JPS6328513Y2 - - Google Patents

Info

Publication number
JPS6328513Y2
JPS6328513Y2 JP1985063146U JP6314685U JPS6328513Y2 JP S6328513 Y2 JPS6328513 Y2 JP S6328513Y2 JP 1985063146 U JP1985063146 U JP 1985063146U JP 6314685 U JP6314685 U JP 6314685U JP S6328513 Y2 JPS6328513 Y2 JP S6328513Y2
Authority
JP
Japan
Prior art keywords
filament
support
electron gun
electron
spring member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985063146U
Other languages
Japanese (ja)
Other versions
JPS60183353U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6314685U priority Critical patent/JPS60183353U/en
Publication of JPS60183353U publication Critical patent/JPS60183353U/en
Application granted granted Critical
Publication of JPS6328513Y2 publication Critical patent/JPS6328513Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes For Cathode-Ray Tubes (AREA)

Description

【考案の詳細な説明】 この考案は例えばカラー受像管の3電子銃など
に使用して好適な直熱型陰極構体に関するもので
ある。 一般にカラー受像管にはインライン形3電子銃
が内蔵されているが、この種の3電子銃は直熱型
複合陰極構体、第1乃至第4格子電極等から構成
されている。 ところでこの直熱型複合陰極構体として提案さ
れているものに第1図に示すようなものがある。
この直熱型複合陰極構体は斜め上方から見たもの
であり、3組の陰極構体からなつているが、絶縁
基板1はセラミツクス等で形成されており、1対
の導電製フイラメント支持体2,3を支持するた
めに3個の挿入孔4と3個の切欠部5が設けられ
ている。この挿入孔4及び切欠部5の内側の肩部
には、1対の支持体2,3を貫通或いは嵌合させ
た後に絶縁基板1と、1対の支持体2,3を接着
固定する接着部材を溜める段部(図では見えな
い)が形成されている。また絶縁基板1の上面に
は3組の陰極導体間に所定深さの切溝6,7が設
けられている。このような絶縁基体1にこれを貫
通するように互いに所定距離離して配設された1
対の支持体2,3のうち第1の支持体2は基体金
属板8及び電子放射物質層9をその中央に載置し
たフイラメント10の一端を固定支持し、第2の
支持体3は、フイラメント10の他端を支持体3
の外方にその一端部が延在するようにこの支持体
3に固定されたばね部材11に固定することによ
つて弾発力が印加されるように支持されている。
しかも第2の支持体3は第1格子電極(図示せ
ず)との間隔を所定間隔に保持するために、フイ
ラメント10に当接して、その高さを調整する可
動調整棒12の案内となる矩形状中空体に形成さ
れている。そしてフイラメント10を固定する側
の第1の支持体2は絶縁基板1の挿入孔4に貫通
して接着固定され、また、第1格子電極と電子放
射層9間の関係を調整するばね部材11及び可動
調整棒12を備えた可動側の第2の支持体3は絶
縁基板1の切欠部5に嵌合され接着固定される。
この第2の支持体3にフイラメント10の一端を
固定支持するために設けられたばね部材11はフ
イラメント10に電流を流し加熱したとき、フイ
ラメント10の熱膨脹の伸びを吸収し、あるいは
フイラメント10の位置を上下に移動できるよう
に弾発力をもたせるものである。また電子放射物
質層9はMg,Si,W等を含むNi主体の合金で形
成された基体金属板8の上面に塗布された(Ba,
Sr,Ca)CO3酸化物であり、後の工程に於て活
性化することにより熱電子を放出するものであ
る。更に可動調整棒12は前述のように図示しな
い第1格子電極と電子放射物質層9との間隔を所
定値に設定するための調整用に使用され、複数個
の格子電極と、絶縁基板1を例えばビードガラス
に植設し、これらを一体に組立てたのち、電子放
射物質層9の配設位置を調整するために第2の支
持体3に挿入され、かつこの第2支持体3に沿つ
て上下に移動し、最終的にこの第2支持体3と溶
接などの手段により固定するようになつている。 然るに前述した様な直熱型陰極構体は、フイラ
メントをばね部材で横方向に引張つているが、電
子放射面の高さ調整のため可動調整棒を動かすと
そのわずかな変化でもフイラメントへの張力が大
きく変化してしまいやすい。フイラメントはきわ
めて薄く、また高温での抗張力はあまり大きくな
いので高さ調整で過大な張力がかかると断線しや
すい不都合がある。またフイラメントと調整棒と
の接触面が常にスムースなすべるようになつてい
ないと、フイラメント点火の断続のたびに電子放
射面がバウンドして変化するおそれもある。 一方、実開昭53−85959号公報に示される直熱
型極陰極が知られているが、これはやはりばね部
材で引張力を与えているがフイラメントとの下に
位置規制用部材を置いて支えているので、上述の
如く、フイラメントを位置規制用部材との接触面
のすべりを常に完全に維持することは容易でな
く、電子放射面のバウンド現象が生じやすい。他
方、実公昭43−3700号公報に示される陰極構体も
知られている。これはフイラメントの薄肉の幅方
向を電子銃軸に平行に架設したものである。しか
し電子放射面の高さ変化が抑制される反面、単に
フイラメントの一部を折曲げておくだけであるた
めフイラメント加熱の断続による変形での電子放
射部の移動方向が一定化せず、例えば第1格子電
極のビーム透孔との相対位置が不所望に複雑に変
化してしまう不都合が考えられる。 本考案は以上のような従来技術の不都合を解消
し電子放射面の高さ変化がほとんどなく、且つフ
イラメント加熱の断続による電子放射部の移動が
一定方向に規制され又はほとんど移動しない構造
の直熱型陰極構体を提供するものである。 以下本考案の直熱型陰極構体の第1の実施例を
第2図乃至第6図によつて説明する。 即ち直熱型陰極構体20は、セラミツクスなど
で形成されている絶縁支持板21に後述する第1
及び第2の導電体製フイラメント支持体22,2
3、及びばね支持体24を挿入貫通され接着ガラ
スや、ろう材などの接着部材で固定されている。
絶縁支持板21にはそのための段部231を有す
る挿入孔234及び位置ぎめ用開口部212が形成
されている。そして絶縁支持板21の側壁部を囲
むように陰極筒26に挿入される。 さて、第1及び第2支持体のそれぞれの頂部近
傍の側壁部221,231間に、例えばNi70重量
%、W30重量%からなる幅0.2乃至0.5mm、厚さ
0.02〜0.04mmのリボン状フイラメント(以下フイ
ラメントと云う)28がそれぞれ溶接点222
び232により架設されている。この場合フイラ
メント28はその幅方向が直熱型陰極構体20の
電子銃軸Zに平行になされている。またばね支持
体24の頂部近傍の側壁部241にはばね部材2
9が溶接点242を介してフイラメント28の長
さ方向即ち電子銃軸に直角方向の適当な弾発力を
かけるように弾接されている。すなわち、ばね部
材29は第3図に示すようにリボン状フイラメン
トの幅寸法(W1)よりも大きい幅寸法(W2)を
有し、その遊端部がこのフイラメント28の側面
に電子銃軸Zと平行に線接触し、このフイラメン
トの側面全体を電子銃軸に対し垂直方向に押すよ
うになつている。更にフイラメント28のほぼ中
央部には、次に詳述する構造を有する電子放出体
30が載置固定されている。 即ち電子放出体30は第4図に示すように中央
部に略円形の主面部31が形成されこの両端に矩
形状の支持部32が形成されたニツケル(Ni)
を主成分とする基体金属板を第5図a,b,cに
示すように折曲し、第6図a,bに示すようにフ
イラメント28を挾持するように前記矩形状支持
部32に保持したのち、溶接点321により溶接
される。次に主面部31の上面に(Ba,Sr,
Ca)CO3からなる電子放射物質層33を被着し、
後の工程に於てこれを活性化する。 前述した矩形状支持部32の幅はフイラメント
28との関係に於て、陰極線管などに組み込み使
用したとき出画時間を早くするために挾く形成
し、熱容量を減少させるようにすることが望まし
いし、また、フイラメント28の幅方向の両側か
ら挾持するようにするのは、フイラメント加熱時
の歪みを両側に於て均一とするためである。なお
この溶接方法に比較し第1図の様にフイラメント
の一主面にのみ基体金属板を溶接したものは溶接
時の通電電流によりフイラメントに溶接傷ができ
やすく、通電時にこの溶接傷からフイラメントが
切断する危険があり、この溶接傷が発生しない範
囲で溶接を行なうなどの注意が必要であつたが、
本考案の構造に於ては溶接傷が発生しても、この
溶接傷は基体金属板に発生するのでフイラメント
28に直接溶接傷が発生することがない。 前述した様な電子放出体30を載置固定したフ
イラメント28は、前述した様に第1支持体22
と第2支持体23との間に架設されるが、この場
合、組立時においては電子放出体30が位置ぎめ
用開口部212より中心がばね部材29方にわず
かずれる位置関係に組立てられている。これは第
1及び第2支持体22,23を介してフイラメン
ト28に電流を流し加熱したとき、このフイラメ
ント28が熱膨脹し、電子銃軸Zに垂直な面上に
於て、ばね部材29と共に破線28′,29′に示
した位置に移動し、丁度中心が位置ぎめ用開口部
212の中心、即ち電子銃軸Z上にくるような位
置関係にすることが望ましいためである。 次に本実施例の直熱型陰極構体20を例えばカ
ラー受像管に内装される一列配設された3個の電
子銃に装着させる手段を第7図によつて説明す
る。 即ちビードガラスなどからなる1対の絶縁支持
棒41に一列配設された電子ビーム通過孔R,
G,Bが穿設された第1格子電極42が植設部4
3を介して植設される。また他の図示しない格子
電極もそれぞれ植設部を介して植設されており、
更に前記絶縁支持棒41にそれぞれ板状の陰極支
持帯44も植設部45を介して植設されると共に
この陰極支持帯44に筒状の陰極支持体46が固
着されている。 次に前述した陰極支持体46内に第2図及び第
3図に示した直熱型陰極構体20を挿入し、従来
の傍熱型陰極構体の場合と同様に第1格子電極4
2の電子ビーム通過孔R,G,Bを介して、これ
に対設する電子放出体30の電子放射物質層33
の上面との間隔をエアーマイクロメータで測定す
る。この場合、フイラメント28の薄肉幅方向が
電子銃軸に平行にとりつけられているため、電子
銃軸方向の強度が強くエアーマイクロメータのエ
アー圧を受けた際の、フイラメント変位が殆んど
なく、従つて測定時と、測定後の測定誤差を生じ
ることが極めて少ない。 次に前記直熱型陰極構体20の陰極筒26と陰
極支持体46とを溶接によつて固定し一列配置の
一体化3電子銃を完成することができる。 次に第8図により本考案の他の実施例を説明す
る。図中前述の実施例と同一符号は同一部分を示
す。本実施例の直熱型陰極構体40は、絶縁支持
板21に第1のフイラメント支持体22と、第2
のフイラメント支持体23とを斜め方向に植設
し、これにフイラメント28を架設し、電子放出
30を載置固定してある。ばね部材29は前述
の実施例と同様にばね支持体24に設けたもので
あり、ばね部材29の遊端部と、フイラメント2
8側面との弾接点41が微小移動可能である。 このようにすることにより直熱型陰極構体を小
形にできる。 次に本考案のさらに第3の実施例を第9図によ
つて説明する。即ち本実施例の直熱型陰極構体5
0は絶縁支持板21に植設する第1のフイラメン
ト支持体22及び第2のフイラメント支持体23
を前記絶縁支持板21の長手方向に設け、フイラ
メント28のほぼ中央に載置固定させる電子放出
30を最初から位置ぎめ用開口部212の中心
になるように組立ててある。そしてフイラメント
28の側面に弾接するばね部材291と2922本
としてそれぞれフイラメントをはさんで反対側に
植設したばね支持体241,242に支持したもの
である。この様に陰極の中心に対してほぼ点対称
にばね部材及び弾接部を設けることによりばね部
材は増加するが電子放出体30はフイラメント加
熱の有無にかかわらず常に位置ぎめ用開口部21
の中心に一致してほとんど動かないという利点
がある。 次に本考案の第4の実施例を第10図によつて
説明する。即ち本実施例の直熱型陰極構体60は
前記第3の実施例と略同様であるが、ばね部材2
1,292を短かくし、材料費を安価にすること
が可能である。 次に本考案の第5の実施例を第11図によつて
説明する。即ち本実施例の直熱型陰極構体70に
於ては、ばね支持体を特に設けず、例えば図の様
に第2支持体23にフイラメント28と同一部分
または上下に別けてばね部材29を固定したもの
である。この場合ばね部材29とフイラメント2
8の弾接点71に於ては金属酸化膜や絶縁部材な
どを介在させ、ばね部材29を介して電流が流れ
ないようにすることが望ましい。この様な構造に
することにより工程の簡略化、部品点数の低減が
できる。 次に本考案の第6の実施例を第12図によつて
説明する。即ち本実施例の直熱型陰極構体80は
第3の実施例(第10図)と第4の実施例をほぼ
混成したもので、概してこれら2つの実施例のも
のを加え効果を有する。 なお、この実施例に於てもばね部材291及び
292とフイラメント28の弾接点81,82に
は第5の実施例と同様に絶縁部材などを介在させ
ることが望ましい。 次に本考案の第7の実施例を第13図によつて
説明する。即ち本実施例の直熱型陰極構体90は
前記第6の実施例に於けるばね部材291,292
を短くしたものであり、この場合もばね部材29
,292とフイラメント28との弾接点91,9
2に絶縁物を介在させることが望ましい。 次に本考案の第8の実施例を第14図によつて
説明する。 即ち直熱型陰極構体100はばね部材の一端部
101を溶接点102により陰極筒26に固定し
たものであり、フイラメント28に対するばね部
材29の遊端部の弾接位置は他の実施例とほぼ同
様である。 次に本考案の第9の実施例を第15図によつて
説明する。 即ち直熱型陰極構体110は第2フイラメント
支持体111を陰極筒26の立ち上り部に設け、
第1支持体22とこの第2支持体111との間に
フイラメント28を架設したものである。この構
造も簡単であるが、第2支持体111の電気抵抗
を考慮するため陰極筒26に沿つてやゝ太い導電
部材を絶縁支持板21の凹部に従来例の第2支持
体3と近似な方法で植設するか、または陰極筒に
沿つて溶接などで固定することが望ましい。 以上説明したように本考案は、絶縁支持板に対
設備された一対の導電体製フイラメント支持体
と、幅方向が電子銃軸に平行にフイラメント支持
体間に架設されたリボン状フイラメントと、この
フイラメントの中央部に固定され軸に垂直な主面
部を有する電子放出体の基体金属板と、一端部が
フイラメント支持体又は絶縁支持板に植設された
別のばね支持体に固定され遊端部がフイラメント
の側面に弾接しこのフイラメントを軸に対し直角
方向に押す少なくとも1個のばね部材を有してな
る直熱型陰極構体である。これによつてフイラメ
ントはその薄肉の幅方向が電子銃軸に平行であり
且つ常に電子銃軸に直角方向に押されているの
で、フイラメント加熱の有無や断続にかかわらず
絶縁支持板に対する電子放出体の高さ寸法はほと
んど変化せず、陰極線管などでカツトオフの変動
が生せず、且つ電子放出体の位置はばね部材で押
される一定方向のみ、又はほとんど位置変化を生
じない。しかもフイラメントとばね部材との接触
部の摺動性が万一不十分となつても、フイラメン
トの伸縮時に電子放出体が軸方向にバウンドする
おそれが少なく、電子ビーム変調度が瞬時に変化
してしまうおそれがない。そしてリボン状フイラ
メントの幅寸法よりも大きい幅寸法を有するばね
部材の遊端部がフイラメントの側面に電子銃軸と
平行に線接触して軸に対し垂直方向に押すように
なつているため、フイラメントは常にその幅方向
が電子銃軸に平行に保たれる。したがつて電子放
射部はそれ自身の自重およびフイラメントの熱膨
張、収縮にもかかわらず、常に電子銃軸に対して
垂直に保持される。このように本考案は実用的効
果がすぐれている。
[Detailed Description of the Invention] This invention relates to a directly heated cathode structure suitable for use in, for example, a three-electron gun of a color picture tube. Generally, a color picture tube has a built-in in-line three-electron gun, and this type of three-electron gun is composed of a directly heated composite cathode structure, first to fourth grid electrodes, and the like. By the way, one of the directly heated composite cathode structures that has been proposed is shown in FIG.
This directly heated composite cathode structure is seen from diagonally above, and is made up of three cathode structures, including an insulating substrate 1 made of ceramics, a pair of conductive filament supports 2, Three insertion holes 4 and three notches 5 are provided to support the holder 3. The insertion hole 4 and the inner shoulder part of the notch 5 are provided with an adhesive for adhering and fixing the insulating substrate 1 and the pair of supports 2 and 3 after passing through or fitting the pair of supports 2 and 3. A stepped portion (not visible in the figure) is formed for storing components. Furthermore, grooves 6 and 7 of a predetermined depth are provided on the upper surface of the insulating substrate 1 between the three sets of cathode conductors. 1 disposed at a predetermined distance from each other so as to penetrate through such an insulating base 1.
Of the pair of supports 2 and 3, the first support 2 fixedly supports one end of a filament 10 on which a base metal plate 8 and an electron emitting material layer 9 are placed in the center, and the second support 3 The other end of the filament 10 is connected to the support 3
The support body 3 is fixed to a spring member 11 fixed to the support body 3 so that one end thereof extends outwardly from the support body 3, thereby being supported so that a resilient force is applied thereto.
In addition, the second support 3 serves as a guide for a movable adjustment rod 12 that comes into contact with the filament 10 and adjusts its height in order to maintain a predetermined distance from the first grid electrode (not shown). It is formed into a rectangular hollow body. The first support body 2 on the side to which the filament 10 is fixed penetrates into the insertion hole 4 of the insulating substrate 1 and is adhesively fixed, and the spring member 11 adjusts the relationship between the first grid electrode and the electron emission layer 9. The second support 3 on the movable side, which includes the movable adjustment rod 12, is fitted into the notch 5 of the insulating substrate 1 and fixed by adhesive.
A spring member 11 provided to fixedly support one end of the filament 10 on the second support body 3 absorbs the elongation due to thermal expansion of the filament 10 or changes the position of the filament 10 when the filament 10 is heated by passing current through it. It has elasticity so that it can move up and down. Further, the electron emitting material layer 9 is coated on the upper surface of the base metal plate 8 formed of a Ni-based alloy containing Mg, Si, W, etc. (Ba,
Sr, Ca) CO 3 oxide, which emits thermoelectrons when activated in a later process. Further, as described above, the movable adjustment rod 12 is used for adjusting the distance between the first grid electrode (not shown) and the electron emitting material layer 9 to a predetermined value, and is used to adjust the distance between the plurality of grid electrodes and the insulating substrate 1. For example, after implanting it in bead glass and assembling them together, it is inserted into the second support 3 in order to adjust the placement position of the electron emitting material layer 9, and along this second support 3. It moves up and down and is finally fixed to this second support 3 by means such as welding. However, in the above-mentioned directly heated cathode structure, the filament is pulled in the horizontal direction by a spring member, but when the movable adjustment rod is moved to adjust the height of the electron emission surface, even a slight change in the height can cause the tension on the filament to be reduced. It tends to change significantly. Since the filament is extremely thin and its tensile strength at high temperatures is not very high, it is prone to breakage if excessive tension is applied during height adjustment. Furthermore, if the contact surface between the filament and the adjustment rod does not always slide smoothly, there is a risk that the electron emitting surface will bounce and change every time the filament is ignited. On the other hand, a directly heated cathode disclosed in Japanese Utility Model Application Publication No. 53-85959 is known, but this also uses a spring member to provide tensile force, but a position regulating member is placed below the filament. As described above, it is not easy to always maintain perfect sliding of the contact surface between the filament and the position regulating member, and the electron emitting surface tends to bounce. On the other hand, a cathode structure shown in Japanese Utility Model Publication No. 43-3700 is also known. This is a structure in which the width direction of the thin filament is parallel to the electron gun axis. However, while the change in the height of the electron emitting surface is suppressed, since only a part of the filament is simply bent, the direction of movement of the electron emitting part is not constant due to deformation due to intermittent heating of the filament. There is a conceivable problem that the relative position of the one-grid electrode with respect to the beam aperture changes in an undesirably complicated manner. The present invention solves the above-mentioned disadvantages of the conventional technology and is a direct heating system with a structure in which there is almost no change in the height of the electron emitting surface, and the movement of the electron emitting part due to intermittent heating of the filament is restricted to a certain direction or hardly moves. The present invention provides a type cathode structure. A first embodiment of the directly heated cathode assembly of the present invention will be described below with reference to FIGS. 2 to 6. That is, the directly heated cathode structure 20 has a first insulating support plate 21 formed of ceramics or the like, which will be described later.
and a second conductive filament support 22, 2
3 and the spring support 24 are inserted and penetrated and fixed with an adhesive member such as adhesive glass or brazing material.
The insulating support plate 21 is formed with an insertion hole 23 4 having a stepped portion 23 1 and a positioning opening 21 2 for this purpose. Then, it is inserted into the cathode tube 26 so as to surround the side wall portion of the insulating support plate 21. Now, between the side wall parts 22 1 and 23 1 near the top of each of the first and second supports, a width of 0.2 to 0.5 mm and a thickness made of, for example, 70% by weight of Ni and 30% by weight of W is provided.
Ribbon-like filaments (hereinafter referred to as filaments) 28 with a diameter of 0.02 to 0.04 mm are installed at welding points 22 2 and 23 2 , respectively. In this case, the width direction of the filament 28 is parallel to the electron gun axis Z of the directly heated cathode assembly 20. Also, a spring member 2 is attached to the side wall portion 24 1 near the top of the spring support 24 .
9 is in elastic contact with the filament 28 via the welding point 24 2 so as to apply an appropriate elastic force in the longitudinal direction of the filament 28, that is, in the direction perpendicular to the electron gun axis. That is, the spring member 29 has a width (W2) larger than the width (W1) of the ribbon-like filament, as shown in FIG. They are in parallel line contact and push the entire side surface of the filament in a direction perpendicular to the electron gun axis. Further, an electron emitter 30 having a structure described in detail below is mounted and fixed approximately at the center of the filament 28. That is, as shown in FIG. 4, the electron emitter 30 is made of nickel (Ni) with a substantially circular main surface 31 formed at the center and rectangular support sections 32 at both ends.
A base metal plate mainly composed of is bent as shown in FIG. After that, welding is performed at the welding point 321 . Next, (Ba, Sr,
Ca) depositing an electron emitting material layer 33 made of CO 3 ;
This will be activated in a later process. In relation to the filament 28, the width of the rectangular support portion 32 described above is desirably formed so as to reduce heat capacity by shortening the image output time when used in a cathode ray tube or the like. Furthermore, the reason why the filament 28 is held from both sides in the width direction is to make the distortion uniform on both sides when the filament is heated. In addition, compared to this welding method, when the base metal plate is welded only to one main surface of the filament as shown in Figure 1, welding scratches are more likely to be formed on the filament due to the current applied during welding, and the filament will be damaged due to the welding scratches when the current is applied. There is a risk of cutting, and care must be taken to weld within a range that does not cause welding scratches.
In the structure of the present invention, even if welding flaws occur, the welding flaws occur on the base metal plate, so welding flaws do not occur directly on the filament 28. The filament 28 on which the electron emitter 30 as described above is placed and fixed is attached to the first support 22 as described above.
and the second support body 23, but in this case, during assembly, the electron emitter 30 is assembled in a positional relationship in which the center is slightly shifted toward the spring member 29 from the positioning opening 212 . There is. This is because when a current is applied to the filament 28 through the first and second supports 22 and 23 and the filament 28 is heated, the filament 28 thermally expands and moves along the broken line along with the spring member 29 on a plane perpendicular to the electron gun axis Z. This is because it is desirable to move to the positions shown at 28' and 29' so that the center is exactly on the center of the positioning opening 21 2 , that is, on the electron gun axis Z. Next, a means for attaching the directly heated cathode assembly 20 of this embodiment to three electron guns arranged in a row inside a color picture tube, for example, will be explained with reference to FIG. That is, a row of electron beam passing holes R are arranged in a pair of insulating support rods 41 made of bead glass or the like.
The first grid electrode 42 with holes G and B is attached to the implanted part 4
It is implanted through 3. In addition, other grid electrodes (not shown) are also implanted through the implantation portions, respectively.
Further, a plate-shaped cathode support band 44 is also implanted in each of the insulating support rods 41 via a planting part 45, and a cylindrical cathode support 46 is fixed to this cathode support band 44. Next, the directly heated cathode assembly 20 shown in FIGS. 2 and 3 is inserted into the cathode support 46 described above, and the first grid electrode 4 is inserted as in the case of the conventional indirectly heated cathode assembly.
The electron emitting material layer 33 of the electron emitting body 30 provided opposite thereto through the electron beam passage holes R, G, and B of No. 2
Measure the distance from the top surface using an air micrometer. In this case, since the thin width direction of the filament 28 is attached parallel to the electron gun axis, the strength in the electron gun axis direction is strong, and there is almost no displacement of the filament when it receives the air pressure of the air micrometer. Therefore, measurement errors during and after measurement are extremely unlikely to occur. Next, the cathode tube 26 of the directly heated cathode assembly 20 and the cathode support 46 are fixed by welding to complete an integrated three-electron gun arranged in a row. Next, another embodiment of the present invention will be explained with reference to FIG. In the drawings, the same reference numerals as in the previous embodiment indicate the same parts. The directly heated cathode assembly 40 of this embodiment includes an insulating support plate 21, a first filament support 22, and a second filament support 22.
A filament support 23 is installed in an oblique direction, a filament 28 is installed on the filament support 23, and an electron emitter 30 is placed and fixed thereon. The spring member 29 is provided on the spring support body 24 in the same way as in the previous embodiment, and the free end of the spring member 29 and the filament 2
The elastic contact point 41 with the 8 side surfaces can be moved slightly. By doing so, the directly heated cathode assembly can be made smaller. Next, a third embodiment of the present invention will be described with reference to FIG. That is, the directly heated cathode assembly 5 of this embodiment
0 is a first filament support 22 and a second filament support 23 implanted in an insulating support plate 21
is provided in the longitudinal direction of the insulating support plate 21, and the electron emitter 30 , which is placed and fixed approximately in the center of the filament 28, is assembled from the beginning so as to be centered in the positioning opening 212 . Two spring members 29 1 and 29 2 which come into elastic contact with the sides of the filament 28 are respectively supported by spring supports 24 1 and 24 2 installed on opposite sides of the filament. In this way, by providing the spring member and the elastic contact portion almost point-symmetrically with respect to the center of the cathode, the number of spring members increases, but the electron emitter 30 always remains in the positioning opening 21 regardless of whether or not the filament is heated.
It has the advantage that it coincides with the center of 2 and hardly moves. Next, a fourth embodiment of the present invention will be explained with reference to FIG. That is, the directly heated cathode assembly 60 of this embodiment is substantially the same as that of the third embodiment, except that the spring member 2
It is possible to shorten 9 1 and 29 2 and reduce material costs. Next, a fifth embodiment of the present invention will be explained with reference to FIG. That is, in the directly heated cathode assembly 70 of this embodiment, no particular spring support is provided, and for example, as shown in the figure, the spring member 29 is fixed to the second support 23 at the same part as the filament 28 or separately above and below. This is what I did. In this case, the spring member 29 and the filament 2
It is desirable that a metal oxide film, an insulating member, or the like be interposed at the elastic contact point 71 of No. 8 to prevent current from flowing through the spring member 29. By adopting such a structure, the process can be simplified and the number of parts can be reduced. Next, a sixth embodiment of the present invention will be described with reference to FIG. That is, the directly heated cathode assembly 80 of this embodiment is almost a hybrid of the third embodiment (FIG. 10) and the fourth embodiment, and generally has the effects of adding those of these two embodiments. In this embodiment as well, it is desirable to interpose an insulating member or the like at the elastic contact points 81 and 82 between the spring members 29 1 and 29 2 and the filament 28, as in the fifth embodiment. Next, a seventh embodiment of the present invention will be described with reference to FIG. 13. That is, the directly heated cathode assembly 90 of this embodiment has the spring members 29 1 and 29 2 of the sixth embodiment.
, and in this case also the spring member 29
Elastic contact points 91, 9 between 1 , 29 2 and the filament 28
It is desirable that an insulating material be interposed in 2. Next, an eighth embodiment of the present invention will be described with reference to FIG. That is, the directly heated cathode assembly 100 has one end 101 of the spring member fixed to the cathode cylinder 26 by a welding point 102, and the position of the free end of the spring member 29 in elastic contact with the filament 28 is approximately the same as in the other embodiments. The same is true. Next, a ninth embodiment of the present invention will be described with reference to FIG. 15. That is, the directly heated cathode assembly 110 includes a second filament support 111 provided at the rising portion of the cathode cylinder 26,
A filament 28 is installed between the first support 22 and the second support 111. This structure is also simple, but in order to take into account the electrical resistance of the second support 111, a slightly thick conductive member is placed along the cathode tube 26 in the recess of the insulating support plate 21, similar to the second support 3 of the conventional example. It is preferable to plant the tube by a method or to fix it along the cathode tube by welding or the like. As explained above, the present invention consists of a pair of filament supports made of a conductor installed on an insulating support plate, a ribbon-shaped filament installed between the filament supports with the width direction parallel to the electron gun axis, and A base metal plate of the electron emitter that is fixed to the center of the filament and has a main surface part perpendicular to the axis, and a free end part that is fixed to the filament support or another spring support implanted in the insulating support plate. is a directly heated cathode structure having at least one spring member that comes into elastic contact with the side surface of the filament and pushes the filament in a direction perpendicular to the axis. As a result, the width direction of the thin filament is parallel to the electron gun axis, and the filament is always pushed in a direction perpendicular to the electron gun axis, so that the electron emitter is attached to the insulating support plate regardless of whether the filament is heated or not. The height dimension of the electron emitter hardly changes, the cutoff does not change in cathode ray tubes, etc., and the position of the electron emitter only changes in a certain direction pushed by the spring member, or hardly changes in position. Furthermore, even if the sliding properties of the contact area between the filament and the spring member are insufficient, there is little risk that the electron emitter will bounce in the axial direction when the filament expands and contracts, and the electron beam modulation degree will change instantaneously. There is no risk of it getting lost. The free end of the spring member, which has a width larger than that of the ribbon-shaped filament, is in line contact with the side surface of the filament parallel to the electron gun axis and is pushed in a direction perpendicular to the axis. always keeps its width parallel to the electron gun axis. Therefore, the electron emitter is always held perpendicular to the electron gun axis despite its own weight and the filament's thermal expansion and contraction. As described above, the present invention has excellent practical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の直熱型複合陰極構体の一例を示
す斜射図、第2図及び第3図は本考案の直熱型陰
極構体の第1の実施例を示す図であり第2図は平
面図、第3図は一部切欠正面図、第4図乃至第6
図は陰極の構造を示す図であり、第4図は基体金
属板の展開図、第5図aは第4図に示す部品を折
曲した構造を示す正面図、第5図bはその正面
図、第5図cはその側面図、第6図aは第5図の
様に折曲した基体金属板をフイラメントを挾持す
るように固着した状態を示す正面図、第6図bは
その側面図、第7図は第2図及び第3図に示す直
熱型陰極構体を一体化構造の電子銃に組込む状態
を示す説明図、第8図乃至第15図は各々本考案
の直熱型陰極構体のそれぞれ他の実施例を示す平
面図である。 21……絶縁支持板、212……位置ぎめ用開
口部、22,23,111……フイラメント支持
体、24,241,242……ばね支持体、28,
28′……リボン状フイラメント、29,29′,
291,292………ばね部材、30……電子放出
体、8,31,32……基体金属板、9,33…
…電子放射物質層、Z……電子銃軸。
FIG. 1 is a perspective view showing an example of a conventional directly heated composite cathode structure, FIGS. 2 and 3 are views showing a first embodiment of the directly heated cathode structure of the present invention, and FIG. Plan view, Figure 3 is a partially cutaway front view, Figures 4 to 6 are
The figures show the structure of the cathode. Figure 4 is a developed view of the base metal plate, Figure 5 a is a front view showing the structure with the parts shown in Figure 4 bent, and Figure 5 b is the front view. Fig. 5c is a side view of the same, Fig. 6a is a front view showing the bent base metal plate as shown in Fig. 5 fixed to hold the filament, and Fig. 6b is a side view of the same. 7 are explanatory diagrams showing the state in which the directly heated cathode structure shown in FIGS. 2 and 3 are assembled into an integrated structure electron gun, and FIGS. 8 to 15 are respectively the direct heated cathode structures of the present invention. FIG. 7 is a plan view showing other embodiments of the cathode structure. 21... Insulating support plate, 21 2 ... Positioning opening, 22, 23, 111... Filament support, 24, 24 1 , 24 2 ... Spring support, 28,
28'... Ribbon filament, 29, 29',
29 1 , 29 2 ... Spring member, 30 ... Electron emitter, 8, 31, 32 ... Base metal plate, 9, 33 ...
...Electron emitting material layer, Z...electron gun axis.

Claims (1)

【実用新案登録請求の範囲】 絶縁支持板に対設された一対の導電体製フイラ
メント支持体と、 幅方向が電子銃軸に平行に前記フイラメント支
持体間に架設されたリボン状フイラメントと、 前記リボン状フイラメントのほぼ中央に固定さ
れ電子銃軸に垂直な主面部を有するとともにこの
主面部に電子放射物質層が被着された基体金属板
と、 一端部が上記フイラメント支持体又は上記絶縁
支持板に植設されたばね支持体に固定され、上記
リボン状フイラメントの幅よりも大きい幅寸法の
遊端部が該フイラメントの側面に電子銃軸と平行
に線接触し該フイラメントを電子銃軸に対して垂
直方向に押す少なくとも1個のばね部材とを具備
してなる直熱型陰極構体。
[Claims for Utility Model Registration] A pair of conductive filament supports disposed opposite to each other on an insulating support plate; a ribbon-shaped filament installed between the filament supports with the width direction parallel to the electron gun axis; a base metal plate fixed approximately at the center of a ribbon-shaped filament and having a main surface perpendicular to the electron gun axis and having an electron emitting material layer adhered to the main surface, and one end of which is fixed to the filament support or the insulating support plate; The free end portion, which has a width larger than the width of the ribbon-shaped filament, is in line contact with the side surface of the filament in parallel with the electron gun axis, and the filament is moved against the electron gun axis. and at least one spring member for pushing in a vertical direction.
JP6314685U 1985-04-30 1985-04-30 Directly heated cathode structure Granted JPS60183353U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6314685U JPS60183353U (en) 1985-04-30 1985-04-30 Directly heated cathode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6314685U JPS60183353U (en) 1985-04-30 1985-04-30 Directly heated cathode structure

Publications (2)

Publication Number Publication Date
JPS60183353U JPS60183353U (en) 1985-12-05
JPS6328513Y2 true JPS6328513Y2 (en) 1988-08-01

Family

ID=30593018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6314685U Granted JPS60183353U (en) 1985-04-30 1985-04-30 Directly heated cathode structure

Country Status (1)

Country Link
JP (1) JPS60183353U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS433700Y1 (en) * 1964-03-14 1968-02-16

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5385959U (en) * 1976-12-15 1978-07-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS433700Y1 (en) * 1964-03-14 1968-02-16

Also Published As

Publication number Publication date
JPS60183353U (en) 1985-12-05

Similar Documents

Publication Publication Date Title
JPS6328513Y2 (en)
US4338542A (en) Directly heated cathode assembly
US4298814A (en) Directly heated type cathode assembly
KR830002229B1 (en) Direct Cathode Structure
KR860001672B1 (en) Electron tube
JPS6224893B2 (en)
JPS6338812B2 (en)
JPH025474Y2 (en)
CN220085972U (en) Cathode structure of CT bulb tube
JPS62295327A (en) Manufacture of cathode composition for x-ray tube
JPH05282992A (en) Assembling method for cathode structural body of x-ray tube
JPS6353661B2 (en)
JP2798644B2 (en) Electron gun for cathode ray tube
JPH07101597B2 (en) Method for manufacturing grid structure of cathode ray tube
JPH0119798Y2 (en)
JPS59103251A (en) Cathode ray tube
JPH0125408Y2 (en)
JPS6231774B2 (en)
JPH08129977A (en) Getter spring and cathode-ray tube using the same
JPH0119317Y2 (en)
JPS601486Y2 (en) Directly heated cathode
US7042146B2 (en) Electron gun structure for a cathode-ray tube
JPS6220128Y2 (en)
JPS6231470B2 (en)
JPH11329290A (en) Electron gun for cathode-ray tube, and assembling method thereof