JPS6352794A - Baked flux for submerged arc welding - Google Patents

Baked flux for submerged arc welding

Info

Publication number
JPS6352794A
JPS6352794A JP19680386A JP19680386A JPS6352794A JP S6352794 A JPS6352794 A JP S6352794A JP 19680386 A JP19680386 A JP 19680386A JP 19680386 A JP19680386 A JP 19680386A JP S6352794 A JPS6352794 A JP S6352794A
Authority
JP
Japan
Prior art keywords
flux
metal
welding
mgo
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19680386A
Other languages
Japanese (ja)
Inventor
Masao Kamata
政男 鎌田
Akitomo Sueda
明知 末田
Kaneo Kumagai
熊谷 金男
Takashi Kato
隆司 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19680386A priority Critical patent/JPS6352794A/en
Publication of JPS6352794A publication Critical patent/JPS6352794A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To improve the workability of low-alloy steel welding and the toughness of a weld metal by incorporating CaO, MgO, SiO2, Al2O3 and metal fluoride which are slag forming agent components, metal carbonate which is a gas generating agent component and metallic powder at specific ratios into the flux. CONSTITUTION:The compsn. contg., by weight, 12-18% CaO, 22-31% MgO, 8-20% SiO2, 22-35% Al2O3, and 5-15% metal fluoride, 5-12% metal carbonate in terms of CO2, and 1-10% metal powder and satisfying formulas I-III is used for the titled flux. This flux is the baked flux of a high basic component series contg. the metal carbonate at a high ratio and permits satisfactory working in various kinds of weldings even if the flux is used under small heat input welding conditions by increasing the welding speed. Further, this flux has the extremely small quantity of diffusible hydrogen and high cracking resistance and yields the high toughness weld metal.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はサブマージアーク溶接用焼成型フラックスに関
し、特に高張力鋼や低温用鋼などの低合金鋼の溶接に使
用し、良好な溶接作業性および低水素、高靭性の溶接金
属が得られるサブマージアーク溶接用焼成型フラックス
に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a fired flux for submerged arc welding, which is particularly used for welding low-alloy steels such as high-strength steel and low-temperature steel, and has good welding workability. The present invention also relates to a sintered flux for submerged arc welding that produces low hydrogen and high toughness weld metal.

(従来の技術) 低合金鋼の溶接構造物のサブマージアーク溶接は、溶接
金属の性能上、比較的小電流小人熱溶接条件で行なわれ
るが、この場合にフラックスの特性として、高い杓性し
訣ル全満足すること、寸だ溶接金属の拡散性水素量が低
く低温割れが発生し7にくいこと、さらにスラグ剥離性
、ビード外観、ビード形状など各種溶接作業性が良好で
あることが要求される。
(Prior art) Submerged arc welding of welded structures made of low-alloy steel is performed under relatively small current welding conditions due to the performance of the weld metal. In addition, the weld metal must have a low amount of diffusible hydrogen and be resistant to cold cracking, and it must also have good welding workability such as slag removability, bead appearance, and bead shape. Ru.

まず、高靭性の溶性金属(+−伯るためには溶接金属の
1¥2素量を低減できる高塩基性成分系のフラックスが
必要で、従来より裡々高塩基性成分系の溶融型あるいは
焼成型フラックスが提案さねている。
First of all, a flux with a high basic component that can reduce the elemental content of the weld metal by 1.2 yen is required to obtain a high-toughness soluble metal (+/-). Sintered flux is being proposed.

しかし、高地基性溶融型フラックスは溶融製造時の水素
吸収が大きいため溶接金属の拡散性水素量を完全に低減
することが困難であり、水素による低温割れが発生しや
すくなるという問題がある。
However, since the high-altitude-based fusion type flux absorbs a large amount of hydrogen during molten manufacturing, it is difficult to completely reduce the amount of diffusible hydrogen in the weld metal, and there is a problem that low-temperature cracking due to hydrogen is likely to occur.

これに対し、焼成型フラックスは各種原料の混合粉に固
着剤を添加して造粒後、450℃〜600℃程度の温度
で焼成して製造するものであるが、CaCO3、MgC
O3などの金属炭e塩をガス発生剤成分として含有させ
ることが可能なことから、溶接時の金属炭酸塩の分解反
応によって発生するCO□ガスがアーク雰囲気中の水素
分圧を下け、溶接金属に溶解する水素を低減することに
より、溶接金属の拡散性水素量を高塩基性溶融型フラッ
クスに比べ低くすることができる。しかし、溶接金属の
拡散性水素量を大幅に低減するためには多量の金属炭酸
塩を含有させる必要があり、さらにスラグ形成剤成分と
してアルミナ、マグネシア、珪砂などの高融点酸化物の
原料粉をその筐ま含有させていることにより、溶接時の
溶融がスムーズでなく、高靭性の溶接金属全得るために
比較的小電流小人熱溶接条件で行なう低合金鋼の溶接に
使用した場合、ピー1表面欠陥であるポックマーク(ビ
ード表面のガスによる圧痕)の発生や、♂−1−波形が
粗くなったり、ビーP止端部と下層ビードあるいは開先
内母材壁面とのなじみが不良になるなど溶接作業性が問
題となる。例えば最近、特開昭61−115694号公
報においで金属炭酸塩を多量に含有する高塩基性焼成型
フシックス金使用L7た高張力鋼のザブマージアーク溶
接方法が肪、案されているが、本発明者らの実験によれ
ば、上記公報において開示された成分系のフラックス全
溶接時間短縮のだめに溶接速+f全速く1−て極N鋼の
狭開先多層盛溶接や薄板の両面1ノξス溶接に使用し7
た場合、耐ポツクマーク性が必ずしも十分でなく、まだ
溶融型フラックスを使用した場合のようなビード外観、
形状が良好でなめらかなビ〜Pが得られない。また、本
発明者らは先に特開昭60−1081、94号公報によ
り、従来一般的な高MgO系の高塩基性焼成型フラック
スを小電流小人熱溶接条件で使用した場合の欠点である
溶接作業性全改善したザブマージマーク溶接用焼成型フ
ラックスを提案したが、引続き検討を行なった結果、溶
接速量を速くして溶接を行なった場合の溶接作業性が劣
化することがわかり、さらに改善する必要があった。
On the other hand, sintered flux is manufactured by adding a fixing agent to a mixed powder of various raw materials, granulating it, and then firing it at a temperature of about 450°C to 600°C.
Since it is possible to contain metal carbonate such as O3 as a gas generating agent component, CO□ gas generated by the decomposition reaction of metal carbonate during welding lowers the hydrogen partial pressure in the arc atmosphere and improves welding. By reducing the amount of hydrogen dissolved in the metal, the amount of diffusible hydrogen in the weld metal can be lowered compared to a highly basic melting type flux. However, in order to significantly reduce the amount of diffusible hydrogen in the weld metal, it is necessary to contain a large amount of metal carbonate, and in addition, raw material powder of high melting point oxides such as alumina, magnesia, and silica sand must be used as a slag forming agent component. Due to its inclusion in the housing, melting during welding is not smooth, and when used for welding low-alloy steel, which is performed under relatively small current heat welding conditions in order to obtain high-toughness weld metal, it is difficult to melt easily during welding. 1. Occurrence of pockmarks (indentations caused by gas on the bead surface), which are surface defects, or roughness of the ♂-1-waveform, or poor compatibility between the bead P toe and the underlying bead or base material wall surface within the groove. Welding workability becomes a problem. For example, recently, in JP-A-61-115694, a submerged arc welding method for high-tensile steel L7 using highly basic sintered Fusix gold containing a large amount of metal carbonate has been proposed. According to experiments by the inventors, in order to shorten the total welding time using the flux of the composition system disclosed in the above publication, welding speed + f total speed 1 - can be used for narrow gap multi-layer welding of extremely N steel and for double-sided single-node ξ of thin plates. Used for welding
In some cases, the potmark resistance is not necessarily sufficient and the bead appearance is similar to that seen when using molten flux.
A smooth B-P with good shape cannot be obtained. In addition, the present inventors have previously reported in Japanese Patent Application Laid-Open No. 1081/1981, 94, that there are disadvantages when using conventionally common high MgO based high basicity sintered flux under small current dwarf heat welding conditions. We proposed a fired flux for Zabmerge mark welding that completely improved welding workability, but as a result of further investigation, we found that welding workability deteriorated when welding was performed at a faster welding speed. Further improvements were needed.

(発明が解決しようどする問題点) そこで、本発明は、低合金鋼のサブマージアーク溶接に
使用して、溶接金属の拡散性水素−1t’lr低くj〜
低温割れの発生全防止できるという焼成型フラックスの
特性を失なうことなく、特に小電流小人熱溶接条件にお
いて溶接法1ffik速くして溶接を行なった場合でも
各種溶接作業性が良好で、かつ高靭恰の溶接金属が得ら
れるサブマージマーク溶接用焼成型フラックスの提供を
目的とする。
(Problems to be Solved by the Invention) Therefore, the present invention uses submerged arc welding of low alloy steel to reduce diffusible hydrogen -1t'lr of the weld metal.
Without losing the characteristic of the sintered flux that it can completely prevent the occurrence of cold cracking, various welding workability is good even when welding is performed by increasing the welding method by 1ffik, especially under small current dwarf heat welding conditions, and The purpose of the present invention is to provide a sintered flux for submerged mark welding that can provide weld metal with high toughness.

(問題点を解決−するための手段) 本発明者らは種々の試作フラックスにより詳細に検討し
た結果、スラグ形成剤成分ばCaO、Mg0゜8102
、 An20.を主成分と17、これに金属弗fヒ物を
含有させ、さらにガス発生剤成分としてCaCO3゜M
gCO3などの金属炭酸塩および金属粉をそれぞれ適正
範囲において含有する高塩基性焼成型フラックス全見出
し、これによって前記問題点を解決したのである。
(Means for Solving the Problems) As a result of detailed study by the present inventors using various prototype fluxes, the slag forming agent components were CaO, Mg0°8102
, An20. 17 as the main component, containing a metal fluoride, and further containing CaCO3゜M as a gas generating agent component.
The above-mentioned problems were solved by developing a highly basic calcined flux containing metal carbonate such as gCO3 and metal powder in appropriate ranges.

即ち、本発明の要旨は、スラブ形成剤、ガス発生剤およ
び金属粉の混合物からなるサブマージアーク溶接用焼成
型フラックスにおいて、重量%で、CaO1,2〜18
壬、Mg022〜31壬、5io2s〜20壬、A#、
20622〜35壬、金属弗化物5〜15彊、金属炭酸
塩を002換算量で5〜12係、および金属粉1〜10
4に含有し、かつ件を満足すること全特徴とするザブマ
ージマーク溶接用焼成型フラックスである。
That is, the gist of the present invention is to provide a sintered flux for submerged arc welding consisting of a mixture of a slab forming agent, a gas generating agent, and a metal powder, which contains CaO1,2 to 18% by weight.
Jin, Mg022~31 Jin, 5io2s~20 Jin, A#,
20622-35 壬, metal fluoride 5-15 彊, metal carbonate in 002 equivalent amount 5-12, and metal powder 1-10
This is a sintered flux for Zabmerge mark welding which is characterized by containing 4. and satisfying the following conditions.

(作用) まず、本発明フラックスは焼成型フラックスであること
が必要であり、これは前述のごとく、低合金鋼の溶接金
属に要求される高い靭性レベルを満足するためには溶接
金属の酸素量を低減できる高塩基性成分系のフラックス
にしなければならず、その場合溶融型フラックスよりも
金属炭酸塩を含有させることが可能な焼成型フラックス
の方が溶接金属の拡散性水素量全大幅に低減でき、低温
割れ全防止できることによる。
(Function) First, the flux of the present invention needs to be a sintered flux, and as mentioned above, in order to satisfy the high toughness level required for weld metal of low alloy steel, the amount of oxygen in the weld metal is It is necessary to use a flux with a highly basic component that can reduce the amount of hydrogen in the weld metal.In this case, a sintered flux that can contain metal carbonate can significantly reduce the total amount of diffusible hydrogen in the weld metal than a molten flux. This is because low-temperature cracking can be completely prevented.

以下に本発明フラックスの成分の限定理由について説明
する。
The reasons for limiting the components of the flux of the present invention will be explained below.

Ca、012〜1.84 : CaOが12憾未満の場
合、フラックスの塩基度が低下し、高靭性の溶接金属が
得られない。逆に、CaOを18係金超えて多量に含有
させるとポックマークが多発し、また波形が粗くなり、
止端部が不揃いになるなどビーP外観が不良となる。
Ca, 012 to 1.84: When CaO is less than 12, the basicity of the flux decreases and a high toughness weld metal cannot be obtained. On the other hand, if a large amount of CaO is contained in excess of 18%, pockmarks occur frequently and the waveform becomes rough.
The appearance of the bee P becomes poor, such as the toe becoming uneven.

Mg022〜31優: MgOが22憾未満の場合、フ
ラックスの塩基度が低下し、高靭性の溶接金属が得られ
ない。逆に、MgOを31係を超えて多量に含有させる
と拡如かなく細い凸状のビードとなシ、このビード形状
不良は例えば極厚鋼の狭開先多層盛溶接においてスラグ
巻込み欠陥の発生原因となる。
Mg022 to 31 excellent: If MgO is less than 22, the basicity of the flux decreases and a weld metal with high toughness cannot be obtained. On the other hand, if MgO is contained in a large amount exceeding the ratio 31, a thin convex bead will be formed without spreading, and this defective bead shape may cause slag entrainment defects, for example, in narrow gap multi-layer welding of extra-thick steel. It causes the occurrence.

SiO□8〜20qb:5IO2が8係未満の場合、ス
ラグの粘性が不足し、蛇行気味のビードとなシ、またビ
ード形状が不良になる。逆に、5i02が20憾を超え
ると7ラツクスの塩基度が低下し、溶接金属の靭性が低
下する。
When SiO□8-20qb:5IO2 is less than 8, the viscosity of the slag is insufficient, resulting in a meandering bead and poor bead shape. Conversely, when 5i02 exceeds 20, the basicity of 7 lux decreases and the toughness of the weld metal decreases.

A#、20522〜35%: htb2o3が22憾未
満の場合、ビード形状、外観とも良好でなめらかなビー
ドが得られない、逆に、35壬を超えて多量に含有させ
るとフラックスの塩基1が低下し、高靭性の溶接金属が
得られず、またビード波形が粗くな9、外観不良となる
他、狭開先多層盛溶接においてスラグ剥離性が不良とな
る。
A#, 20522-35%: If htb2o3 is less than 22mm, a smooth bead with good bead shape and appearance cannot be obtained.On the other hand, if it is contained in a large amount exceeding 35mm, the base 1 of the flux decreases. However, a weld metal with high toughness cannot be obtained, the bead waveform is rough9, the appearance is poor, and slag removability is poor in narrow gap multilayer welding.

金属弗化物5〜15曝:金属弗化物は溶接金属の酸素量
を低減し、靭性を向上させ、またスラグの融点および粘
性を下げ、スラグの流動性を調整し、ビード形状全改善
するために含有させる成分であシ、CaF2 、 Mg
F2 、 NaFなどの金属弗化物の合計が5幅未満の
場合、これらの効果は十分に発揮されず、逆に15憾を
超えて多量に含有させるとアークが不安定になり、スラ
グ巻込み欠陥の発生、ボツクマ−りやスラグ巻込み発生
によりビーP外観およびビード形状が不良となる。
Metal fluoride 5-15 exposure: Metal fluoride reduces the oxygen content of the weld metal, improves toughness, lowers the melting point and viscosity of slag, adjusts the fluidity of slag, and improves the overall bead shape. Ingredients to be included: CaF2, Mg
If the total amount of metal fluorides such as F2, NaF, etc. is less than 5, these effects will not be fully exhibited.On the other hand, if the amount exceeds 15, the arc becomes unstable and slag entrainment defects occur. The appearance of the bead and the shape of the bead become poor due to the occurrence of bumps and slag entrainment.

なお、上記のスラグ形成剤成分全含有させる原材料とし
ては、 CaO源は王に珪灰石、炭酸カルシウムなど、
MgO源は主にマグネシアクリンカ−1炭酸マグネシウ
ムなど、5102源は主に珪灰石、珪砂、および珪酸塩
(粘結剤として使用する水ガラス)など、A1205源
は主にアルミナ粉など、金属弗化物源は主に金石の他、
弗化マグネシウム、弗化ナトリウムなどである。また、
上記各成分の2種以上全含有し1人工的に溶融製造した
溶融型フラックスを原材料の一部として使用すること本
できる。
In addition, as raw materials containing all of the above slag forming agent components, CaO sources include wollastonite, calcium carbonate, etc.
MgO sources mainly include magnesia clinker-1 magnesium carbonate, 5102 sources mainly include wollastonite, silica sand, and silicates (water glass used as a binder), and A1205 sources mainly include metal fluorides such as alumina powder. The source is mainly goldstone,
Magnesium fluoride, sodium fluoride, etc. Also,
It is also possible to use a melt-type flux that contains two or more of the above-mentioned components and is artificially melted and produced as part of the raw material.

金属炭酸塩CO2換算量で5〜12係:金属炭酸塩は溶
接時の分解反応によりC02ガス全発生し、アーク雰囲
気中の水蒸気分圧金工げ、溶接金属の拡散性水素量を低
減させるために含有させる成分である。溶接施工時のフ
ラックスの大気からの吸湿も考慮し、CaCO3、Mg
CO3などの金属炭酸塩の002換算量の合計が5qb
未満の場合、溶接金属の拡散性水素量の低減は不十分で
あり、例えばHT2O鋼の溶接を予熱源[100’C以
下で行なうような場合、低温割れが発生しやすくなる。
Metal carbonate CO2 equivalent amount: 5 to 12: Metal carbonate generates all CO2 gas due to decomposition reaction during welding, and is used to reduce the partial pressure of water vapor in the arc atmosphere metalworking and the amount of diffusible hydrogen in weld metal. This is a component to be included. Considering the moisture absorption of flux from the atmosphere during welding, CaCO3, Mg
The total amount of 002 equivalent amount of metal carbonates such as CO3 is 5qb
If it is less than 1, the amount of diffusible hydrogen in the weld metal is insufficiently reduced, and for example, when welding HT2O steel at a preheat source [100'C or less], cold cracking is likely to occur.

しかし、CO2換算量が124を超えるとアークが不安
定にな夛、ビード形状不良、ポックマークの多発、スラ
グ巻込み発生など、溶接作業性が著しく不良となる。
However, when the CO2 equivalent amount exceeds 124, welding workability becomes extremely poor, such as unstable arc, poor bead shape, frequent occurrence of pock marks, and occurrence of slag entrainment.

なお、金属炭酸塩の分解反応によシ生成するCaO、M
gO々どの金属酸化物はスラグ形成剤成分として作用す
るものであり、本発明フラックスにおいて前記CaOお
よびMgOの含有量はCaCO3およびMg CO6の
各酸「ヒ物換算量を含めた量である。
In addition, CaO, M produced by the decomposition reaction of metal carbonates
Metal oxides such as gO act as slag forming agent components, and in the flux of the present invention, the contents of CaO and MgO include the amounts of each acid (CaCO3 and MgCO6) in terms of arsenic.

また、金属炭酸塩の種類については特に限定するもので
なく、CaCC)5 、 MgCO3以外にBaCO3
、r6003゜SrCO3+ LS2CO5なども適宜
含有させることができる。
Further, the type of metal carbonate is not particularly limited, and in addition to CaCC)5 and MgCO3, BaCO3
, r6003°SrCO3+ LS2CO5, etc. can also be included as appropriate.

金属粉1〜10憾:金属粉は主に脱酸剤としてSt 、
 Mn 、 A# 、 Tiなどの脱酸性元素全単体あ
るいは合金の形態で、上記金属炭酸塩を多量に含有する
ことによる溶接金属の酸素量増加の抑制とともにポック
マークの発生傾向を抑え、良好なビーP外観を得るため
に1循以上含有させる必要がある。さらに、溶接金属の
強度、靭性の調整改善のために上記脱酸性元素以外にN
i 、 Cr 、 Mo 、 Nb。
Metal powder 1 to 10: Metal powder is mainly used as a deoxidizing agent.
By containing large amounts of deoxidizing elements such as Mn, A#, Ti, etc. alone or in the form of alloys, it suppresses an increase in the amount of oxygen in the weld metal, suppresses the tendency to generate pock marks, and provides good bead performance. In order to obtain the P appearance, it is necessary to contain P at least once. Furthermore, in addition to the above deoxidizing elements, N is added to improve the strength and toughness of the weld metal.
i, Cr, Mo, Nb.

Vなどの種々の合金元素の添加、あるいは溶着効率向上
のためにFe粉を含有させることも可能であるが、金属
粉が10係を超えて多量に含有されると7ラツクス製造
時の造粒性が悪くなり、フラックスのくシ返し使用によ
る粉化による金属粉の偏析によシ溶接金属性能が劣比し
、さらにビード表面にスラグの焼付きやスパッタ状の金
属粒の付着、ビットが発生しゃすくなυ、また狭開先多
層盛溶接においてフラックスのかさ密度が大きくなるこ
とによシビーP形状が不良になるなど、本発明フラック
スの特性が失なわれる傾向を示すので、金属粉の合計は
10彊以下でなければならない。
It is possible to add various alloying elements such as V, or to include Fe powder to improve welding efficiency, but if the metal powder is contained in a large amount exceeding a factor of 10, granulation during production of 7 lacs will occur. Weld metal performance deteriorates due to segregation of metal powder due to powdering due to flux recombination, and furthermore, slag seizes, spatter-like metal particles adhere to the bead surface, and bits occur. The characteristics of the flux of the present invention tend to be lost, such as shaky υ and poor shivy P shape due to the increased bulk density of the flux in narrow gap multi-layer welding, so the total amount of metal powder is Must be less than 10 times.

さらに、本発明フラックスは上記各々成分の含有量の範
囲において、下記の条件を満足する特定の範囲に限定さ
れる。
Furthermore, the flux of the present invention is limited to a specific range that satisfies the following conditions in terms of the content range of each of the above components.

な塩基性成分であるCaOとMgOの含有量の関係を規
定することにより特にビード形状をなめらかにし、かつ
内部欠陥のない健全な溶接金属となし得る。CaOとM
gOの含有量の比が0.50未満の場合、すなわちCa
Oの含有量が少な(MgOの含有量が多すぎる場合には
スラグの融点が上昇し、例えば薄板の両面1)ぐス溶接
のような小電流小人熱溶接条件において細く凸状のビー
ドとカリ、形状、外観が不良となり、さらに厚板の30
〜40’V開先の特に第1パス目溶接や極厚鋼の1層1
パス盛の狭開先多層盛溶接においてビード形状不良によ
る融合不良およびスラグ巻込みなどの内部欠陥が発生し
やすくなる。
By defining the relationship between the contents of CaO and MgO, which are basic components, the bead shape can be particularly smoothed and a sound weld metal without internal defects can be obtained. CaO and M
When the content ratio of gO is less than 0.50, that is, Ca
If the content of O is low (if the content of MgO is too high, the melting point of the slag will rise, for example, both sides of a thin plate 1). The potency, shape, and appearance became defective, and the thick plate
~40'V groove, especially first pass welding and 1 layer 1 of extra-thick steel
In narrow-gap multilayer welding using pass welding, internal defects such as poor fusion and slag entrainment due to poor bead shape are likely to occur.

フラックスは最近の溶接時間の短縮、温材コストの低減
の要望からすう勢にある極厚鋼の狭開先多層盛溶接にお
いて問題とカるスラグ剥離性についても十分に良好なら
しめるものであるが、そのためには生成するスラグをガ
ラス質にし、砕けやすいものにしておくことが必要で、
スラグのガラス質化を促進する5i02の含有量は極め
て重要となる。一方、 CaO、MgOはスラグを結晶
質化し、非常に硬く砕けにくいスラグを形成する成分で
ある。
Flux can also sufficiently improve slag removability, which is a problem in narrow-gap multi-layer welding of extra-thick steel, which is becoming increasingly popular due to the recent desire to shorten welding time and reduce hot material costs. In order to do this, it is necessary to make the slag that is generated glassy and easy to break.
The content of 5i02, which promotes vitrification of the slag, is extremely important. On the other hand, CaO and MgO are components that crystallize slag to form a very hard and unbreakable slag.

また、5in2はスラグの粘性全保持1〜、ビード形状
を良好にする成分でもあり、従って、S i O2の含
有量はCaOとMgOの含有量との関係で決定されなけ
ればならない。
In addition, 5in2 is also a component that maintains the overall viscosity of the slag from 1 to 1 and improves the bead shape. Therefore, the content of SiO2 must be determined in relation to the content of CaO and MgO.

が0.15未満の場合にはスラグの結晶化が進み、スラ
グ剥離性が不良となシ、またスラブの粘性が不足するこ
とによりビード形状が不良となる。逆の粘性が大きくな
り、流動性が不足し、狭開先多層盛溶接においてビード
形状が不良となる。
If it is less than 0.15, crystallization of the slag progresses, resulting in poor slag removability and insufficient viscosity of the slab, resulting in poor bead shape. Conversely, the viscosity increases, fluidity is insufficient, and bead shape becomes poor in narrow gap multilayer welding.

は低合金鋼の溶接において溶接金属に要求される高い靭
性レベルを十分に満足するものであり、前記金属弗化物
および脱酸剤の添加に加えて高塩基性の溶融スラグを形
成し、それらの脱酸反応によりできるだけ溶接金属の酸
素ftff:低減する必要がある。
fully satisfies the high toughness level required of the weld metal in welding low-alloy steel, and in addition to the addition of the metal fluoride and deoxidizing agent, it forms a highly basic molten slag. It is necessary to reduce oxygen ftff of the weld metal as much as possible by deoxidizing reaction.

スラグ形成剤成分として含有され、塩基性成分明フラッ
クスの塩基変ヲ表わしだものであって、接金風が得られ
ない。なお、上限については溶接作業性面から2.50
以下であることが好ましい。
It is contained as a slag forming agent component and represents a basic modification of the basic component light flux, and no welding style can be obtained. In addition, the upper limit is 2.50 from the viewpoint of welding workability.
It is preferable that it is below.

なお、本発明フラックスは以上限定した成分の他にTi
O2、MnO、ZrO2などの金属酸化物も必要に応じ
含有させることができる。また、固着剤として使用する
水ガラスの成分であるに20 、 Na2Oはアーク安
定性の向上に効果的に寄与するものである。さらに、高
杓性の溶接金属中心るためのB添加の効果は従来から知
られているが、Bの酸化物を7ラツクス中に含有させる
ことも可能である。
In addition to the above-limited components, the flux of the present invention also contains Ti.
Metal oxides such as O2, MnO, and ZrO2 can also be included as necessary. Moreover, Na2O, which is a component of water glass used as a fixing agent, effectively contributes to improving arc stability. Furthermore, although the effect of adding B to provide a highly malleable weld metal center has been known for a long time, it is also possible to include an oxide of B in the 7 lac.

以下、本発明の効果を実施例によりさらに具体的に示す
Hereinafter, the effects of the present invention will be illustrated in more detail with reference to Examples.

(実施例1) 第1表に成分を示す焼成型フラックス(F1〜F14)
’!に試作製造した。製造方法は各種原料の混合粉に水
ガラスを添加し、造粒後、フランクス温度530℃(±
10℃) X 90 minの焼成を行なった。なお、
焼成後のフラックスの粒度構成は8メツシユ以下12メ
ツシユよりも粗いもの、および100メツシユ以下の細
いものが各々10幅未満で、またフラックスのかさ密度
はJ I S  Z 2504による測定法によ、!5
0.90〜L 15 ?/crlの範囲にあった。これ
らフラックスを350℃X 1 hr  保持の条件で
再乾燥後、第2表に示す化学成分のワイヤWl(ワイヤ
径4簡φ)と組合せて、第3表に示す化学成分の板厚t
−80關のHT80@B1を第1図(a)に示す形状で
tl =5011a、 R1−6簡R9α、−4°のU
溝開先とし、第4表に示す溶接条件により第1図(b)
に示すようにI Jd I Aス盛の狭開先多層盛溶接
試験を行なった。
(Example 1) Sintered flux (F1 to F14) whose components are shown in Table 1
'! A prototype was manufactured. The manufacturing method is to add water glass to a mixed powder of various raw materials, and after granulation, the Franks temperature is 530℃ (±
Firing was performed at 10° C. for 90 min. In addition,
The particle size structure of the flux after firing is 8 meshes or less, coarser than 12 meshes, and 100 meshes or less, finer than 10 meshes, and the bulk density of the flux is measured according to JIS Z 2504! 5
0.90~L15? /crl range. After re-drying these fluxes under the conditions of holding at 350°C for 1 hr, they were combined with wire Wl (wire diameter: 4 mm) having the chemical composition shown in Table 2, and the plate thickness t having the chemical composition shown in Table 3 was obtained.
-80 angle HT80@B1 with the shape shown in Fig. 1(a), tl = 5011a, R1-6 simple R9α, -4° U
Figure 1 (b) with groove groove and welding conditions shown in Table 4.
As shown in Figure 2, a narrow gap multi-layer welding test for IJdIA welding was conducted.

まず、溶接時の溶接作業性の観察とともに溶接径内部欠
陥および低温割れ発生の有無を調査した。
First, welding workability during welding was observed, as well as internal defects in the weld diameter and the occurrence of cold cracks.

次いで、第1図(b)に示すように板厚方向t2−25
鴎の位置を中心にして溶接金属中心にノツチB金入れた
JI84号2 sm Vノツチシャルピー衝撃試験片A
およびJISA2号引張試験片C1また同引張試験片と
同位置より分析試料を採取し、各々試験に供した。これ
ら結果を第5表にまとめて示す。
Next, as shown in FIG. 1(b), the plate thickness direction t2-25
JI84 No. 2 sm V-notch Charpy impact test piece A with a notch B in the center of the weld metal with the seagull position as the center
and JISA No. 2 tensile test piece C1, and an analysis sample was taken from the same position as the same tensile test piece and subjected to the test. These results are summarized in Table 5.

試験屋1〜5は本発明スラックス(Fl〜5)を使用し
た場合で、いずれも良好な溶接作業性で、溶接金属の低
温割れの発生もなく、高い衝撃値が得られた。試験A6
〜14は比較フラックス(F6〜F14)′Jk使用し
た場合で、それぞれ本発明フラックスの各々成分の限定
範囲をはずれている(第1表中、アンダーラインで示す
)ことによシ良好な溶接作業性が得られず、またこのう
ち屋6はスラックスの塩基度が低すぎるために溶接金属
の酸素量が増加し、衝撃値が低下し、A7,8はフラッ
クスの金属炭酸塩の含有景が少なすぎるために低温割れ
が発生した。
Testers 1 to 5 used slacks of the present invention (Fl to 5), and in all cases, good welding workability was achieved, no cold cracking occurred in the weld metal, and high impact values were obtained. Exam A6
-14 are cases in which comparison fluxes (F6 to F14)'Jk were used, and good welding work was achieved because the respective components of the fluxes of the present invention were outside the limited range (indicated by underlines in Table 1). In addition, since the basicity of the slack in Uchiya 6 is too low, the amount of oxygen in the weld metal increases and the impact value decreases, and in A7 and 8, the flux contains less metal carbonate. Cold cracking occurred due to too much heat.

(実施例2) 第1表に示す成分のフラックス(Fl、4およびF 7
 、8 、9 、11)’!r第2表に示す化学成分の
ワイヤW2  (ワイヤ径4.0頗φ)と組合せて、第
3表に示す化学成分の板厚t=14snの3.5壬N1
鋼B2’に第2図(a)に示す形状でtl = 7 m
、α。
(Example 2) Flux of components shown in Table 1 (Fl, 4 and F 7
, 8 , 9 , 11)'! rIn combination with wire W2 (wire diameter 4.0 mm) having the chemical composition shown in Table 2, 3.5 mm N1 with the chemical composition shown in Table 3 having a plate thickness t=14sn
Steel B2' has the shape shown in Fig. 2 (a) and tl = 7 m.
, α.

=70°の突合せY開先とし、第4表に示す溶接条件に
より両面1ノぐス溶接試験を行なった。々お溶接作業性
の観察および溶接後600 ’ex ihrの条件でP
WHT処理を行なった溶接金属について、第2図(b)
に示すように板厚方向t2 = 7 +mの位置を中心
にして溶接金属中心にノツチBi入れたJISA2号衝
撃試験片AおよびJISA2号引張試験片Cを採取し、
各々試験に供した。第6表に結果を示す。
A 1-nog welding test was conducted on both sides under the welding conditions shown in Table 4, with a butt Y groove of =70°. Observation of welding workability and P under the condition of 600'ex Ihr after welding.
Figure 2(b) shows weld metal subjected to WHT treatment.
As shown in , JISA No. 2 impact test piece A and JISA No. 2 tensile test piece C were taken, with a notch Bi placed in the center of the weld metal centered at the position of t2 = 7 + m in the plate thickness direction.
Each was subjected to a test. Table 6 shows the results.

試験A 15 、 A 16は本発明フラックス(Fl
Tests A 15 and A 16 were conducted using the flux of the present invention (Fl
.

F4)を使用した場合で、形状、外観とも良好なビーP
が得られ、壕だ高い衝撃値が得られた。屋17〜20は
比較フラックス(F7 、8 、9 。
B-P with good shape and appearance when using F4)
was obtained, and a very high impact value was obtained. Ya 17-20 are comparative fluxes (F7, 8, 9).

11)を使用した場合で、それぞれビード外観、形状が
不良となった。
11), the bead appearance and shape were poor.

(実施例3) 第1表に示す成分のフラックス(Fl、F4゜F8)’
に350℃X1hr  保持の条件で再乾燥し、その直
後および温[30℃−湿度80壬の恒温恒湿槽内で吸湿
させた後、WES1003に準じガスクロマトグラフ法
により溶接金属の拡散性水素試験を行なった。第7表に
結果を示す。
(Example 3) Flux of components shown in Table 1 (Fl, F4°F8)'
Immediately after re-drying at 350°C for 1 hour and after absorbing moisture in a constant temperature and humidity chamber at 30°C and humidity of 80 m, the weld metal was tested for diffusible hydrogen by gas chromatography according to WES1003. I did it. Table 7 shows the results.

試験煮21および屋22は本発明フラックス(Fl 、
F’4)の場合で、吸湿後においても3.Ome/溶着
量1009という極めて低い値全示したのに対し、A2
3は比較フラックス(F8)の場合で、金属炭酸塩(C
aCO3)の含有量が少なすぎるために、特に吸湿後の
拡散性水素量は本発明フラックスに比べ著しく増加した
Test boil 21 and Ya 22 are the flux of the present invention (Fl,
F'4), 3. even after moisture absorption. Ome/Welding amount showed an extremely low value of 1009, whereas A2
3 is the case of comparative flux (F8), metal carbonate (C
Since the content of aCO3) was too low, the amount of diffusible hydrogen, especially after moisture absorption, was significantly increased compared to the flux of the present invention.

*2)金属粉: Fe−8t 、 St 、 Fe −
Mn 、 Fe −A# 。
*2) Metal powder: Fe-8t, St, Fe-
Mn, Fe-A#.

Aj3 、 Fe−Tiなどの脱酸剤、*3)残 部:
 K2O、Na2O、L120 、 FeOおよび不可
避不純物など。
Aj3, deoxidizing agent such as Fe-Ti, *3) remainder:
K2O, Na2O, L120, FeO and inevitable impurities, etc.

第6表  3.54Ni鋼の両面IAス溶接試験糺果1
) フラックス記号、*印:本発明フラックス、無印:
比較フラックス 2) 衝撃値は各3本の平均値 (発明の効果) 本発明は金属炭酸塩を多量に含有する高塩基性成分系の
焼成型フラックスを溶接速度を速くして行なう小人熱溶
接条件で使用した場合でも各種溶接作業性が良好で、さ
らに拡散性水素量が極めて低く、耐割れ性に優れ、かつ
高靭性の溶接金属が得られる低合金鋼用のサブマージア
ーク溶接用焼成型フラックスであシ、工業的実用性は極
めて高いものである。
Table 6 3.54Ni steel double-sided IA steel welding test result 1
) Flux symbol, *mark: Invention flux, no mark:
Comparison flux 2) The impact value is the average value of each three pieces (Effect of the invention) The present invention uses dwarf heat welding, which is performed at a high welding speed using a sintered flux with a highly basic component system containing a large amount of metal carbonate. A sintered flux for submerged arc welding for low-alloy steel that has good welding workability even when used under various conditions, has an extremely low amount of diffusible hydrogen, has excellent cracking resistance, and produces high-toughness weld metal. Moreover, it has extremely high industrial practicality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図お工び第2図(3)は開先形状、第2図(b)は
累層方法、衝撃試験片および引張試験片の採取位置を示
す図である。 A・・・JI84号2+mVノツチ衝撃試験片の採取位
置 B・・・同ノツチ位置 C・・・J I K2号引張試験片の採取位置代理人 
弁理士  秋 沢 政 光 信1名 岸、2図 自発手続補正1: 昭和61年9月22日
Fig. 1 shows the construction, Fig. 2 (3) shows the groove shape, Fig. 2 (b) shows the layering method, and the sampling positions of the impact test piece and the tensile test piece. A... Sampling position of JI84 No. 2 + mV notch impact test piece B... Same notch position C... Sampling position representative of JI K2 tensile test piece
Patent Attorney Masaaki Akizawa Mitsunobu 1 Nagishi, 2 Figures Voluntary Procedure Amendment 1: September 22, 1986

Claims (1)

【特許請求の範囲】[Claims] (1)スラグ形成剤、ガス発生剤および金属粉の混合物
からなるサブマージアーク溶接用焼成型フラックスにお
いて、重量%で、 CaO 12〜18%、 MgO 22〜31%、 SiO_2 8〜20%、 Al_2O_3 22〜35%、 金属弗化物 5〜15%、 金属炭酸塩をCO_2換算量で5〜12%、 および 金属粉 1〜10% を含有し、かつ CaO%/MgO%≧0.50、 SiO_2%/CaO%+MgO%+SiO_2%=0
.15〜0.30(CaO%+MgO%)/(SiO_
2%+0.5Al_2O_5%)≧1.50なる条件を
満足することを特徴とするサブマージアーク溶接用焼成
型フラックス。
(1) In a fired flux for submerged arc welding consisting of a mixture of a slag forming agent, a gas generating agent, and a metal powder, in weight percent, CaO 12-18%, MgO 22-31%, SiO_2 8-20%, Al_2O_3 22 -35%, metal fluoride 5-15%, metal carbonate 5-12% in terms of CO_2, and metal powder 1-10%, and CaO%/MgO%≧0.50, SiO_2%/ CaO%+MgO%+SiO_2%=0
.. 15~0.30(CaO%+MgO%)/(SiO_
A sintered flux for submerged arc welding, characterized in that it satisfies the following condition: 2%+0.5Al_2O_5%)≧1.50.
JP19680386A 1986-08-22 1986-08-22 Baked flux for submerged arc welding Pending JPS6352794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19680386A JPS6352794A (en) 1986-08-22 1986-08-22 Baked flux for submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19680386A JPS6352794A (en) 1986-08-22 1986-08-22 Baked flux for submerged arc welding

Publications (1)

Publication Number Publication Date
JPS6352794A true JPS6352794A (en) 1988-03-05

Family

ID=16363907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19680386A Pending JPS6352794A (en) 1986-08-22 1986-08-22 Baked flux for submerged arc welding

Country Status (1)

Country Link
JP (1) JPS6352794A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202195A (en) * 2008-02-27 2009-09-10 Jfe Steel Corp Method of manufacturing welded steel pipe weld metal with excellent cold temperature cracking resistance
JP2015120175A (en) * 2013-12-20 2015-07-02 日鐵住金溶接工業株式会社 SUBMERGED ARC WELDING METHOD OF 780 MPa GRADE HIGH TENSILE STEEL
JP2016022503A (en) * 2014-07-18 2016-02-08 株式会社神戸製鋼所 Narrow groove tandem submerged arc welding method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202195A (en) * 2008-02-27 2009-09-10 Jfe Steel Corp Method of manufacturing welded steel pipe weld metal with excellent cold temperature cracking resistance
JP2015120175A (en) * 2013-12-20 2015-07-02 日鐵住金溶接工業株式会社 SUBMERGED ARC WELDING METHOD OF 780 MPa GRADE HIGH TENSILE STEEL
JP2016022503A (en) * 2014-07-18 2016-02-08 株式会社神戸製鋼所 Narrow groove tandem submerged arc welding method

Similar Documents

Publication Publication Date Title
US4571480A (en) Flux cored wire electrodes for self-shielded arc welding
JPS6313694A (en) Baked flux for submerged arc welding
JPH0468079B2 (en)
JPS6352794A (en) Baked flux for submerged arc welding
GB2155045A (en) Flux cored wire electrodes
KR100466205B1 (en) A flux composition for submerged arc welding
CN106312370A (en) 308 (L) stainless steel flux cored wire for sheet welding
JP3157060B2 (en) Highly basic molten flux
JPH0513040B2 (en)
JP2021049576A (en) Iron powder low-hydrogen type coated electrode
JPS5877790A (en) Sintered flux for submerged arc welding
JPH0457438B2 (en)
JPS6045996B2 (en) Flux-cored wire for self-shield arc welding
JPS6356396A (en) Submerged arc welding method
JPS61180694A (en) Fused flux for submerged arc welding
JP2018069294A (en) Melting type flux for submerged arc welding
KR100466204B1 (en) A flux composition for submerged arc welding
JPS60127095A (en) Calcined flux
JPS5843197B2 (en) taisuisokouenkiseisenkoyousetsuyouflux
JPH0214156B2 (en)
JPS6123596A (en) Submerged arc welding process of steels for low temperature service
JPH0327891A (en) Calcined flux for large heat input submerged arc welding
JPS58196195A (en) Baked flux for horizontal fillet submerged arc welding
KR900001676B1 (en) Flux cored electrodes for self-shielded arc welding
JPH0985488A (en) Fused flux for submerged arc welding