を介して絶縁スペ
ーサが介在して一体化され、コイルヒータ線に熱
電子放射物質を塗布してなる陰極が上記透孔に臨
んで配置されて成る電子銃。
1 The control grating and the accelerating grating are integrated with an insulating spacer interposed through a metal layer in the peripheral area excluding the beam transmission area of the opposing surfaces, and the cathode is formed by coating a coil heater wire with a thermionic emissive material. An electron gun placed facing a through hole.
JP16217980A 1980-11-18 1980-11-18 Electron gun Granted JPS5787041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16217980A JPS5787041A (en) 1980-11-18 1980-11-18 Electron gun

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16217980A JPS5787041A (en) 1980-11-18 1980-11-18 Electron gun

Publications (2)

Publication Number Publication Date
JPS5787041A JPS5787041A (en) 1982-05-31
JPS6353661B2 true JPS6353661B2 (en) 1988-10-25

Family

ID=15749509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16217980A Granted JPS5787041A (en) 1980-11-18 1980-11-18 Electron gun

Country Status (1)

Country Link
JP (1) JPS5787041A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612599Y2 (en) * 1988-03-31 1994-03-30 関西日本電気株式会社 Direct heating cathode
JPH02226641A (en) * 1989-02-25 1990-09-10 Miyota Seimitsu Kk Electrode for electron gun
US5057736A (en) * 1989-04-07 1991-10-15 Nec Corporation Directly-heated cathode structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101965A (en) * 1976-02-20 1977-08-26 Licentia Gmbh Device for generating electron beam in crt
JPS5537717A (en) * 1978-09-08 1980-03-15 Hitachi Ltd Direct heating cathode construction and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101965A (en) * 1976-02-20 1977-08-26 Licentia Gmbh Device for generating electron beam in crt
JPS5537717A (en) * 1978-09-08 1980-03-15 Hitachi Ltd Direct heating cathode construction and its manufacturing method

Also Published As

Publication number Publication date
JPS5787041A (en) 1982-05-31

Similar Documents

Publication Publication Date Title
JP3260901B2 (en) Electron multiplier
KR940010197B1 (en) Multibeam electron gun having a transition member and method of assembling the electron gun
JPS6353661B2 (en)
US4607187A (en) Structure for and method of aligning beam-defining apertures by means of alignment apertures
JPS6351028A (en) Assembling method for electron gun
US6840834B2 (en) Package structure for mounting a field emitting device in an electron gun
US5670841A (en) Electron gun for a cathode ray tube having a plurality of electrodes layers forming a main lens
JPH02256140A (en) Cathods-ray tube
JPH03171532A (en) Grid body structure for cathode ray tube and manufacture thereof
JP2691671B2 (en) Electron gun
JPH0312418B2 (en)
JP3430533B2 (en) Cathode structure of cathode ray tube
JPS601486Y2 (en) Directly heated cathode
GB2309333A (en) Method of manufacturing an electron gun for a cathode ray tube and a cathode assembly
JPH05182595A (en) Electron gun
JPS6220128Y2 (en)
JPS6328513Y2 (en)
JPH0718121Y2 (en) Electron gun
JPS61233934A (en) Magnetron cathode structure
JPH06290715A (en) Electron gun
JPH0725678A (en) Method for brazing metallic structure unit and brazing jig therefor
JPH11197827A (en) Brazing jig for metallic structural body
JPH06223734A (en) Cathode structure of cathode-ray tube
JPS5874061A (en) Manufacture of dip type case
JPH11260240A (en) Cathode body structure