JPS6158215A - Manufacture of magnetic iron oxide powder - Google Patents
Manufacture of magnetic iron oxide powderInfo
- Publication number
- JPS6158215A JPS6158215A JP59179893A JP17989384A JPS6158215A JP S6158215 A JPS6158215 A JP S6158215A JP 59179893 A JP59179893 A JP 59179893A JP 17989384 A JP17989384 A JP 17989384A JP S6158215 A JPS6158215 A JP S6158215A
- Authority
- JP
- Japan
- Prior art keywords
- iron
- iron oxide
- aqueous solution
- powder
- oxide powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compounds Of Iron (AREA)
- Paints Or Removers (AREA)
- Magnetic Record Carriers (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は磁気テープその他の磁気記録媒体に使用され
る磁性酸化鉄粉末の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing magnetic iron oxide powder used in magnetic tapes and other magnetic recording media.
〔従来の技術]
一般に各種磁気記録媒体に使用されるT−酸化鉄ないし
マグネタイトからなる磁性酸化鉄粉末はα−オキシ水酸
化鉄を気相中で還元したのち必要に応じて酸化して製造
されるが、近年におけるオーディオ用およびビデオ用磁
気テープにあってはノイズの低減とSlN比の向上を図
るために比表面積が40rrl/9’前後の超微粒子か
らなる磁性酸化鉄粉末が要望されている。[Prior Art] Magnetic iron oxide powder made of T-iron oxide or magnetite, which is generally used in various magnetic recording media, is produced by reducing α-iron oxyhydroxide in a gas phase and then oxidizing it as necessary. However, in recent years, magnetic iron oxide powder consisting of ultrafine particles with a specific surface area of around 40rrl/9' has been required for audio and video magnetic tapes in order to reduce noise and improve the SIN ratio. .
ところが、上記α−オキシ水酸化鉄は通常では二価の鉄
塩とN aOHやKOHなどの強アルカリとの反応で析
出したFe(OH)2を空気の吹込みなどにて酸化して
得られたものであり(文献不詳)、軸比(長軸/短軸)
が15以上の非常に細長い形状の粒子であることから、
上記要望に対処するために微粒子化すると短軸が小さく
なって後工程の気相中での還元において粒子相互が容易
に焼結してしまい、良好な磁気特性を発揮させるのに必
要な針状形状が損なわれるという問題がある。However, the above-mentioned α-iron oxyhydroxide is usually obtained by oxidizing Fe(OH)2 precipitated by a reaction between a divalent iron salt and a strong alkali such as NaOH or KOH by blowing air. (Reference unknown), axial ratio (major axis/minor axis)
Since it is a very elongated particle with 15 or more,
When fine particles are made to meet the above requirements, the short axis becomes smaller and the particles easily sinter with each other during reduction in the gas phase in the subsequent process. There is a problem that the shape is lost.
またこのような問題を解決する手段として上記の軸比1
5以上であるα−オキシ水酸化鉄をオートクレーブ中で
水熱反応させることにより低軸比のα−オキシ水酸化鉄
に変成し、これを還元、酸化する方法が提案されている
(特公昭59−562号、特開昭55−21143号な
ど)。しかし、この提案法における上記変成はPH13
〜14程度の強アルカリ液中で溶解析出反応を行うもの
であるから、粒子形状(サイズと軸比)のコントロール
が困難であるとともに、磁気特性低下の原因となる粒状
のα−Fe20.、の混成が避けられず、また高濃度の
強アルカリを使用するために作業上の危険性が大きいと
いう欠点がある。In addition, as a means to solve this problem, the above-mentioned axial ratio 1
A method has been proposed in which α-iron oxyhydroxide having a molecular weight of 5 or more is subjected to a hydrothermal reaction in an autoclave to convert it into α-iron oxyhydroxide with a low axial ratio, and then reducing and oxidizing this (Japanese Patent Publication No. 59/1989). -562, JP-A No. 55-21143, etc.). However, the above metamorphosis in this proposed method is PH13
Since the dissolution precipitation reaction is carried out in a strong alkaline solution of about 14 to 14%, it is difficult to control the particle shape (size and axial ratio), and granular α-Fe20. , is unavoidable, and the use of a highly concentrated strong alkali poses a high operational risk.
[発明が解決しようとする問題点−]
この発明は、従来の一般的な磁性酸化鉄粉末の製造法で
はα−オキシ水酸化鉄が高軸比の針状粒子であるために
微粒子になると気相中での還元時に焼結して針状形状が
損なわれ、またこれを避けるために水熱処理にてα−オ
キシ水酸化鉄を低軸比化する場合に粒子形状のコントロ
ールが困難で且つα−Fe20.が混成し作業上の危険
性も大きいという問題点を解決すること、すなわち特定
手段にて得られた紡錘状粒子をα−Fe203の混成お
よび作業上の危険性がなく且つ粒子サイズの変化をほと
んど伴わない水熱処理にて低軸比の針状粒子からなるα
−オキシ水酸化鉄となし、これを使用することにより気
相中での還元時に良好な針状形状を維持させることが可
能となる磁性酸化鉄粉末の製造方法を提供することを目
的としている。[Problems to be Solved by the Invention] This invention solves the problem that, in the conventional general manufacturing method of magnetic iron oxide powder, α-iron oxyhydroxide is acicular particles with a high axial ratio, so it becomes fine particles. During reduction in the phase, the acicular shape is lost due to sintering, and in order to avoid this, it is difficult to control the particle shape when reducing the axial ratio of α-iron oxyhydroxide through hydrothermal treatment. -Fe20. To solve the problem that the spindle-shaped particles obtained by a specific method are mixed with α-Fe203, are not dangerous to work, and have almost no change in particle size. α consisting of acicular particles with low axial ratio due to unaccompanied hydrothermal treatment
The object of the present invention is to provide a method for producing magnetic iron oxide powder, which makes it possible to maintain a good acicular shape during reduction in a gas phase by using iron oxyhydroxide.
[問題点を解決するための手段]
この発明者らは、オーディオ用およびビデオ用の磁気テ
ープにおけるノイズの低減とS/N比の向上の要望に対
処し得る高比表面積となる超微粒子の磁性酸化鉄粉末の
製造方法について鋭意検討を重ねた結果、二価の鉄イオ
ンと炭酸イオンとの反応物を酸化することにより紡錘状
粒子が得られ、この紡錘状粒子をオートクレーブ中で中
性ないし弱アルカリ領域下で水熱処理すると、該紡錘状
粒子のサイズをほぼ継承した低軸比の針状粒子からなる
α−オキシ水酸化鉄が得られ、従ってこのα−オキシ水
酸化鉄が超微粒子であってものちの気相中での還元時に
焼結しにくく良好な針状形状が維持される結果、最終的
に優れた磁気特性を備えた超微粒子の磁性酸化鉄粉末を
得ることが可能であり、しかも上記水熱反応時のP)I
調整にて軸比のコントロールも行い得ることを見い出し
、この発明をなすに至った。[Means for Solving the Problems] The present inventors have developed an ultrafine magnetic particle that has a high specific surface area that can meet the demands for reducing noise and improving the S/N ratio in magnetic tapes for audio and video. As a result of extensive research into the production method of iron oxide powder, spindle-shaped particles were obtained by oxidizing the reaction product of divalent iron ions and carbonate ions, and the spindle-shaped particles were heated to neutral or weak in an autoclave. When hydrothermally treated in an alkaline region, α-iron oxyhydroxide consisting of acicular particles with a low axial ratio that almost inherits the size of the spindle-shaped particles is obtained, and therefore this α-iron oxyhydroxide is ultrafine particles. As a result, it is difficult to sinter and maintains a good acicular shape during reduction in the gas phase, and as a result, it is possible to finally obtain ultrafine magnetic iron oxide powder with excellent magnetic properties. Moreover, P)I during the above hydrothermal reaction
It was discovered that the axial ratio can also be controlled through adjustment, leading to this invention.
すなわち、この発明は、二価の鉄イオンを含有する水溶
液と該鉄イオンに対して当量以上の炭酸イオンを含むア
ルカリ水溶液との反応にて析出した沈殿物を酸化して紡
錘状粒子を生成させ、この粒子をオートクレーブ中にお
いて中性ないし弱アルカリ性領域下で水熱反応させ、得
られたα−オキシ水酸化鉄粉末を気相中で還元したのち
必要に応じて酸化してT−酸化鉄ないしマグネタイトの
如き磁性酸化鉄粉末とすることを特徴とする磁性酸化鉄
粉末の製造方法に係る。That is, the present invention oxidizes a precipitate precipitated by a reaction between an aqueous solution containing divalent iron ions and an alkaline aqueous solution containing carbonate ions in an amount equivalent to or more than the iron ions to generate spindle-shaped particles. The particles are subjected to a hydrothermal reaction in a neutral to weakly alkaline region in an autoclave, and the obtained α-iron oxyhydroxide powder is reduced in the gas phase, and then oxidized as necessary to form T-iron oxide or T-iron oxide. The present invention relates to a method for producing magnetic iron oxide powder, characterized in that it is a magnetic iron oxide powder such as magnetite.
この発明では、まず二価の鉄イオンを含有する水溶液に
対して、従来の汎用方法におけるNaOHやKOHの如
き強アルカリの代わりに、炭酸イオンを含むアルカリ水
溶液を反応させる。この反応によって炭酸鉄(FeCO
3・nH2O)と推定される沈殿物が生成し、次にこれ
を酸化することにより紡錘状粒子が得られる。In this invention, first, an aqueous solution containing divalent iron ions is reacted with an aqueous alkaline solution containing carbonate ions instead of a strong alkali such as NaOH or KOH in the conventional general-purpose method. This reaction produces iron carbonate (FeCO
A precipitate estimated to be 3.nH2O) is formed, which is then oxidized to obtain spindle-shaped particles.
上記二価の鉄イオンを含有する水溶液としては、硫酸第
一鉄(FeS04・7H20)、塩化第一鉄(FeC1
2・2H20)などの第一鉄塩の濃度0.5〜3モル/
l程度の水溶液が使用される。一方、炭酸アルカリを含
むアルカリ水溶液としては、炭酸ナトリウム(N a
2 CO3) 、炭酸アンモニウム[:(NH3)2
CO3:l 、炭酸カリウム(K2CO3)などの濃1
j11m 0.5〜2モル//!程度の水溶液が好適に
使用されるが、この炭酸イオンは前記二価の鉄イオンに
対して当量以上、好ましくは1.0〜8当量とする必要
がある。すなわち炭酸イオンが当量より少ないと、残留
した鉄イオンがのちの酸化過程でマグネタイトを生じて
粒状粒子が混入するため好ましくない。なお、上記反応
の温度は通常30〜60°C程度とするのがよい。Examples of aqueous solutions containing divalent iron ions include ferrous sulfate (FeS04.7H20) and ferrous chloride (FeC1).
The concentration of ferrous salts such as 2.2H20) is 0.5 to 3 mol/
1 of the aqueous solution is used. On the other hand, as an alkaline aqueous solution containing alkali carbonate, sodium carbonate (Na
2 CO3), ammonium carbonate [:(NH3)2
CO3:l, concentrated 1 such as potassium carbonate (K2CO3)
j11m 0.5-2 mol//! An aqueous solution of about 100% is preferably used, but the amount of carbonate ion needs to be at least equivalent to the divalent iron ion, preferably 1.0 to 8 equivalents. That is, if the amount of carbonate ions is less than the equivalent amount, the remaining iron ions will generate magnetite in the later oxidation process, which will cause granular particles to be mixed in, which is not preferable. Note that the temperature of the above reaction is preferably about 30 to 60°C.
また、この発明では二価の鉄イオンとともにコバルトイ
オンを含む水溶液を用い、炭酸イオンを含む水溶液との
反応にて鉄成分とコバルト02分を共沈させてもよく、
これによって最終的にコバルト含有磁性酸化鉄粉末が得
られる。このようなコバルトイオンは、たとえば硝酸コ
バルh [Co (N03)2・H20]、塩化コバル
ト(CoCff2)、硫酸コバルト(CO5O4)など
の水溶液として付与でき、通常は二価の鉄イオン1モル
に対して0.005〜0,1モルの範囲で使用するのが
よい。Further, in this invention, an aqueous solution containing cobalt ions together with divalent iron ions may be used, and the iron component and cobalt 02 may be co-precipitated by reaction with an aqueous solution containing carbonate ions.
This finally yields cobalt-containing magnetic iron oxide powder. Such cobalt ions can be provided as an aqueous solution of cobalt nitrate h [Co (N03)2.H20], cobalt chloride (CoCff2), cobalt sulfate (CO5O4), etc., and are usually applied in an amount per mole of divalent iron ions. It is preferable to use it in a range of 0.005 to 0.1 mol.
上述のようにして生成させた沈殿物を酸化する手段とし
ては、一般に上記反応後の沈殿物を含む水中に30〜6
0°Cの温度下で酸化性ガスすなわち空気あるいは酸素
ガスなどを吹き込む方法が採用される。そしてこの酸化
反応によって得られる紡錘状粒子は、通常では軸比2〜
5程度のものでありα−オキシ水酸化鉄(α−FeOO
H)の構造を有するものと推定される。As a means for oxidizing the precipitate produced as described above, generally 30 to 6
A method of blowing an oxidizing gas, ie, air or oxygen gas, at a temperature of 0°C is adopted. The spindle-shaped particles obtained by this oxidation reaction usually have an axial ratio of 2 to 2.
It is about 5 and α-iron oxyhydroxide (α-FeOO
It is estimated to have the structure H).
なお、このような紡錘状粒子のサイズは、前段の反応に
おける二価の鉄イオンと炭酸イオンの濃度と反応温度、
ならびに後段の酸化反応時の酸化性ガスの導入速度と反
応温度の調整によりコントロールできる。すなわち前後
段の反応温度が高いほど、また上記イオン濃度が低く且
つ酸化性ガスの導入速度が小さいほど得られる紡錘状粒
子のサイズが太き(なり、一般的に長軸が0.07〜0
5μ程度となる範囲で任意に調整できる。The size of these spindle-shaped particles depends on the concentration of divalent iron ions and carbonate ions in the first reaction, the reaction temperature,
It can also be controlled by adjusting the rate of introduction of oxidizing gas and reaction temperature during the subsequent oxidation reaction. That is, the higher the reaction temperature in the front and rear stages, the lower the ion concentration, and the slower the introduction rate of the oxidizing gas, the larger the size of the spindle-shaped particles obtained (in general, the longer the long axis is 0.07~0.
It can be arbitrarily adjusted within a range of about 5μ.
この発明では上述の如くして得られた紡錘状粒子ヲオー
トクレープ中において中性ないし弱アルカリ性領域下、
好ましくはPH7〜11で水熱反応させる。この水熱反
応は、従来の提案法におけるようにα−オキシ水酸化鉄
を溶解析出にて高軸比から低軸比へ変形させるものでは
なく、熟成作用により紡錘状粒子からその粒子サイズを
ほぼ継承した針状粒子に変成するものであり、中性ない
し弱アルカリ性領域下で行われる結果、粒状のα−F
e 203の混入が回避されるとともに強アルカリの使
用に付随するような作業上の危険性もない。In this invention, the spindle-shaped particles obtained as described above are placed in an autoclave under a neutral to weakly alkaline region,
Preferably, the hydrothermal reaction is carried out at pH 7 to 11. This hydrothermal reaction does not transform α-iron oxyhydroxide from a high axial ratio to a low axial ratio through solution deposition, as in the conventional proposed method, but rather changes its particle size from spindle-shaped particles to approximately It metamorphoses into inherited acicular particles, and as a result of being carried out in a neutral to weakly alkaline region, granular α-F
Contamination with E.e. 203 is avoided and there are no operational hazards such as those associated with the use of strong alkalis.
このような水熱反応に際して、前記酸化反応後の紡錘状
粒子を含む懸濁液がその前段において炭酸アルカリ成分
を第一鉄塩成分に対して当量以上使用していることによ
り中性ないし弱アルカリ性を呈するため、この懸濁液を
そのままオートクレーブ中に仕込んでも差し支えなく、
格別なPH調整を行う必要はない。ただし、後述する軸
比コントロールのために残存する炭酸アルカリ成分を除
去もしくは減少させる場合は、上記酸化反応後の懸濁液
より紡錘状粒子を戸別して必要に応じて水洗を施した上
で水中に再分散させたものを使用すればよい。また水熱
反応は通常100〜200°C10,5〜2時間程度の
条件で行われる。During such a hydrothermal reaction, the suspension containing the spindle-shaped particles after the oxidation reaction becomes neutral or weakly alkaline due to the use of an alkali carbonate component in an amount equal to or more than the ferrous salt component in the preceding stage. Therefore, there is no problem in putting this suspension in an autoclave as it is.
There is no need to make any special pH adjustments. However, when removing or reducing the remaining alkali carbonate components to control the axial ratio as described below, spindle-shaped particles are separated from the suspension after the oxidation reaction, washed with water as necessary, and then placed in water. What is necessary is to use the one that has been redispersed. The hydrothermal reaction is usually carried out at 100 to 200° C. for about 5 to 2 hours.
上記水熱反応にて得られるα−オキシ水酸化鉄は既述の
ように原料の紡錘状粒子のサイズをほぼ継承して長袖0
.07〜0.5樫程度、軸比2〜5程度の針状粒子とな
るが、この水熱反応時のPH調整によって上記軸比をあ
る程度コントロールすることが可能であり、これはこの
発明の利点の一つである。すなわち上記PHが中性に近
づくほど軸比が大きくなることが確認されており、のち
の気相中における還元および酸化工程の温度条件や最終
的に得られるT−酸化鉄ないしマグネタイトの必要特性
に応じて軸比を上記範囲内で変化させることができる。As mentioned above, the α-iron oxyhydroxide obtained through the above hydrothermal reaction almost inherits the size of the spindle-shaped particles of the raw material and is long-sleeved.
.. The result is acicular particles with a diameter of about 0.07 to 0.5 oak and an axial ratio of about 2 to 5, but it is possible to control the axial ratio to some extent by adjusting the pH during this hydrothermal reaction, which is an advantage of the present invention. one of. In other words, it has been confirmed that the axial ratio increases as the above-mentioned pH approaches neutrality, which affects the temperature conditions of the reduction and oxidation steps in the gas phase and the necessary properties of the T-iron oxide or magnetite finally obtained. The axial ratio can be changed within the above range accordingly.
この発明ではかくして得られる針状粒子からなるa−オ
キシ水酸化鉄をろ過、乾燥し、得られた粉末を従来と同
様に気相中で還元したのち必要に応じて酸化してT−酸
化鉄ないしマグネタイトからなる磁性酸化鉄粉末とする
が、上記α−オキシ水酸化鉄の針状粒子が原料の紡錘状
粒子のサイズをほぼ継承した低軸比のものであるから、
微粒子であっても還元時右よび酸化時に焼結しにくく、
良好な針状形状が維持される。なお、気相中での還元お
よび酸化工程は従来と同様にして行えばよく、一般に還
元は水素気流中で250〜400°Cにて1〜4時間程
度、酸化は200〜300°Cにて0.5〜2時間程度
とされるが、既知の如く後段の酸化の有無およびその程
度により最終的に得られる磁性酸化鉄粉末をT−酸化鉄
、マグネタイトおよびこれら両者の中間的酸化物のいず
れかに設定できる。In this invention, the thus obtained a-iron oxyhydroxide consisting of acicular particles is filtered and dried, and the resulting powder is reduced in the gas phase in the same manner as in the past, and then oxidized as necessary to produce T-iron oxide. The acicular particles of α-iron oxyhydroxide have a low axial ratio that almost inherits the size of the spindle-shaped particles of the raw material.
Even fine particles are difficult to sinter during reduction and oxidation,
A good needle-like shape is maintained. The reduction and oxidation steps in the gas phase may be carried out in the same manner as conventional methods; generally, reduction is carried out in a hydrogen stream at 250 to 400°C for about 1 to 4 hours, and oxidation is carried out at 200 to 300°C. It is said that the time required is about 0.5 to 2 hours, but as is known, depending on the presence or absence of oxidation in the latter stage and its degree, the final magnetic iron oxide powder may be mixed with T-iron oxide, magnetite, or an intermediate oxide between the two. Can be set to
[発明の効果]
この発明に係る磁性酸化鉄粉末の製造方法は、二価の鉄
イオンを含有する水溶液と該鉄イオンに対[7て当燈以
上の炭酸イオンを含む水溶液との反応による沈殿物を酸
化して得られるvi錘状状粒子原料として、これを中性
ないし弱アルカリ性領域下で水熱反応させるから、該水
熱反応にて得られるα−オキシ水酸化鉄が紡錘状粒子の
サイズをほぼ継承した低軸比の針状粒子となり、これが
微粒子であってものちの気相中での還元および酸化工程
において焼結しにくく、良好な針状形状の磁性酸化鉄粉
末を得ることができる。また上記水熱反応時に磁気特性
低下の要因となる粒状のα−Fe20.。[Effects of the Invention] The method for producing magnetic iron oxide powder according to the present invention involves the reaction between an aqueous solution containing divalent iron ions and an aqueous solution containing carbonate ions of at least 70% of the iron ions. Since the spindle-shaped particles obtained by oxidizing the vi spindle-shaped particles are subjected to a hydrothermal reaction in a neutral to weakly alkaline region, the α-iron oxyhydroxide obtained in the hydrothermal reaction becomes the spindle-shaped particles. It becomes acicular particles with a low axial ratio that almost inherits the same size, and even if these are fine particles, they are difficult to sinter in the reduction and oxidation process in the gas phase later, making it possible to obtain magnetic iron oxide powder with a good acicular shape. can. In addition, granular α-Fe20. .
の混入が回避されるとともに、強アルカリを使用しない
ので作業上の危険性も防止される。さらに水熱反応時の
PH調整により、得られるα−オキシ水酸化鉄の針状粒
子の軸比をコントロールして気相中での還元および酸化
における温度条件ならびに最終的に得られる磁性酸化鉄
粉末の必要特性に対処させることも可能である。Contamination with other substances is avoided, and since no strong alkali is used, operational hazards are also prevented. Furthermore, by adjusting the pH during the hydrothermal reaction, the axial ratio of the acicular particles of the α-iron oxyhydroxide obtained is controlled, and the temperature conditions during reduction and oxidation in the gas phase and the magnetic iron oxide powder finally obtained are controlled. It is also possible to address the required characteristics of
よってこれらの点からこの発明方法によれば、各種磁気
記録媒体用として好適な磁性酸化鉄粉末、とくに近年の
オーディオ用およびビデオ磁気テープのノイズ低減とS
/N比の向上の要望に対処し得る比表面積40rrl/
f?以上の超微粒子からなる高性能の磁性酸化鉄粉末を
提供できる。Therefore, in view of these points, the method of the present invention provides magnetic iron oxide powder suitable for various magnetic recording media, especially for noise reduction and S for recent audio and video magnetic tapes.
/Specific surface area 40rrl/ that can meet the demand for improvement of N ratio
f? A high-performance magnetic iron oxide powder made of the above ultrafine particles can be provided.
〔実施例〕 以下、この発明を実施例に基ついて具体的に説明する。〔Example〕 Hereinafter, this invention will be specifically explained based on examples.
実施例1
硫酸第一鉄10モルを101の水中に溶解させた水溶液
と炭酸す) IJウム40モルを307?の水中に溶解
させた水溶液とを40°Cにて混合撹拌して反応させた
ところ、炭酸鉄と推定される白色沈殿が生成した。つぎ
にこの白色沈殿を含む水中に撹拌下で40°Cにおいて
毎分101の割合で空気を3時間吹き込んで酸化させた
ところ、平均長軸(I Q 7 )in、同短軸0.0
3μの紡錘状粒子が析出し、液のPHは10.5を示し
た。Example 1 An aqueous solution of 10 mol of ferrous sulfate dissolved in 101 mol of water and carbonic acid) 40 mol of IJum was added to 30 7 mol of ferrous sulfate. When the mixture was mixed and stirred at 40°C with an aqueous solution dissolved in water, a white precipitate presumed to be iron carbonate was formed. Next, air was blown into the water containing this white precipitate at a rate of 101/min for 3 hours at 40°C under stirring to oxidize it.
Spindle-shaped particles of 3 μm were precipitated, and the pH of the liquid was 10.5.
続いてこの紡錘状粒子を含む懸瀾液をオートクレーブ中
に仕込み、200°Cにて1時間水熱反応させたのち、
水洗、ろ過、乾燥を行って平均長軸0、07 pn、同
短軸0.03/=1の針状粒子からなるα−オキシ水酸
化鉄粉末を得た。この粉末を300℃にて脱水処理した
のち、水素気流中において280°Cにて2時間還元し
てマグネタイト(Fe304)とし、続いて250°C
にて1時間酸化し、平均長軸0.07声、同短軸0.0
3/”の針状粒子からなるT−酸化鉄粉末を製造した。Subsequently, the suspension containing the spindle-shaped particles was charged into an autoclave and subjected to a hydrothermal reaction at 200°C for 1 hour.
Washing with water, filtration, and drying were performed to obtain α-iron oxyhydroxide powder consisting of acicular particles with an average long axis of 0.07 pn and a short axis of 0.03/=1. This powder was dehydrated at 300°C, then reduced to magnetite (Fe304) at 280°C in a hydrogen stream for 2 hours, and then heated at 250°C.
Oxidized for 1 hour, average major axis 0.07, minor axis 0.0
A T-iron oxide powder consisting of 3/'' acicular particles was produced.
この粉末は保磁力(Hc )−3200e、飽和磁化量
(σs )=74.5 emu/ y1角型比(σr/
σs ) = 0.47、窒素吸着法による比表面積(
SBET) =83 trf/ yを示した。This powder has coercive force (Hc) -3200e, saturation magnetization (σs) = 74.5 emu/y1 squareness ratio (σr/
σs ) = 0.47, specific surface area (
SBET) = 83 trf/y.
実施例2
実施例1における空気吹き込みによる酸化時の温度を6
0’Cとした以外は実施例1と同様にして、平均長軸Q
、3,117111同短軸0.05声の紡錘状粒子を得
た。この紡錘状粒子を母液からろ別して純水洗浄したの
ち、水中に再分散させてPH7,0の懸β5液とし、こ
れをオートクレーブ中に仕込み、実施例1と同様にして
水熱反応させ、水洗、ろ過。Example 2 The temperature during oxidation by air blowing in Example 1 was set to 6
In the same manner as in Example 1 except that the average major axis Q
, 3,117111 spindle-shaped particles with a minor axis of 0.05 tones were obtained. The spindle-shaped particles were filtered from the mother liquor and washed with pure water, then redispersed in water to obtain a suspended β5 solution with a pH of 7.0, which was charged into an autoclave, subjected to a hydrothermal reaction in the same manner as in Example 1, and washed with water. , filtration.
乾僅して14均長輔Q、 3 )tyr、同短軸0.0
5声の剣状粒子からなるα−オキシ水酸化鉄粉末を得た
。次にこの粉末を実施例1と同様に脱水、還元、酸化処
理して平均長軸0,3P、同短軸0.05μのT−酸化
鉄粉末を製造した。この粉末はHc=3400e、σs
=76.Oemu/f/、σr/σs=0.47、Sn
xT=43m/7を示した。Dry 14 yen long length Q, 3) tyr, same short axis 0.0
An α-iron oxyhydroxide powder consisting of sword-shaped particles with five tones was obtained. Next, this powder was subjected to dehydration, reduction, and oxidation treatment in the same manner as in Example 1 to produce T-iron oxide powder having an average major axis of 0.3P and a minor axis of 0.05μ. This powder has Hc=3400e, σs
=76. Oemu/f/, σr/σs=0.47, Sn
It showed xT=43m/7.
実施例3
実施例1における硫酸第一鉄水溶液にあらかじめ0.0
6モルの硝酸コバルトを溶解させ、且つ空気吹き込みに
よる酸化時の温度を50°Cとした以外は実施例1と同
様にして、平均長軸0.27−1同短軸0.03μの紡
錘状粒子を得た。ついで実施例1と同様にして水熱反応
させ、水洗、ろ過、乾燥して平均長軸0.2μ、同短軸
0.04/=”lの針状粒子からなるコバルト含有α−
オキシ水酸化鉄粉末を得た。次にこの粉末を実施例1と
同様に脱水、還元、酸化処理して平均長軸0.2 /−
”、同短軸0.03μのコバルト含有T−酸化鉄粉末を
製造した。この粉末はHc=7200e、σs = 7
3.Oemu/9、σr/crs=−0.62、S n
rr = 56 nl/ 9を示した。Example 3 0.0 was added in advance to the ferrous sulfate aqueous solution in Example 1.
A spindle-shaped material with an average major axis of 0.27-1 and a minor axis of 0.03μ was prepared in the same manner as in Example 1, except that 6 mol of cobalt nitrate was dissolved and the temperature during oxidation by air blowing was 50°C Particles were obtained. Next, a hydrothermal reaction was carried out in the same manner as in Example 1, followed by washing with water, filtration, and drying to obtain cobalt-containing α- particles consisting of acicular particles with an average major axis of 0.2 μ and average minor axis of 0.04/=”l.
Iron oxyhydroxide powder was obtained. Next, this powder was dehydrated, reduced, and oxidized in the same manner as in Example 1 to reduce the average long axis to 0.2/-
”, a cobalt-containing T-iron oxide powder with a minor axis of 0.03μ was produced. This powder had Hc = 7200e and σs = 7.
3. Oemu/9, σr/crs=-0.62, Sn
showed rr = 56 nl/9.
比較例1
硫酸第一鉄10モルを401の水中に溶解させた水溶液
と水酸化ナトリウム40モルを201!の水中に溶解さ
せた水溶液とを20°Cの冷却下で混合撹拌して反応さ
せ、水酸化第一鉄[Fe(OHz))の沈殿が生成した
。つぎにこの沈殿を含む水中に撹拌下で20°Cにおい
て毎分101の割合で空気を72時間吹き込んで酸化さ
せたところ、平均長軸02−1同短軸0.015/”の
針状粒子からなるα−オキシ水酸化鉄が析出した。この
α−オキシ水酸化鉄を水洗、ろ過、乾燥して得られる粉
末を用いて実施例1と同様にして脱水、還元、酸化処理
してT−酸化鉄粉末を製造した。この粉末は針状粒子が
焼結によって不規則に合体した平均長軸02声、同短軸
0.05μの粒子からなるもので、Hc=2800e1
σs=68 emu/! 、σr/σs=0.40、S
BgT=36 m’/ 9を示した。Comparative Example 1 An aqueous solution of 10 moles of ferrous sulfate dissolved in 401! water and 40 moles of sodium hydroxide were mixed in 201! An aqueous solution dissolved in water was mixed and stirred under cooling at 20°C to react, and a precipitate of ferrous hydroxide [Fe(OHz)) was generated. Next, air was blown into the water containing this precipitate at a rate of 101/min for 72 hours at 20°C under stirring to oxidize it. α-Iron oxyhydroxide was precipitated. This α-Iron oxyhydroxide was washed with water, filtered, and dried, and the powder obtained was dehydrated, reduced, and oxidized in the same manner as in Example 1 to obtain T- An iron oxide powder was produced. This powder consists of acicular particles irregularly combined by sintering, with an average long axis of 02 mm and a short axis of 0.05 μm, Hc = 2800 e1.
σs=68 emu/! , σr/σs=0.40, S
It showed BgT=36 m'/9.
比較例2
比較例1における酸化反応後のα−オキシ水酸化鉄を含
む懸濁液(PH13,8)をオートクレーブ中に仕込み
、200°Cにて2時間水熱反応させたのち、水洗、ろ
過、乾燥したところ、平均長@0.3p1同短軸0.0
81t1nの針状粒子からなるα−オキシ水酸化鉄粉末
が得られたが、この粉末中には粒状のα−Fe203粒
子がかなり混入しているのが認められた。次にこの粉末
を用いて実施例1と同様にして脱水、還元、酸化処理し
て平均長軸0.3 /=”、同短軸0.08μの針状粒
子からなるT−酸化鉄粉末を製造した。この粉末はHc
=2600e、σs=72emu/ys σr/σs=
0.40、S BET = 25 m’/ yを示した
。Comparative Example 2 The suspension containing α-iron oxyhydroxide (PH 13,8) after the oxidation reaction in Comparative Example 1 was charged into an autoclave, subjected to a hydrothermal reaction at 200°C for 2 hours, and then washed with water and filtered. , when dried, average length @ 0.3p1 short axis 0.0
An α-iron oxyhydroxide powder consisting of acicular particles of 81t1n was obtained, but it was observed that a considerable amount of granular α-Fe203 particles were mixed in this powder. Next, this powder was subjected to dehydration, reduction, and oxidation treatment in the same manner as in Example 1 to obtain T-iron oxide powder consisting of acicular particles with an average major axis of 0.3/='' and average minor axis of 0.08μ. This powder was produced as Hc
=2600e, σs=72emu/ys σr/σs=
0.40, showing S BET = 25 m'/y.
比較例3
比較例1における硫酸第一鉄10モル/401の水溶液
にあらかじめ0.06モルの硝酸コバ/L/ l−を溶
解した以外は、比較例1と同様にしてコバルト含有T−
酸化鉄粉末を製造した。なおこの方法においてコバルト
含有α−オキシ酸化鉄粉末は平均長軸0.2)tm、同
短軸0.0211Mの針状粒子からなっており、コバル
ト含有T−酸化鉄粉末は針状粒子が焼結により不規則に
合体した平均長軸(32、gm。Comparative Example 3 Cobalt-containing T-
Iron oxide powder was produced. In this method, the cobalt-containing α-oxyiron oxide powder consists of acicular particles with an average major axis of 0.2)tm and the average minor axis of 0.0211M, and the cobalt-containing T-iron oxide powder has acicular particles that are sintered. Average long axes (32, gm) irregularly coalesced by knots.
同短軸0.057”の粒子からなり、Hc=6040e
、σ5==72.Oemu/ysσr/σs=0.64
、SBaT=30m’/7を示した。Consists of particles with the same short axis of 0.057", Hc = 6040e
, σ5==72. Oemu/ysσr/σs=0.64
, SBaT=30m'/7.
以上の実施例および比較例にて得られたT−酸化鉄ない
しコバルト含有T−酸化鉄からなる磁性酸化鉄粉末のそ
れぞれ80重量部に対し、塩化ビニル−酢酸ビニル−ビ
ニルアルコール共重合体11重量部、ポリウレタン樹脂
7重量部、低分子量インシアネート化合物2重量部、シ
クロへキサ7760重量部およびトルエン60重量部を
配合して磁性塗料を調製し、これら磁性塗料を厚さ12
μのポリエステルフィルム上に乾燥厚みが4pnとなる
ように塗布、乾燥し、カレンダー処理を施したのち、所
定幅に裁断して磁気テープT−1〜T−6を作製した。For each 80 parts by weight of magnetic iron oxide powder consisting of T-iron oxide or cobalt-containing T-iron oxide obtained in the above examples and comparative examples, 11 parts by weight of vinyl chloride-vinyl acetate-vinyl alcohol copolymer was added. A magnetic paint was prepared by blending 7 parts by weight of polyurethane resin, 2 parts by weight of a low molecular weight incyanate compound, 7760 parts by weight of cyclohexane, and 60 parts by weight of toluene.
It was coated on a μ polyester film to a dry thickness of 4 pn, dried, calendered, and then cut to a predetermined width to produce magnetic tapes T-1 to T-6.
これら磁気テープについて保磁力(Hc )、残留磁束
密度(Br)、角型比(Br/Bs)を測定するととも
に、磁気テープT−1〜T−4については直流および交
流におけるS/N比(DC−5/N 、 AC−S/N
)を測定し、また磁気テープT−5とT−6について
は4MHzにおけるビデオ出力とC/Nを測定した。The coercive force (Hc), residual magnetic flux density (Br), and squareness ratio (Br/Bs) were measured for these magnetic tapes, and for magnetic tapes T-1 to T-4, the S/N ratio (DC and AC) was measured. DC-5/N, AC-S/N
), and for magnetic tapes T-5 and T-6, the video output and C/N at 4 MHz were measured.
その結果を下記の第1表および第2表に示す。なおjl
!1表中の両S/Nは磁気テープT−3を、第2表中の
ビデオ出力とC/Nは磁気テープT−6をそれぞれOd
Bとした場合の相対値で示した。The results are shown in Tables 1 and 2 below. Furthermore, jl
! Both S/N in Table 1 are Od for magnetic tape T-3, and video output and C/N in Table 2 are Od for magnetic tape T-6.
It is shown as a relative value when it is set as B.
第 1 0表
第 2 表
上記画表の結果から明らかなように、この発明方法にて
得られた磁性酸化鉄粉末は良好な針状粒子からなって優
れた磁気特性を備えるとともに大きな比表面積を有する
ため、これを用いた磁気テープT−1、T−2、T−5
は非常に優れた磁気特性を示すことが判る。これに対し
て従来の汎用方法にて得られる磁性酸化鉄粉末は焼結に
より針状形状が損われて磁気特性が劣り、且つ比表面積
が小さくなるため、これを用いた磁気テープT−3゜T
−6の磁気特性も不充分となり、また水熱処理を経る従
来の提案方法にて得られる磁性酸化鉄粉末は焼結減少で
磁気特性が改善する反面、水熱反応時に粒子形状のコン
トロールが困難であることなどで比表面積が却って小さ
くなるため、これを用いた磁気テープT−4は磁気テー
プT−3に比較して磁気特性がある程度向上するが、S
/N比は低下することが判る◇Table 10 Table 2 As is clear from the results in the above diagram, the magnetic iron oxide powder obtained by the method of this invention is composed of good acicular particles, has excellent magnetic properties, and has a large specific surface area. magnetic tape T-1, T-2, T-5 using this
It can be seen that it exhibits very excellent magnetic properties. On the other hand, magnetic iron oxide powder obtained by conventional general-purpose methods loses its acicular shape due to sintering, resulting in poor magnetic properties and a small specific surface area. T
-6's magnetic properties are also insufficient, and while the magnetic iron oxide powder obtained by the conventional proposed method that undergoes hydrothermal treatment has improved magnetic properties due to reduced sintering, it is difficult to control the particle shape during hydrothermal reaction. Because the specific surface area is rather small due to certain reasons, magnetic tape T-4 using this material has improved magnetic properties to some extent compared to magnetic tape T-3, but S
It can be seen that the /N ratio decreases◇
Claims (1)
対して当量以上の炭酸イオンを含むアルカリ水溶液との
反応にて析出した沈殿物を酸化して紡錘状粒子を生成さ
せ、この粒子をオートクレーブ中において中性ないし弱
アルカリ性領域下で水熱反応させ、得られたα−オキシ
水酸化鉄粉末を気相中で還元したのち必要に応じて酸化
して磁性酸化鉄粉末とすることを特徴とする磁性酸化鉄
粉末の製造方法。(1) The precipitate precipitated by the reaction between an aqueous solution containing divalent iron ions and an alkaline aqueous solution containing carbonate ions in an amount equivalent to or more than the iron ions is oxidized to produce spindle-shaped particles. is subjected to a hydrothermal reaction in a neutral to weakly alkaline region in an autoclave, and the obtained α-iron oxyhydroxide powder is reduced in a gas phase and then oxidized as necessary to obtain magnetic iron oxide powder. A method for producing characteristic magnetic iron oxide powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59179893A JPS6158215A (en) | 1984-08-29 | 1984-08-29 | Manufacture of magnetic iron oxide powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59179893A JPS6158215A (en) | 1984-08-29 | 1984-08-29 | Manufacture of magnetic iron oxide powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6158215A true JPS6158215A (en) | 1986-03-25 |
Family
ID=16073741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59179893A Pending JPS6158215A (en) | 1984-08-29 | 1984-08-29 | Manufacture of magnetic iron oxide powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6158215A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5080999A (en) * | 1973-11-22 | 1975-07-01 | ||
JPS5622637A (en) * | 1979-07-27 | 1981-03-03 | Hitachi Maxell Ltd | Manufacture of alpha-iron oxyhydroxide |
JPS5678430A (en) * | 1979-11-29 | 1981-06-27 | Mitsui Toatsu Chem Inc | Production of iron compound particle for magnetic recording |
JPS60112626A (en) * | 1983-11-18 | 1985-06-19 | Dainippon Ink & Chem Inc | Manufacture of dense rod-shaped iron oxyhydroxide |
-
1984
- 1984-08-29 JP JP59179893A patent/JPS6158215A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5080999A (en) * | 1973-11-22 | 1975-07-01 | ||
JPS5622637A (en) * | 1979-07-27 | 1981-03-03 | Hitachi Maxell Ltd | Manufacture of alpha-iron oxyhydroxide |
JPS5678430A (en) * | 1979-11-29 | 1981-06-27 | Mitsui Toatsu Chem Inc | Production of iron compound particle for magnetic recording |
JPS60112626A (en) * | 1983-11-18 | 1985-06-19 | Dainippon Ink & Chem Inc | Manufacture of dense rod-shaped iron oxyhydroxide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3931025A (en) | Magnetic iron oxides with improved orientability and a process for their production | |
US4729846A (en) | Method for manufacturing lepidocrocite | |
JP3268830B2 (en) | Metal magnetic powder and method for producing the same | |
JPS5941806A (en) | Manufacture of tabular ba ferrite particle powder for magnetic recording | |
US5911905A (en) | Processes for producing hydrated iron oxide and ferromagnetic iron oxide | |
JPS6158215A (en) | Manufacture of magnetic iron oxide powder | |
JPS6135135B2 (en) | ||
US4251504A (en) | Process for producing acicular goethite | |
US4913890A (en) | Preparation of acicular α-Fe2 O3 | |
JP3337046B2 (en) | Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same | |
JPS5919169B2 (en) | Manufacturing method of metal magnetic powder | |
JPS62139803A (en) | Production of ferromagnetic metallic powder | |
US4748017A (en) | Method for manufacturing lepidocrocite | |
JP2965606B2 (en) | Method for producing metal magnetic powder | |
US5531977A (en) | Process for producing acicular γ-FeOOH particles | |
JP2885253B2 (en) | Method of producing spindle-shaped goethite particles | |
JPH038083B2 (en) | ||
JP2660714B2 (en) | Method for producing cobalt-containing ferromagnetic iron oxide powder | |
JPH0415601B2 (en) | ||
JPS59169937A (en) | Production of magnetic powder | |
JPS63140005A (en) | Production of fine ferromagnetic metal particle powder | |
JPH0348243B2 (en) | ||
JPS6149252B2 (en) | ||
KR910009210B1 (en) | Method for manufacturing lepidocrocite | |
JP3141907B2 (en) | Method for producing spindle-shaped iron-based metal magnetic particle powder |