JPS6353133B2 - - Google Patents

Info

Publication number
JPS6353133B2
JPS6353133B2 JP54153595A JP15359579A JPS6353133B2 JP S6353133 B2 JPS6353133 B2 JP S6353133B2 JP 54153595 A JP54153595 A JP 54153595A JP 15359579 A JP15359579 A JP 15359579A JP S6353133 B2 JPS6353133 B2 JP S6353133B2
Authority
JP
Japan
Prior art keywords
particles
particle
iron
acicular
iron oxyhydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54153595A
Other languages
Japanese (ja)
Other versions
JPS5678430A (en
Inventor
Kazufumi Ooshima
Mitsuo Matsunaga
Haruo Sekiguchi
Kazuhiro Imaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP15359579A priority Critical patent/JPS5678430A/en
Publication of JPS5678430A publication Critical patent/JPS5678430A/en
Publication of JPS6353133B2 publication Critical patent/JPS6353133B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、微細な粒子形状を有する強磁性鉄化
合物の製造方法に関する。更により詳しくは磁気
記録用強磁性鉄酸化物Fe3O4、γ―Fe2O3およ
び/または金属(α―Fe)微粒子の製造法に関
する。 磁気記録用磁性素材については、高い保磁力
(Hc)を有し、飽和磁化率(σS)、残留磁化率
(σr)共に高く、かつ角形比(R=σr/σS)が大
きい等の磁気特性が要求される。鉄系強磁性化合
物の場合、微細な針状粒子形態を与える事が有利
である事から、針状オキシ水酸化鉄粒子や、針状
酸化鉄粒子の製造法が数多く報告されている。例
えば特許166146号(昭19.8.4)には、FeSO4
7H2Oを鉄原料とし、NaOHによる中和反応後、
空気酸化および種づけ結晶化法を応用する針状オ
キシ水酸化鉄粒子の製造法が述べられている。 これら従来の針状鉄化合物製造法の欠点として
は(イ)微細な針状オキシ水酸化鉄粒子を還元性ガス
により接触反応させて針状Fe3O4粒子を形成させ
た場合、また更に(ロ)該針状Fe3O4粒子を酸化性ガ
スにより処理して針状γ―Fe2O3粒子とする場
合、(ハ)微細な針状オキシ水酸化鉄粒子および/ま
たは鉄酸化物粒子から、還元性ガスによる接触反
応によりα―Fe粒子を形成せしめる場合におい
て、原料としたオキシ水酸化鉄粒子および/また
は鉄酸化物粒子の殆んど大部分が微細な針状形態
を有していても、酸化性ガスおよび/または還元
性ガスによる接触反応の結果、粒子の破損、破壊
更には焼結が不可避的に生ずることである。その
結果、該微粒子の磁気特性の著しい劣化、すなわ
ち保持力、飽和磁化率、残留磁化率、角形比の低
下をもたらし、磁気記録用強磁性鉄化合物に要求
される性状を大きく損なつている。本発明の目的
は、このような粒子の破壊の起らない強磁性鉄化
合物微粒子の製造法を提供することである。 本発明者等は、第族に属する元素から選ばれ
た1種もしくは2種以上の元素を含む微細な針状
オキシ水酸化鉄微粒子が極めて良好な原料適性を
示し、還元および/または酸化反応によつて粒子
形態の破損、破壊、更には焼結を殆んど発生させ
ない事実を見い出し、本発明に到達したものであ
る。 本発明の構成は、強磁性鉄化合物粒子製造の出
発原料であるオキシ水酸化鉄粒子を鉄()また
は鉄()イオンの水溶液から沈澱させる際に、
周期律表第族元素化合物を特定量共沈させて含
ませることを特徴とするものである。 本発明において、使用される第1鉄塩は、硫酸
塩、塩化物あるいは種々の鉱酸塩類であり、単独
もしくは2種以上の併用が可能である。硫酸塩が
最もよく多用される。更に第2鉄塩は、硫酸塩、
硝酸塩、炭酸塩、塩化物や種々の鉱酸塩類であ
る。第1鉄塩として硫酸塩を使用する場合は、併
用する第2鉄塩としては硫酸塩および/または硝
酸塩が好ましいが、これに必ずしも限定されるも
のではない。 また本発明において使用されるアルカリとは、
KOHやNaOH等の水酸化アルカリ、K2CO3
Na2CO3等の炭酸アルカリ、またNH3の水容液、
更に尿素などの様に水溶液状態での加熱により熱
分解を起こして実質的にNH3と同じ作用を有す
る物質を指す。これらのどれを選択しても本発明
の実施が本質的に可能である。 本発明の方法に用いる周期律表第族の元素
は、いずれの元素単独あるいは併用であつてもよ
く、特にMg,Ca,Ba,Znの1種あるいは2種
以上の併用が秀れた効果を示す。これら周期律表
第族元素類の全添加量は、Feとの原子重量比
で0.001/100〜10/100であることが必要であり、
好ましくは0.01/100〜5/100、より好ましくは
0.05/100〜1/100の範囲内である。これより少
い添加量では、第族元素添加の効果が顕著に見
られず、またこれよりも多い添加量の場合は、オ
キシ水酸化鉄製造の際に微細な針状粒子の形成が
困難になる。 周期律表第族元素を針状オキシ水酸化鉄粒子
の副成分として導入する方法は、第族元素の無
機塩などの化合物を微粉として、或は微粉を水や
水と相溶性のある溶剤に懸濁させて、又は無機塩
などの化合物を水や水と相溶性のある溶剤の溶液
として、第1鉄塩および/または第2鉄塩の水溶
液に添加すればよい。この際の添加速度、溶液濃
度、溶液温度、撹拌強度などの操作因子は、第
族元素の化合物の種類によつて選択すればよい。
また第族元素の化合物の全量を一時に鉄塩水溶
液に添加する方法、一部を分けて鉄塩水溶液とア
ルカリとの中和反応の中途に連続または断続的に
分割添加する方法、一部を分けて中和後にも添加
し或る温度で或る時間熟成する方法などを使用す
ることができる。 第族元素の元素源としては種々の硝酸塩、硫
酸塩、炭酸塩あるいは鉱酸塩類化合物を使用すれ
ばよく、特にその化合物形態に制限を受ける事は
ない。一般にこれらの多くは水可溶性であるが、
おどろくべき事には湿式中和、酸化反応による微
細な針状オキシ水酸化鉄粒子の製造において水に
殆んど不溶な族化合物を使用しても極立つた本
発明の効果が認められるのである。 微細な針状オキシ水酸化鉄粒子は、第族化合
物の添加以外の工程については、公知の方法に準
じて製造する事ができる。すなわち、第1鉄塩あ
るいは第1鉄塩と第2鉄塩との混合物を水溶液と
し、これに周期律表第族元素より選ばれた1種
もしくは2種以上の化合物の水溶液あるいは水懸
濁液を加え、次いでアルカリ水溶液を投入して中
和反応を行わせて不溶性物質を形成させ、次に空
気により酸化反応を続けると微細な針状オキシ水
酸化鉄が形成される。この湿式中和、酸化反応に
おいては、鉄塩の種類・量・水溶液濃度、周期律
表第族元素化合物の種類・量、またアルカリ物
質の種類・量・水溶液濃度、更に中和反応段階で
の温度および維持時間や酸化反応を進めるための
温度および空気供給量、速度、時間等の多くの操
作因子があり、最終生成物であるオキシ水酸化鉄
粒子の形態に微妙な影響を与える。周期律表第
族元素化合物を副成分として導入する事によつて
生ずる影響は複雑で多岐にわたるが、一般的に言
えば周期律表第族元素化合物を用いない公知の
場合との比較において、中和酸化反応温度を5〜
10℃高く設定し、場合によつては空気供給量を20
〜40%増量すれば、殆んど同等の粒子形態を示す
オキシ水酸化鉄粒子を製造する事ができる。 湿式中和、酸化反応によつて形成されたオキシ
水酸化鉄粒子は、水洗、過操作を経た後、通常
100〜150℃で空気浴中で乾燥し、必要に応じて微
粉化あるいは顆粒化して乾燥オキシ水酸化鉄粒子
粉末を得る。場合によつては更に250〜300℃での
仮焼を行ない、仮焼オキシ水酸化鉄粒子粉末とし
てもよい。 乾燥乃至仮焼オキシ水酸化鉄粒子粉末を原料と
して、強磁性酸化鉄(Fe3O4、γ―Fe2O3)、およ
び/または強磁性金属鉄(α―Fe)粒子を製造
するには、公知の方法に準じて行なう事ができ
る。即ち、例えば反応用原料ガスの予熱器を備
え、また外部より温度規制可能な鋼管製反応器に
乾燥あるいは仮焼オキシ水酸化鉄微粒子粉末を充
填し、300〜500℃で還元性ガスを導入して、また
場合によつては水を適当量同伴して接触反応させ
ればFe3O4粒子粉末が得られ、また引き続き200
〜400℃で酸化性ガスを導入して接触酸化反応を
行なう事によつてγ―Fe2O3粒子粉末が得られ
る。また乾燥あるいは仮焼オキシ水酸化鉄微粒子
粉末または上記強磁性酸化鉄微粒子粉末を直接原
料として用い、同様な反応器で200〜500℃で還元
性ガスによる接触還元反応を行なう事によつてα
―Fe微粒子粉末を製造する事が可能である。こ
れら酸化あるいは還元反応の反応器は、固定床、
移動床いずれの型式でもよく、また常圧反応であ
る必要はなく加圧下でもよい。本発明では、反応
用原料ガスの供給量、供給速度には原則的には大
きな制限は必要ないが、気体空間速度(GHSV)
で表示すれば0.1〜100Nl/gr―Fe/hr、好ま
しくは2―50Nl/gr-Fe/hrの範囲が適当であ
る。この範囲より少ない量では反応の進行が遅く
現実的ではなく、またこれより多い量では反応器
内の圧損が増大するので反応操作上必ずしも適切
とは言えない。 更に反応温度範囲についても上記範囲からはず
れると、低温側では反応進行速度が遅く、反応の
完結に長時間を要して現実的ではなくなり、高温
側では反応速度が早すぎるため不必要な粒子破
損、破壊、更には焼結をまねきやすくなる傾向が
ある。 本発明の方法により、周期律表第族元素を副
成分として含む針状オキシ水酸化鉄微粒子を原料
として、気固接触反応によつて得た強磁性酸化鉄
(Fe3O4、γ―Fe2O3)および金属鉄(α―Fe)
微粒子の形態は、高倍率の電子顕微鏡観察によれ
ば、原料とした針状オキシ水酸化鉄微粒子の形態
を殆んど完全に保持しており、粒子の破損、破
壊、更には粒子間架橋すなわち焼結の様な現象は
殆んど見られない。更に本発明の方法により製造
した強磁性鉄化合物の磁気特性も、例えば保持力
(Hc)で見ると、粒子の大きさや針状比によつて
も変わるが、Fe3O3およびγ―Fe2O3の場合、Hc
=350〜550Oe、またα―Feの場合Hc=1000〜
1500Oeと極めて高いHcを有し、磁気記録用強磁
性鉄化合物に要求される性状をよく満足させるも
のであり実用的価値が高い。 以下、実施例および比較例により本発明を詳細
に説明する。 実施例 1 A オキシ水酸化鉄針状粒子の製造 撹拌機付、内容積50の反応器を使用する。
FeSO4・7H2O1000grを、50℃に保温した
H2O20中に投入して水溶液とし、別にCa
(NO32・4H2O10grをH2O100ml中に溶解させ
た水溶液を、上記鉄化合物水溶液に投入して10分
間撹拌混合を続けた。 次いで、あらかじめ用意しておいたNaOH300
grをH2O 1000ml中に溶解させた50℃水溶液を
徐々に投入して50分間撹拌混合を続け、中和反応
を完結させた後、器内の液を73℃に昇温加熱し
て、100Nl/min.の供給速度で空気を吹き込み、
酸化反応を開始し、5時間続けた。 この段階で、黄色状のオキシ水酸化鉄が不溶性
沈澱粒子として得られる。 次に反応器を室温に放冷し、以後水洗、吸引
過によりオキシ水酸化鉄粒子のペースト状物を
得、110℃で一夜乾燥して、乾燥オキシ水酸化鉄
粒子固形物を得た。このものを木ハンマーを用い
て6〜12メツシユの顆粒状物に粗砕して、乾燥オ
キシ水酸化鉄粒子顆粒体とした。 この顆粒体を常法により50000倍の倍率で電子
顕微鏡観察に供した所、形状のよく揃つた針状微
粒子のみが凝集のない最小単位として存在し、大
きさは主として長軸0.2〜0.3μ、短軸0.02〜0.04μ
であつた。 B Fe3O4磁性粒子の製造および磁気特性の評価 上記の微細な針状オキシ水酸化鉄微粒子顆粒体
100gr.を、反応ガス用予熱器を持ち、またSiC粒
子等からなる流動浴により長軸方向への均一な加
熱規制可能な内径1.5インチの鋼管製反応器へ充
填し、H2ガスを6.00Nl/hrの供給速度で導入し
て、385℃で還元を行ない、磁性体であるCa含有
Fe3O4粒子顆粒体を製造した。 電子顕微鏡により観察したCa含有Fe3O4粒子顆
粒体の粒子形態は、微細な針状形粒子を最小粒子
単位として持ち、長軸は0.2〜0.3μ、短軸は0.02〜
0.03μで、原料としたCa含有オキシ水酸化鉄粒子
顆粒体の最小粒子単位の形態をよく継承してお
り、破損、破壊、更には焼結した粒子は認められ
なかつた。 このCa含有Fe3O4粒子顆粒体の磁気特性を評価
した所、Hc=512Oe、σs=76.5emu/gr.および
R=0.52であつた。 実施例 2〜8 実施例1と同様にして、周期律表第族の各種
元素を含む針状オキシ水酸化鉄粒子を製造した。
結果を表1に示した。 また、この周期律表第族元素含有針状オキシ
水酸化鉄粒子顆粒体を、それぞれ実施例1(B)と同
様な方法でH2―還元して、Fe3O4粒子顆粒体を製
造した。結果を表2に示した。 比較例 1 Ca(NO32・4H2O 150gr.をH2O 1000ml中に
溶解して用いる以外は実施例1(A)と全く同様にし
て針状オキシ水酸化鉄粒子を製造しようと試みた
が、空気酸化を長期にわたつて続けても、黄色状
オキシ水酸化鉄粒子は形成されず、黒色状の含水
Fe3O4が得られ、しかもこの含水Fe3O4は、0.4〜
0.7μ程度の径を有する球状様の形態を示すに留ま
つた。 これを加熱脱水してFe3O4粒子としても、磁気
特性はHc=298Oeと満足されるものではなかつ
た。 比較例 2 実施例1の方法において、Ca(NO32・4H2O
を使用する事なく、また中和温度45℃、酸化温度
68℃として、主たる長軸0.2〜0.3μ、短軸0.02〜
0.03μを有する針状粒子を最小粒子単位として持
つオキシ水酸化鉄粒子顆粒体を製造した。 このオキシ水酸化鉄粒子顆粒体を用いて、実施
例1(B)と全く同様にしてFe3O4粒子顆粒体を製造
した所、一部に0.2μ程度の球状体様微粒子が見ら
れ、更に原料として使用したオキシ水酸化鉄粒子
顆粒体の最小粒子単位である針状微粒子の形態を
おおまかには保持するものの、微粒子表面は
0.05μ程度の凹凸が認められた。 得られたFe3O4粒子顆粒体の磁気持性は、Hc
=425Oe、σS=70.2emu/grおよびR=0.46で
あつた。 実施例 9 実施例1(B)に記載したCa含有Fe3O4粒子顆粒体
を、熱風流通式の電気乾燥器を利用して、300℃
で空気酸化して、磁性体であるCa含有γ―Fe2O3
粒子顆粒体を製造した。 該Ca含有γ―Fe2O3粒子顆粒体の最小粒子単位
を電子顕微鏡で観察した所、主たる長軸0.2〜
0.3μ、短軸0.02〜0.03μの針状粒子形態を示し、破
損、破壊または焼結を示す粒子は殆んど見られ
ず、原料としたCa含有針状Fe3O4粒子顆粒体の最
小粒子単位の形態を忠実に継承していた。 このCa含有γ―Fe2O3粒子顆粒体の磁気特性
は、Hc=396Oe、σS=72.6emu/gr.、R=0.52
であつた。 実施例 10〜12 実施例1乃至8の周期律表第族元素含有針状
オキシ水酸化鉄粒子顆粒体よりH2―還元して製
造した針状Fe3O4粒子顆粒体を用いて、実施例9
と同様に空気酸化してγ―Fe3O4粒子顆粒体を製
造した。 結果を表3に示した。 比較例 3 比較例2に記載したFe3O4粒子顆粒体を、実施
例9と全く同様にして空気酸化してγ―Fe2O3
子顆粒体を製造した。 原料としたFe3O4粒子顆粒体自体0.2μ程度の球
状体様粒子を一部含んでいたが、生成γ―Fe2O3
粒子顆粒体においても0.2〜0.3μ程度の球状体様
粒子をいく分増加して含み、更に長軸0.2〜0.3μ、
短軸0.02〜0.03μを主とした針状粒子を主成分と
して持つものの、粒子表面は0.05〜0.08μ程度の
凹凸が顕著に認められるものを多数含むものであ
つた。 このγ―Fe2O3粒子顆粒体の磁気特性は、Hc
=322Oe、σS=63.9emu/gr.、R=0.45であつ
た。 実施例 13〜19 実施例1(A)で製造した針状オキシ水酸化鉄粒子
顆粒体を使用(実施例13,14)、また実施例2(A)
の針状オキシ水酸化鉄粒子顆粒体(実施例15)、
または実施例1(B)で製造した針状Fe3O4粒子顆粒
体(実施例16)、または実施例4(B)の針状Fe3O4
粒子顆粒体(実施例17)、または実施例9で製造
した針状γ―Fe2O3粒子顆粒体(実施例18)、ま
た実施例12の針状γ―Fe2O3粒子顆粒体(実施例
19)を用いて、H2―還元により針状α―Fe粒子
顆粒体を製造する例を示した。 原料粒子顆粒体100grを、実施例9に記載し
た反応器に充填し、H2ガスをGHSV=35Nl―
H2/gr―Fe/hr.の供給速度で流通させて、所
定温度、所定時間で還元反応を行なつた。 反応終了後、室温へ降温させて、N2ガス雰囲
気下で還元粒子顆粒体を採取、X―線回折像の測
定に供した所、あらかじめ作成しておいた検量線
から、いずれも98%以上が高結晶性のα―Fe結
晶体を示した。 これらのα―Fe粒子顆粒体の粒子形態および
磁気特性を測定して表4に示す結果を得た。 比較例 4〜6 比較例2に記載した針状オキシ水酸化鉄粒子顆
粒体、また同比較例において一部粒子形状に変化
の見られた主として針状なFe3O4粒子顆粒体、更
に比較例3に記載した一部粒子形状に変化の見ら
れた主として針状なγ―Fe2O3粒子顆粒体を用
い、実施例1(B)に記載した反応器を利用してH2
―還元を行なつた。 H2ガス供給速度:GHSV=34.9Nl―H2 /gr―Fe/hr. 還元温度:T=342℃ 維持時間:t=18.0hrs. 既述の方法により還元化粒子顆粒体の結晶形態
および磁気特性を測定した所、いずれも99%以上
のα―Fe結晶体であり、更に表5に示す結果が
得られた。
The present invention relates to a method for producing a ferromagnetic iron compound having a fine particle shape. More specifically, the present invention relates to a method for producing ferromagnetic iron oxide Fe 3 O 4 , γ-Fe 2 O 3 and/or metal (α-Fe) fine particles for magnetic recording. Magnetic materials for magnetic recording have a high coercive force (Hc), high saturation magnetic susceptibility (σ S ) and residual magnetic susceptibility (σ r ), and a large squareness ratio (R = σ rS ). Magnetic properties such as these are required. In the case of iron-based ferromagnetic compounds, it is advantageous to give them a fine acicular particle morphology, and many methods for producing acicular iron oxyhydroxide particles and acicular iron oxide particles have been reported. For example, in Patent No. 166146 (August 4, 1989), FeSO4
Using 7H 2 O as the iron raw material, after neutralization reaction with NaOH,
A method for producing acicular iron oxyhydroxide particles applying air oxidation and seeded crystallization methods is described. The disadvantages of these conventional methods for producing acicular iron compounds include (a) when fine acicular iron oxyhydroxide particles are catalytically reacted with a reducing gas to form acicular Fe 3 O 4 particles; (b) When the acicular Fe 3 O 4 particles are treated with an oxidizing gas to form acicular γ-Fe 2 O 3 particles, (c) fine acicular iron oxyhydroxide particles and/or iron oxide particles Therefore, when α-Fe particles are formed by a catalytic reaction with a reducing gas, most of the iron oxyhydroxide particles and/or iron oxide particles used as raw materials have a fine acicular morphology. However, as a result of catalytic reactions caused by oxidizing and/or reducing gases, particle breakage, destruction, and even sintering inevitably occur. As a result, the magnetic properties of the fine particles are significantly deteriorated, that is, the coercive force, saturation magnetic susceptibility, residual magnetic susceptibility, and squareness ratio are reduced, and the properties required for ferromagnetic iron compounds for magnetic recording are greatly impaired. An object of the present invention is to provide a method for producing ferromagnetic iron compound fine particles that does not cause such particle destruction. The present inventors have discovered that fine acicular iron oxyhydroxide fine particles containing one or more elements selected from the elements belonging to Group 3 show extremely good suitability as raw materials and are suitable for reduction and/or oxidation reactions. Therefore, the present invention was achieved by discovering the fact that particle shape damage, destruction, and even sintering hardly occur. The configuration of the present invention is such that when iron oxyhydroxide particles, which are the starting material for producing ferromagnetic iron compound particles, are precipitated from an aqueous solution of iron () or iron () ions,
It is characterized by containing a specific amount of a group element compound of the periodic table by coprecipitation. In the present invention, the ferrous salts used are sulfates, chlorides, or various mineral acid salts, and can be used alone or in combination of two or more. Sulfates are the most commonly used. Furthermore, ferric salts include sulfates,
These are nitrates, carbonates, chlorides and various mineral acid salts. When a sulfate is used as the ferrous salt, the ferric salt used in combination is preferably a sulfate and/or a nitrate, but is not necessarily limited thereto. Furthermore, the alkali used in the present invention is
Alkali hydroxides such as KOH and NaOH, K 2 CO 3 and
Alkali carbonates such as Na 2 CO 3 , and aqueous solutions of NH 3 ,
Furthermore, it refers to substances such as urea that undergo thermal decomposition when heated in an aqueous solution state and have substantially the same effect as NH 3 . It is essentially possible to implement the present invention by selecting any of these. The elements of Group 1 of the periodic table used in the method of the present invention may be any element alone or in combination, and in particular, the use of one or more of Mg, Ca, Ba, and Zn in combination has an excellent effect. show. The total amount of these Group Group elements of the periodic table needs to be in an atomic weight ratio of 0.001/100 to 10/100 with Fe,
Preferably 0.01/100 to 5/100, more preferably
It is within the range of 0.05/100 to 1/100. If the amount added is smaller than this, the effect of adding the group element will not be noticeable, and if the amount added is larger than this, it will be difficult to form fine acicular particles during the production of iron oxyhydroxide. Become. The method of introducing a group element of the periodic table as a subcomponent of acicular iron oxyhydroxide particles is to use a compound such as an inorganic salt of a group element as a fine powder, or to add the fine powder to water or a solvent compatible with water. A compound such as an inorganic salt may be added to the aqueous solution of the ferrous salt and/or ferric salt as a suspension or as a solution in water or a solvent compatible with water. Operational factors such as addition rate, solution concentration, solution temperature, and stirring intensity may be selected depending on the type of group element compound.
There are also methods in which the entire amount of the group element compound is added to the iron salt aqueous solution at once, a method in which a portion is added continuously or intermittently in the middle of the neutralization reaction between the iron salt aqueous solution and the alkali, and a portion is added in parts in the middle of the neutralization reaction between the iron salt aqueous solution and the alkali. It is possible to use a method in which the components are added separately after neutralization and then aged at a certain temperature for a certain period of time. Various nitrates, sulfates, carbonates, or mineral acid salt compounds may be used as the source of the group element, and there are no particular restrictions on the form of the compound. Generally, many of these are water soluble;
Surprisingly, in the production of fine acicular iron oxyhydroxide particles through wet neutralization and oxidation reactions, the outstanding effects of the present invention are observed even when using group compounds that are almost insoluble in water. . The fine acicular iron oxyhydroxide particles can be produced according to known methods except for the addition of the group compound. That is, a ferrous salt or a mixture of a ferrous salt and a ferric salt is made into an aqueous solution, and an aqueous solution or suspension of one or more compounds selected from Group elements of the periodic table is added to the aqueous solution. is added, then an alkaline aqueous solution is added to perform a neutralization reaction to form an insoluble substance, and then an oxidation reaction is continued with air to form fine acicular iron oxyhydroxide. In this wet neutralization and oxidation reaction, the type, amount, and aqueous solution concentration of the iron salt, the type and amount of the group element compound of the periodic table, the type, amount, and aqueous solution concentration of the alkaline substance, and furthermore, There are many operating factors, such as temperature and holding time, and the amount, rate, and time of temperature and air supply to proceed with the oxidation reaction, which have a subtle influence on the morphology of the final product iron oxyhydroxide particles. The effects caused by introducing a compound of a group element of the periodic table as a subcomponent are complex and wide-ranging, but generally speaking, when compared with known cases that do not use compounds of a group element of the periodic table, The oxidation reaction temperature is 5~
Set the temperature 10°C higher, and in some cases increase the air supply by 20°C.
By increasing the amount by ~40%, iron oxyhydroxide particles having almost the same particle morphology can be produced. Iron oxyhydroxide particles formed through wet neutralization and oxidation reactions are usually washed with water and subjected to over-operation.
Dry in an air bath at 100 to 150°C, and if necessary, micronize or granulate to obtain dry iron oxyhydroxide particles. Depending on the case, it may be further calcined at 250 to 300°C to produce calcined iron oxyhydroxide particles. To produce ferromagnetic iron oxide (Fe 3 O 4 , γ-Fe 2 O 3 ) and/or ferromagnetic metal iron (α-Fe) particles using dried or calcined iron oxyhydroxide particles as a raw material , can be carried out according to known methods. That is, for example, a steel pipe reactor equipped with a preheater for the raw material gas for reaction and whose temperature can be regulated from the outside is filled with dried or calcined iron oxyhydroxide fine particles, and a reducing gas is introduced at 300 to 500°C. In some cases, Fe 3 O 4 particle powder can be obtained by carrying out a contact reaction with an appropriate amount of water.
By introducing an oxidizing gas at ~400°C and performing a catalytic oxidation reaction, γ-Fe 2 O 3 particle powder can be obtained. In addition, by directly using the dried or calcined iron oxyhydroxide fine particles powder or the above-mentioned ferromagnetic iron oxide fine particle powder as a raw material and carrying out a catalytic reduction reaction with a reducing gas at 200 to 500°C in a similar reactor, α
-It is possible to produce Fe fine particle powder. These oxidation or reduction reaction reactors are fixed bed,
Any type of moving bed may be used, and the reaction need not be at normal pressure, but may be under pressure. In the present invention, there is no need to impose any major restrictions on the supply amount or supply rate of raw material gas for reaction in principle, but gas hourly space velocity (GHSV)
When expressed as: 0.1 to 100 Nl/gr-Fe/hr, preferably 2 to 50 Nl/gr -Fe /hr, it is appropriate. If the amount is less than this range, the reaction progresses slowly and is not practical, and if the amount is more than this range, the pressure drop in the reactor increases, so it is not necessarily suitable for reaction operation. Furthermore, if the reaction temperature range deviates from the above range, the reaction progresses at low temperatures and takes a long time to complete, making it unrealistic. At high temperatures, the reaction speed is too fast, resulting in unnecessary particle damage. , tends to easily lead to destruction and even sintering. By the method of the present invention, ferromagnetic iron oxide (Fe 3 O 4 , γ-Fe 2 O 3 ) and metallic iron (α-Fe)
According to high-magnification electron microscopy, the morphology of the fine particles almost completely retains the morphology of the acicular iron oxyhydroxide fine particles used as the raw material. Phenomena such as sintering are hardly observed. Furthermore, the magnetic properties of the ferromagnetic iron compound produced by the method of the present invention, for example in terms of coercive force (Hc), vary depending on the particle size and acicular ratio, but Fe 3 O 3 and γ-Fe 2 For O3 , Hc
=350~550Oe, and in case of α-Fe, Hc=1000~
It has an extremely high Hc of 1500 Oe, satisfies the properties required for ferromagnetic iron compounds for magnetic recording, and has high practical value. Hereinafter, the present invention will be explained in detail with reference to Examples and Comparative Examples. Example 1 A. Production of iron oxyhydroxide acicular particles A reactor with an internal volume of 50 mm and equipped with a stirrer is used.
FeSO 4・7H 2 O 1000gr was kept at 50℃
Pour into H2O20 to make an aqueous solution, and separately add Ca
An aqueous solution in which 10 gr of (NO 3 ) 2 ·4H 2 O was dissolved in 100 ml of H 2 O was added to the above iron compound aqueous solution, and stirring and mixing were continued for 10 minutes. Next, NaOH300 prepared in advance
Gradually add a 50°C aqueous solution of gr dissolved in 1000ml of H 2 O, continue stirring and mixing for 50 minutes, complete the neutralization reaction, and then heat the liquid in the vessel to 73°C. Blow air at a supply rate of 100Nl/min.
The oxidation reaction was started and continued for 5 hours. At this stage, yellowish iron oxyhydroxide is obtained as insoluble precipitated particles. Next, the reactor was allowed to cool to room temperature, and then washed with water and suctioned to obtain a paste of iron oxyhydroxide particles, which was dried overnight at 110°C to obtain a solid solid of dry iron oxyhydroxide particles. This material was crushed into granules of 6 to 12 meshes using a wooden hammer to obtain dry iron oxyhydroxide particle granules. When this granule was subjected to electron microscopy at a magnification of 50,000 times using a conventional method, only well-shaped acicular fine particles were present as the smallest unit without agglomeration, and the size was mainly 0.2 to 0.3 μ along the long axis. Short axis 0.02~0.04μ
It was hot. B Production of Fe 3 O 4 magnetic particles and evaluation of magnetic properties The above fine acicular iron oxyhydroxide fine particle granules
100gr. was charged into a steel pipe reactor with an inner diameter of 1.5 inches, which has a preheater for the reaction gas and can control uniform heating in the long axis direction using a fluidized bath made of SiC particles, etc., and 6.00Nl of H 2 gas. /hr supply rate, reduction was carried out at 385℃, and magnetic Ca-containing
Fe 3 O 4 particle granules were produced. The particle morphology of Ca-containing Fe 3 O 4 particle granules observed by electron microscopy has fine needle-shaped particles as the smallest particle unit, the long axis is 0.2 to 0.3μ, and the short axis is 0.02 to 0.3μ.
The particle diameter was 0.03μ, which closely followed the morphology of the smallest particle unit of the Ca-containing iron oxyhydroxide particle granules used as the raw material, and no broken, broken, or even sintered particles were observed. When the magnetic properties of this Ca-containing Fe 3 O 4 particle granule were evaluated, it was found that Hc = 512 Oe, σ s = 76.5 emu/gr., and R = 0.52. Examples 2 to 8 Acicular iron oxyhydroxide particles containing various elements of Group Group of the Periodic Table were produced in the same manner as in Example 1.
The results are shown in Table 1. In addition, each of these acicular iron oxyhydroxide particle granules containing a group element of the periodic table was reduced with H 2 in the same manner as in Example 1(B) to produce Fe 3 O 4 particle granules. . The results are shown in Table 2. Comparative Example 1 An attempt was made to produce acicular iron oxyhydroxide particles in the same manner as in Example 1(A) except that 150gr . of Ca( NO3 ) 2.4H2O was dissolved in 1000ml of H2O . However, even if air oxidation was continued for a long time, yellowish iron oxyhydroxide particles were not formed, and blackish water-containing particles were formed.
Fe 3 O 4 is obtained, and this hydrated Fe 3 O 4 is 0.4~
It only showed a spherical-like morphology with a diameter of about 0.7μ. Even when this was heated and dehydrated to form Fe 3 O 4 particles, the magnetic properties were unsatisfactory as Hc = 298 Oe. Comparative Example 2 In the method of Example 1, Ca(NO 3 ) 2・4H 2 O
Neutralization temperature 45℃, oxidation temperature
At 68℃, main major axis 0.2~0.3μ, minor axis 0.02~
Iron oxyhydroxide particle granules having needle-like particles with a diameter of 0.03 μ as the smallest particle unit were produced. When Fe 3 O 4 particle granules were produced using this iron oxyhydroxide particle granule in exactly the same manner as in Example 1 (B), spheroid-like fine particles of about 0.2μ were observed in some parts. Furthermore, although the shape of the acicular fine particles, which is the smallest particle unit of the iron oxyhydroxide particle granules used as a raw material, is roughly maintained, the surface of the fine particles is
Roughness of approximately 0.05μ was observed. The magnetic property of the obtained Fe 3 O 4 particle granules is Hc
= 425 Oe, σ S = 70.2 emu/gr and R = 0.46. Example 9 The Ca-containing Fe 3 O 4 particle granules described in Example 1 (B) were heated to 300°C using a hot air flow electric dryer.
is oxidized in the air to form magnetic Ca-containing γ-Fe 2 O 3
A particle granule was produced. When the smallest particle unit of the Ca-containing γ-Fe 2 O 3 particle granules was observed with an electron microscope, the main long axis was 0.2 to
0.3μ, short axis 0.02-0.03μ, and showed an acicular particle morphology, with almost no particles showing breakage, destruction, or sintering, which was the smallest of the Ca-containing acicular Fe 3 O 4 particle granules used as raw materials. It faithfully inherited the form of each particle. The magnetic properties of this Ca-containing γ-Fe 2 O 3 particle granule are: Hc = 396 Oe, σ S = 72.6 emu/gr., R = 0.52
It was hot. Examples 10 to 12 Conducted using acicular Fe 3 O 4 particle granules produced by H 2 -reduction from the acicular iron oxyhydroxide particle granules containing Group Group elements of the periodic table of Examples 1 to 8. Example 9
γ-Fe 3 O 4 particle granules were produced by air oxidation in the same manner as above. The results are shown in Table 3. Comparative Example 3 The Fe 3 O 4 particle granules described in Comparative Example 2 were air oxidized in exactly the same manner as in Example 9 to produce γ-Fe 2 O 3 particle granules. Although the Fe 3 O 4 particle granules used as raw materials contained some spheroid-like particles of about 0.2μ, the produced γ-Fe 2 O 3
The particle granules also contain a somewhat increased number of spheroid-like particles of about 0.2 to 0.3μ, and further have long axes of 0.2 to 0.3μ,
Although the main component was acicular particles with a minor axis of 0.02 to 0.03μ, the particle surface contained many particles with conspicuous irregularities of about 0.05 to 0.08μ. The magnetic properties of this γ-Fe 2 O 3 particle granule are Hc
= 322 Oe, σ S = 63.9 emu/gr., and R = 0.45. Examples 13 to 19 The acicular iron oxyhydroxide particle granules produced in Example 1(A) were used (Examples 13 and 14), and Example 2(A)
Acicular iron oxyhydroxide particle granules (Example 15),
Or the acicular Fe 3 O 4 particle granules produced in Example 1 (B) (Example 16), or the acicular Fe 3 O 4 of Example 4 (B)
The particle granule (Example 17), or the acicular γ-Fe 2 O 3 particle granule produced in Example 9 (Example 18), or the acicular γ-Fe 2 O 3 particle granule produced in Example 12 ( Example
19) was used to produce acicular α-Fe particle granules by H 2 -reduction. 100g of raw material particle granules were charged into the reactor described in Example 9, and H2 gas was added to GHSV=35Nl.
A reduction reaction was carried out at a predetermined temperature and for a predetermined time by flowing H 2 /gr-Fe/hr. After the reaction was completed, the temperature was lowered to room temperature, the reduced particle granules were collected under an N 2 gas atmosphere, and the X-ray diffraction images were measured. According to the calibration curve prepared in advance, all of the reduced particle granules were 98% or higher. showed a highly crystalline α-Fe crystal. The particle morphology and magnetic properties of these α-Fe particle granules were measured, and the results shown in Table 4 were obtained. Comparative Examples 4 to 6 Acicular iron oxyhydroxide particle granules described in Comparative Example 2, mainly acicular Fe 3 O 4 particle granules in which some changes in particle shape were observed in the comparative example, and further comparison Using the mainly acicular γ-Fe 2 O 3 particle granules with some changes in particle shape described in Example 3, H 2 was added using the reactor described in Example 1 (B).
-I made a return. H 2 gas supply rate: GHSV = 34.9Nl-H 2 /gr-Fe/hr. Reduction temperature: T = 342°C Holding time: t = 18.0hrs. The crystal morphology and magnetism of the reduced particle granules were determined by the method described above. When the properties were measured, all of them were found to be 99% or more α-Fe crystals, and the results shown in Table 5 were obtained.

【表】 原料とした。
*2) 重量組成比に見合う量をHO100ml中に溶
解して使用した。但し、実施例8では懸濁して使用した

*3) 300grをHO1に溶解して使用した。
[Table] Used as raw material.
*2) An amount corresponding to the weight composition ratio was dissolved in 100 ml of H 2 O and used. However, in Example 8, it was used in suspension.
*3) 300gr was dissolved in H2O1 and used.

【表】【table】

【表】 たる長軸径と短軸径を示した。
[Table] The major axis diameter and short axis diameter of the barrel are shown.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 第1鉄塩あるいは第1鉄塩と第2鉄塩との混
合物を主成分とし、Mg,CaおよびBaからなる
群より選択される、周期律表第族に属する元素
の1種もしくは2種以上の元素の化合物を副成分
として用いて、アルカリとの湿式中和反応および
酸化反応によりオキシ水酸化鉄微粒子を製造し、
次いでこのものを水洗、濾過乾燥して、オキシ水
酸化鉄微粒子粉末あるいは顆粒を製造し、このも
のを加熱下に還元および/または酸化させて磁気
記録用強磁性鉄化合物粒子粉末あるいは顆粒を製
造するに際し、上記周期律表第族に属する元素
を鉄との原子重量比で0.001/100〜10/100の範
囲内で含ませる事を特徴とする磁気記録用強磁性
鉄化合物粒子の製造法。
1 The main component is ferrous salt or a mixture of ferrous salt and ferric salt, and one or two elements belonging to group of the periodic table are selected from the group consisting of Mg, Ca and Ba. Using a compound of the above elements as a subcomponent, iron oxyhydroxide fine particles are produced by a wet neutralization reaction with an alkali and an oxidation reaction,
Next, this product is washed with water, filtered and dried to produce iron oxyhydroxide fine particles or granules, and this product is reduced and/or oxidized under heating to produce ferromagnetic iron compound particles or granules for magnetic recording. A method for producing ferromagnetic iron compound particles for magnetic recording, characterized in that an element belonging to Group 3 of the periodic table is contained in an atomic weight ratio of 0.001/100 to 10/100 with respect to iron.
JP15359579A 1979-11-29 1979-11-29 Production of iron compound particle for magnetic recording Granted JPS5678430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15359579A JPS5678430A (en) 1979-11-29 1979-11-29 Production of iron compound particle for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15359579A JPS5678430A (en) 1979-11-29 1979-11-29 Production of iron compound particle for magnetic recording

Publications (2)

Publication Number Publication Date
JPS5678430A JPS5678430A (en) 1981-06-27
JPS6353133B2 true JPS6353133B2 (en) 1988-10-21

Family

ID=15565917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15359579A Granted JPS5678430A (en) 1979-11-29 1979-11-29 Production of iron compound particle for magnetic recording

Country Status (1)

Country Link
JP (1) JPS5678430A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56109827A (en) * 1980-02-05 1981-08-31 Mitsui Toatsu Chem Inc Manufacture of iron compound particle for magnetic recording medium
JPS6158215A (en) * 1984-08-29 1986-03-25 Hitachi Maxell Ltd Manufacture of magnetic iron oxide powder
JP3106413B2 (en) * 1993-08-31 2000-11-06 富士電気化学株式会社 Oxide magnetic material and method for producing the same
JPH0766026A (en) * 1993-08-31 1995-03-10 Fuji Elelctrochem Co Ltd Oxide magnetic material and manufacture thereof
CN104971752B (en) * 2014-04-03 2017-10-13 南京工大环境科技有限公司 Magnetic catalyst suitable for catalytic oxidation technique and its preparation method and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4867198A (en) * 1971-12-17 1973-09-13
JPS55125205A (en) * 1979-03-10 1980-09-26 Bayer Ag Ferromagnetic metal pigment comprising essentially iron and method
JPS55149136A (en) * 1979-05-11 1980-11-20 Tdk Corp Manufacture of iron oxide hydrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4867198A (en) * 1971-12-17 1973-09-13
JPS55125205A (en) * 1979-03-10 1980-09-26 Bayer Ag Ferromagnetic metal pigment comprising essentially iron and method
JPS55149136A (en) * 1979-05-11 1980-11-20 Tdk Corp Manufacture of iron oxide hydrate

Also Published As

Publication number Publication date
JPS5678430A (en) 1981-06-27

Similar Documents

Publication Publication Date Title
KR900000429B1 (en) Barium ferrite particles for magnetic recording media
EP0174078B1 (en) Iron catalyst for ammonia synthesis
JPH0154287B2 (en)
KR900002818B1 (en) Process for production of plate-like barium fenite pasticles for magnetic recording
JPH06122519A (en) Hydrated amorphous ferric oxide particle powder and its production
JPS6353133B2 (en)
JPS6020327B2 (en) Wet manufacturing method for magnetoplumbite type ferrite particles
US4052326A (en) Manufacture of γ-iron(III) oxide
JPS5919163B2 (en) Method for producing magnetic metal powder
JPS6313934B2 (en)
JPH0230626A (en) Iron carbide fine granule and production thereof
JPH0623053B2 (en) Method for producing equiaxed magnetic iron oxide pigment
GB1589355A (en) Acicular cobalt magnetic iron oxide and its manufacture
JPS62108738A (en) Production of ferromagnetic iron oxide powder
US5202043A (en) Process for the preparation of isometric magnetic iron oxide
US4272285A (en) Process for producing magnetic metal powders
RU2320409C2 (en) Method of preparing iron oxide containing catalysts
JP3638654B2 (en) Method for producing ferrite powder
JPS58167432A (en) Production of needle-like crystalline iron oxide particle powder
JPH05310431A (en) Iron alpha-oxyhydroxide and production of magnetic metal powder for magnetic recording using the compound
JPH06224020A (en) Manufacture of magnetic oxide powder
KR0136167B1 (en) Manufacturing method of iron oxide
JPS61141627A (en) Production of alpha-feooh needles
JPS64322B2 (en)
KR890003868B1 (en) Process for producing acicular particles containing an iron carbide