JPS6045996B2 - Flux-cored wire for self-shield arc welding - Google Patents

Flux-cored wire for self-shield arc welding

Info

Publication number
JPS6045996B2
JPS6045996B2 JP15243182A JP15243182A JPS6045996B2 JP S6045996 B2 JPS6045996 B2 JP S6045996B2 JP 15243182 A JP15243182 A JP 15243182A JP 15243182 A JP15243182 A JP 15243182A JP S6045996 B2 JPS6045996 B2 JP S6045996B2
Authority
JP
Japan
Prior art keywords
flux
welding
effect
wire
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15243182A
Other languages
Japanese (ja)
Other versions
JPS5956997A (en
Inventor
芳也 酒井
保広 永井
和夫 池本
哲男 菅
正晴 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP15243182A priority Critical patent/JPS6045996B2/en
Priority to KR1019840000955A priority patent/KR900001676B1/en
Publication of JPS5956997A publication Critical patent/JPS5956997A/en
Publication of JPS6045996B2 publication Critical patent/JPS6045996B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】 本発明はセルフシールドアーク溶接用フラックス入りワ
イヤに関し、特にピットや融合不良等の溶接欠陥がなく
且つ靭性の優れた溶接金属を全姿勢溶接で得ることので
きるフラックス入りワイヤに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flux-cored wire for self-shielded arc welding, and in particular to a flux-cored wire that is free from welding defects such as pits and poor fusion and can obtain weld metal with excellent toughness by all-position welding. It is related to.

フラックス入りワイヤとは金属鞘内に粉粒状フラックス
を充填したものであり、使用に当つてはシールドガスや
フラックスを別途供給する必要がないので溶接作業性が
良く、且つ耐風性に優れている等種々の利点を有してい
る。
Flux-cored wire is a metal sheath filled with granular flux, and when used, there is no need to separately supply shielding gas or flux, so it has good welding workability and excellent wind resistance. It has various advantages.

ところでフラックス入りワイヤに使用される充填フラッ
クスの主成分としては、1生成スラグの融点が鋼のそれ
に近くてスラグ形成効果及びシールド効果を有するCa
F2、SrF2及びBaF2等のアルカリ土類金属ふつ
化物、2大気中の窒素や酸素が溶融金属内へ侵入するの
を防止するシールド効果、あるいは仮に侵入したとして
もその弊害を緩和する強力脱酸効果を有するMgや、強
力脱酸効果と窒素固定効果を併用するAl7、が一般に
使用されている。
By the way, the main component of the filling flux used in flux-cored wires is Ca, which has a melting point of 1-generated slag close to that of steel and has a slag-forming effect and a shielding effect.
Alkaline earth metal fluorides such as F2, SrF2 and BaF2, 2 Shielding effect to prevent nitrogen and oxygen from the atmosphere from entering the molten metal, or strong deoxidizing effect to alleviate the negative effects even if they do enter. Generally used are Mg, which has a strong deoxidizing effect, and Al7, which has both a strong deoxidizing effect and a nitrogen fixing effect.

しかしながら上記の様なフラックス入りワイヤには、溶
接条件の適正範囲が狭く且つ溶接欠陥が発生し易いとい
う問題がある。
However, the flux-cored wire as described above has a problem in that the appropriate range of welding conditions is narrow and welding defects are likely to occur.

この溶接欠陥は2種類に大別することができ、一つはス
ラグの巻込み及び融合不良であり、もう一つはピットや
フローホール等の気孔欠陥及び銀球である。こうした欠
陥の発生原因としては、前者の場合スラグ中にAlやM
gの反応生成物である高融点酸化物(Al。O。、Mg
O)が多量含まれている為スラグの融点が鋼の融点より
もかなり高くなること、及び溶込みが浅いこと、が挙げ
られ、後者の場合シールド効果が不十分であり、またワ
イヤ中の水素含有”率が高いこと等が挙げられる。本発
明者等は、上記の様な事情に着目し、まず前述の様な欠
陥発生原因を更に追求して明確にすると共に、適当な改
善手段を構することによつて該欠陥を解消すべく研究を
進めてきた。
These welding defects can be broadly classified into two types: one is slag entrainment and poor fusion, and the other is porosity defects such as pits and flow holes, and silver balls. In the former case, the causes of these defects include Al and M in the slag.
Reaction products of high melting point oxides (Al.O., Mg
The melting point of the slag is much higher than the melting point of steel due to the large amount of O) contained, and the penetration is shallow.In the latter case, the shielding effect is insufficient, and the hydrogen in the wire The inventors of the present invention focused on the above-mentioned circumstances, first of all, further pursued and clarified the causes of the above-mentioned defects, and also devised appropriate improvement measures. We have been conducting research to eliminate this defect by doing so.

その結果、従来ワイヤにおける充填フラックスの主構成
分であるアルカリ金属化合物(例えばNaF,LiF.
Ll2SiO3、Na2O、K2O等)は、蒸気圧が高
いのでシールド効果が良好であり、且つアークカが強い
ので溶込みが深い等の特長を有している反面、固有水分
量が多く且つ吸湿性が高いので充填フラックスの含水率
が高く、これが気孔欠陥を頻発させる最大の原因になつ
ていることが確認された。ところがアルカリ金属化合物
の複合体であるLiBaF3は、前述の様なアルカリ金
属化合物の特長を有すると共に、固有水分量が少なく且
つ難吸湿性であり、充填フラックス用の主構成成分とし
て優れた性能を有していることを知り、更に研究の結果
本発明を完成した。即ち本発明に係るセルフシールドア
ーク溶接用フラックス入りワイヤとは、鋼製鞘内に、下
記の成分を必須成分として含有する粉粒状フラックスを
、ワイヤ全重量に対して10〜30%(重量%:以下同
じ)充填してなるところに要旨が存在する。
As a result, alkali metal compounds (such as NaF, LiF.
Ll2SiO3, Na2O, K2O, etc.) have high vapor pressure, so they have a good shielding effect, and have strong arc force, so they have deep penetration, but on the other hand, they have a large amount of inherent moisture and are highly hygroscopic. Therefore, it was confirmed that the water content of the filling flux was high, and this was the main cause of frequent occurrence of pore defects. However, LiBaF3, which is a composite of an alkali metal compound, has the above-mentioned characteristics of an alkali metal compound, has a low inherent moisture content, and is difficult to absorb moisture, and has excellent performance as a main component for filling flux. As a result of further research, he completed the present invention. That is, the flux-cored wire for self-shielded arc welding according to the present invention is a steel sheath containing a powdery flux containing the following components as essential components in an amount of 10 to 30% (wt%) based on the total weight of the wire. The same applies hereafter) The gist lies in the filling.

LiBaF3:5〜75%Ae:3〜12% Mg:2〜10% Mn:0.5〜10% 本発明で使用するLiBaF3は充填フラックス構成成
分として優れたスラグ形成効果、シールド効果、溶込み
改善効果及びアーク安定効果を有すると共に、固有水分
が少なく難吸湿性であるという特有の性質と有しており
、これを主構成成分とする充填フラックスを使用するこ
とによつて水分(換言すれば水素)に起因するビットや
ブローホール等の気孔欠陥等を可及的に防止することが
でき、ひいては適正アーク電圧範囲を大幅に拡大するこ
とができる。
LiBaF3: 5-75% Ae: 3-12% Mg: 2-10% Mn: 0.5-10% LiBaF3 used in the present invention has excellent slag forming effect, shielding effect, and penetration improvement as a filling flux component. In addition to having a stable arc effect and an arc stabilizing effect, it also has the unique property of having little inherent moisture and being difficult to absorb moisture. ) can be prevented as much as possible, such as pore defects such as bits and blowholes, and as a result, the appropriate arc voltage range can be greatly expanded.

ちなしに第1,2図は、BaF2:40%、Al:7%
、Mg:8%、Mn:3.5%、CaO:0.5%、残
一部Feを基本組成としこれにLiF:0〜40%又は
LiBaF3:0〜40%を配合してなる粉粒状フラッ
クスを、軟鋼製鞘内へワイヤ全重量に対して20%とな
る様に充填し、これを伸線加工して2Tgnφのフラッ
クス入りワイヤとし、これを用いて溶接実,験を行ない
、耐ビット性(適正アーク電圧範囲)又は欠陥(融合不
良、スラグ巻込み)発生率に与えるLiF及びLiBa
F3の効果を調べた実験グラフである。
By the way, Figures 1 and 2 show BaF2: 40%, Al: 7%
, Mg: 8%, Mn: 3.5%, CaO: 0.5%, the balance is Fe as a basic composition, and LiF: 0 to 40% or LiBaF3: 0 to 40% is blended in the form of powder. Flux was filled into a mild steel sheath to an amount of 20% of the total weight of the wire, and this was wire-drawn to make a 2Tgnφ flux-cored wire. Effects of LiF and LiBa on performance (appropriate arc voltage range) or defect (poor fusion, slag entrainment) occurrence rate
This is an experimental graph examining the effect of F3.

但し溶接条件及び試験方法は次の通りとした。〔1〕耐
ビット性(適正アーク電圧範囲)溶接電流:250A、
溶接速度:20(CTn/分)、電流の種類・極性:D
C、ワイヤ(−)、ワイヤ突出し長さ:25(7T0n
)、トーチ角度:0度の条件で、平板(JISG3lO
6、SM−501257mt×5007707!′)上
を下向姿勢て1バス溶接し、X線透過試験(JISZ3
lO4)で1種1級が得られる電圧範囲を適正電圧範囲
とした。
However, the welding conditions and test method were as follows. [1] Bit resistance (appropriate arc voltage range) Welding current: 250A,
Welding speed: 20 (CTn/min), current type/polarity: D
C, wire (-), wire protrusion length: 25 (7T0n
), torch angle: 0 degrees, flat plate (JIS G3lO
6, SM-501257mt×5007707! ') 1 bus welding with the top facing down, X-ray transmission test (JISZ3
The appropriate voltage range was defined as the voltage range in which type 1 grade 1 was obtained with lO4).

尚下限電圧は、ワイヤがスノテツクアウトする電圧とし
た。〔■〕欠陥発生率 溶接電流:250CA)、溶接電圧:20〜23(V)
、溶接速度:15〜25(Cm/分)、電流の種類、極
性:DClワイヤ(一)、ワイヤ突出し長さ:25(順
)、パ・ス間温度・予熱:150〜200℃、裏はつり
ニアークエアガウジング後グラインダで黒皮除去、の条
件で第3図に示す開先形状を有する試験板(2577m
t×50he)を下向き姿勢で表側4層6バス、裏側3
層4バスで溶接した後、超音波探傷試験)(JISZ3
O6O)によつてスラグの巻込み及び融合不良欠陥の総
長さを測定し、この測定値を全溶接長(500Tm!n
)て除した値を欠陥発生率(%)とする。
The lower limit voltage was set to the voltage at which the wire detected out. [■] Defect occurrence rate Welding current: 250CA), Welding voltage: 20-23 (V)
, Welding speed: 15-25 (Cm/min), Type of current, Polarity: DCl wire (1), Wire protrusion length: 25 (in order), Temperature between passes/preheating: 150-200℃, Back side hanging A test plate (2577 m
t x 50he) in a downward position, 4 layers 6 baths on the front side, 3 layers on the back side
After welding with layer 4 bus, ultrasonic flaw detection test) (JISZ3
The total length of slag entrainment and poor fusion defects was measured by the total weld length (500Tm!n
) is the defect occurrence rate (%).

第1図からも明らかな様に、LiBaF3を5%以上配
合すると、その適正アーク電圧範囲はLiFを用いたも
のに比べて大幅に拡大する。
As is clear from FIG. 1, when 5% or more of LiBaF3 is added, the appropriate arc voltage range is greatly expanded compared to that using LiF.

これは後記第4図でも明らかにする如く、LiBaF3
とLiFとの含水率の差が大きく影響している為と考え
られる。また第2図によれば、LiBaF3又はLiF
の配合率が5%以上であり限り、欠陥発生率は同等で何
れも極めて優れている。
As shown in Figure 4 below, this is true for LiBaF3
This is thought to be due to the large difference in water content between LiF and LiF. Also, according to FIG. 2, LiBaF3 or LiF
As long as the blending ratio is 5% or more, the defect occurrence rate is the same and both are extremely excellent.

また第4図は、アルカリ金属化合物の中でも比較的固有
水分及び吸湿性が低いとされているLlF及びLi2S
iO3と本発明のLlBaF3との経時的な吸湿量の変
化を示したものである。
Figure 4 also shows LIF and Li2S, which are said to have relatively low inherent moisture and hygroscopicity among alkali metal compounds.
3 shows the change in moisture absorption amount of iO3 and LlBaF3 of the present invention over time.

尚固有水分とは製造直後の水分量(結晶水及び吸着水等
)を示し、放置時(30℃、80%RH)の水分増加率
は1000℃で加熱したときの放出水分の増加量から求
めた。第4図からも明らかな様に、LiBaF3はLi
FやLi2SiO3等に比べて固有水分及び吸湿性が著
しく低い。従つてLiBaF3を充填フラックスの構成
成分として使用すると、フラックス全体の水分量が少な
くなつてアーク雰囲気中の水素量が低レベルに抑えられ
、水素に起因するビットやブローホール等の気孔欠陥の
発生を可及的に防止することができ、ひいては適正な溶
接部を得る為のアーク電圧範囲を拡大することができる
。前述の様にLjBaF3はフラックス入りワイヤ用の
充填フラックス(具体的には主要スラグ形成剤又は補助
的スラグ構成剤)として適したものであるが、こうした
LiBaF3の特長を有効に発揮させる為には、全フラ
ックス中の含有率が5〜75%の範囲となる様に配合し
なければならない。
Inherent moisture refers to the amount of moisture immediately after production (crystal water, adsorbed water, etc.), and the moisture increase rate when left (30℃, 80% RH) is calculated from the increase in released moisture when heated at 1000℃. Ta. As is clear from Figure 4, LiBaF3 is Li
It has significantly lower inherent moisture and hygroscopicity than F, Li2SiO3, etc. Therefore, when LiBaF3 is used as a component of the filling flux, the moisture content of the entire flux is reduced and the amount of hydrogen in the arc atmosphere is suppressed to a low level, thereby preventing the occurrence of pore defects such as bits and blowholes caused by hydrogen. This can be prevented as much as possible, and the arc voltage range for obtaining a proper weld can be expanded. As mentioned above, LjBaF3 is suitable as a filling flux (specifically, a main slag forming agent or an auxiliary slag forming agent) for flux-cored wires, but in order to effectively utilize these features of LiBaF3, It must be blended so that the content in the total flux is in the range of 5 to 75%.

しかして5%未満では前記第1図にも示した様に適正ア
ーク電圧範囲の拡大効果が有意に発揮されず、且つシー
ルド効果やスラグ巻込み及び融合不良を抑制する効果も
不十分となる。一方75%を越えると生成スラグの流動
性が過大となつて、立向姿勢や上向姿勢で溶融金属及び
スラグが垂れ易くなり、作業性がビード形状等が悪化す
る。尚LIBaF3と併用するスラグ形成剤としては公
知の種々のふつ化物や酸化物が挙げられるが、最も好ま
しいのは、CaF2、SrF2及びBaF2等のアルカ
リ土類金属ふつ化物、あるいは一般式MxNyOz(M
:アルカリ土類金属、N:FelMn..Si..Ni
..Ti..Al等、0:酸素、X)y)z:正数)で
表わされる複合酸化物(具体的にはCa2MnO,、S
r2FeO4、Sr7FelOO22、BaFe2O4
、SrMnO3、Ba(MnO4)2等)である。
However, if it is less than 5%, as shown in FIG. 1, the effect of expanding the appropriate arc voltage range will not be significantly exhibited, and the shielding effect and the effect of suppressing slag entrainment and fusion failure will also be insufficient. On the other hand, if it exceeds 75%, the fluidity of the generated slag becomes excessive, and the molten metal and slag tend to drip in the vertical or upward position, resulting in poor workability and poor bead shape. The slag forming agent to be used in combination with LIBaF3 includes various known fluorides and oxides, but the most preferred are alkaline earth metal fluorides such as CaF2, SrF2 and BaF2, or those with the general formula MxNyOz(M
: alkaline earth metal, N: FelMn. .. Si. .. Ni
.. .. Ti. .. Al, etc., 0: oxygen, X) y) z: positive number) complex oxide (specifically Ca2MnO, S
r2FeO4, Sr7FelOO22, BaFe2O4
, SrMnO3, Ba(MnO4)2, etc.).

またその他の補助的スラグ形成成分としてLiF.K2
ZrF6、K2SiF6、NaF..Na3AeF6、
K2O、Na2OlLl2SlO3、IiMnO3、L
iFeO2等のアルカリ金属化合物;FeO..MnO
,.SlO2、ZrO2、TiO2、MgO..Ae2
O3、Bl2O3、B2O3等の酸化物;Li2CO3
、NacO3、BacO3、SrcO3、CacO3等
の炭酸塩、等を併用することもできる。これらスラグ形
成剤の全充填フラックス中に占める含有率は、LiBa
F3を含めて35〜85%の範囲に設定するのがよい。
In addition, LiF. K2
ZrF6, K2SiF6, NaF. .. Na3AeF6,
K2O, Na2OlLl2SlO3, IiMnO3, L
Alkali metal compounds such as iFeO2; FeO. .. MnO
、. SlO2, ZrO2, TiO2, MgO. .. Ae2
Oxides such as O3, Bl2O3, B2O3; Li2CO3
, carbonates such as NacO3, BacO3, SrcO3, CacO3, etc. can also be used in combination. The content of these slag forming agents in the total filling flux is LiBa
It is preferable to set it in the range of 35 to 85% including F3.

その理由は、35%未満では生成スラグ量が不足して被
包性が悪化し、85%を越えるとスラグ量が過剰になつ
て作業性が低下するからである。Aeは強力脱酸剤及び
脱窒剤としてまた窒素固定剤として不可欠の元素であり
、大気中から侵入する酸素や窒素を捕足して気孔の発生
を防止する。こうしたAfの効果を発揮させる為にはフ
ラックス中に3%以上含有させなければならないが、多
すぎると溶着金属中に過剰量のAeが歩留つて結晶粒が
粗大化し脆弱になるので12%以下に抑えるべきである
。尚A′源としては金属Aeの他、Fe−Af,.Af
)−Mg..A′上i等のAl合金を使用することもて
きる。Mgは強力な脱酸機能を有する他、アーク熱によ
つて容易に金属蒸気となり優れたシールド効果を発揮す
る。
The reason for this is that if it is less than 35%, the amount of slag produced will be insufficient and the encapsulation will deteriorate, and if it exceeds 85%, the amount of slag will be excessive and workability will deteriorate. Ae is an essential element as a strong deoxidizing agent and denitrifying agent and as a nitrogen fixing agent, and traps oxygen and nitrogen that enter from the atmosphere to prevent the formation of pores. In order to exhibit this effect of Af, it must be contained in the flux at least 3%, but if it is too high, an excessive amount of Ae will remain in the weld metal, causing the crystal grains to become coarse and brittle, so it must be contained at 12% or less. should be kept to a minimum. In addition to metal Ae, sources of A' include Fe-Af, . Af
)-Mg. .. It is also possible to use an Al alloy such as A'i. In addition to having a strong deoxidizing function, Mg easily turns into metal vapor due to arc heat and exhibits an excellent shielding effect.

Mg量が2%未満てはこうした効果が十分に発揮されす
、しかも併用するAeの歩留りが低下してAe脱窒素効
果及び窒素固定効果が十分に発揮されなくなる。しかし
多ずぎるとヒユーム発生量が著しく増加して溶融池の観
察が困難になると共に作業環境を汚染し、またスパッタ
の増大及びスラグの粘性増大による被包性の悪化を招く
ので10%以下に抑えるべきである。尚Mg源としては
金属Mgを使用することも可能てあるが、これはアーク
熱によつて気化が爆発的に進行しスパッタが多発する傾
向があるので、Ae一Mg..Mg−Si,.Mg−S
i−Ca..Ni−Mg,.Li−Mg等のMg合金と
して含有させるのがよい。Mnは溶着金属の強度を高め
ると共に、溶融金属の表面張力を下げせビード形状を整
える作用もあり、少なくとも0.5%含有させなければ
ならない。
If the amount of Mg is less than 2%, these effects will be sufficiently exhibited, but the yield of Ae used in combination will decrease, and the Ae denitrification effect and nitrogen fixation effect will not be sufficiently exhibited. However, if it is too large, the amount of fume generated will increase significantly, making it difficult to observe the molten pool, contaminating the working environment, and causing deterioration of encapsulation due to increased spatter and increased slag viscosity, so it should be kept below 10%. Should. It is also possible to use metallic Mg as the Mg source, but since this tends to undergo explosive vaporization due to arc heat and cause frequent spatter, Ae-Mg. .. Mg-Si,. Mg-S
i-Ca. .. Ni-Mg,. It is preferable to include it as an Mg alloy such as Li-Mg. Mn has the effect of increasing the strength of the weld metal, lowering the surface tension of the molten metal and adjusting the bead shape, and must be contained in an amount of at least 0.5%.

しかし10%を越えると溶着金属の強度が過大になつて
延性や耐割れ性が乏しくなる。Mn源としては金属Mn
やFe−■、Fe−Sl−Mn等のMn合金が使用され
るが、この他MnOやMnO2等の酸化物更にはLl。
MnO3、SrMnO3、Ba(MnO4)の様な複合
酸化物もMn源として使用することができる。その理由
は、本発明で使用するフラックス中川こは、Mnよりも
酸素との親和力の大きい元素(AlやMg)が多量含ま
れているので、Mn酸化物は脱酸を受けて金属Mnに変
換されるからである。本発明で使用するフラックスの必
須成分は上記夕の通りであるが、特に海洋構造物の様な
沃温靭性(一般に−10〜−60℃)が要求される分野
に適用する場合、更にNi:0.5〜20%、Zr:0
.1〜4%、Ti:0.01〜0.5%、B:0.01
〜0.2%を配合し、またCe等の希土類元素を配合す
ることも効果的で9ある。
However, if it exceeds 10%, the strength of the weld metal becomes excessively high, resulting in poor ductility and cracking resistance. Metal Mn is used as a Mn source.
Mn alloys such as , Fe-■, Fe-Sl-Mn, etc. are used, but in addition to these, oxides such as MnO and MnO2, and even Ll.
Complex oxides such as MnO3, SrMnO3, Ba (MnO4) can also be used as the Mn source. The reason for this is that Nakagawa Ko, the flux used in the present invention, contains a large amount of elements (Al and Mg) that have a greater affinity for oxygen than Mn, so Mn oxide undergoes deoxidation and converts to metallic Mn. This is because it will be done. The essential components of the flux used in the present invention are as described above, but especially when applied to fields such as offshore structures where iodothermic toughness (generally -10 to -60°C) is required, Ni: 0.5-20%, Zr: 0
.. 1-4%, Ti: 0.01-0.5%, B: 0.01
It is also effective to blend ~0.2% and also blend rare earth elements such as Ce9.

以下これらの副配合成分についても簡単に説明するを加
える。Niはオーステナイト生成元素であり、多量のA
eの歩留りによるフェライト結晶粒の粗大化を抑制し溶
着金属の切欠靭性を高める作用がある。
A brief explanation of these subcomponent components will be added below. Ni is an austenite-forming element, and a large amount of A
It has the effect of suppressing the coarsening of ferrite crystal grains due to the yield of e and improving the notch toughness of the weld metal.

こうした効果は0.5%以上の配合で有効に発揮される
が、20%を越えると強度が過大になつて耐割れ性が乏
しくなる。Ni源としては金属Niの他、Fe−Ni−
Cr..Ni−Mg等のNi合金、あるいはNiO..
Ba2NiO4等の酸化物、複合酸化物が挙げられる。
Zrは溶着金属の結晶粒を微細化すると共に侵入した窒
素を固定して切欠靭性を改善する作用を有しており、こ
れらの効果は0.1%以上の添加で有効に発揮されるが
、4%を越えるとスラグの焼付きが著しくなつて剥離性
が悪化する他、切欠靭性もかえつて低下する。
These effects are effectively exhibited when the content is 0.5% or more, but when the content exceeds 20%, the strength becomes excessive and the cracking resistance becomes poor. As a Ni source, in addition to metal Ni, Fe-Ni-
Cr. .. Ni alloy such as Ni-Mg, or NiO. ..
Examples include oxides and composite oxides such as Ba2NiO4.
Zr has the effect of refining the crystal grains of the weld metal and fixing the intruded nitrogen to improve notch toughness, and these effects are effectively exhibited when added at 0.1% or more. If it exceeds 4%, slag seizure becomes significant and releasability deteriorates, and notch toughness also deteriorates.

尚Zr源としてはFe−ZrlZr−Si等の合金やK
2ZrF6、Na!RF6等のふつ化物、ぁるぃはZr
O2、ZrSiO4(ジルコンサンド)、Li2ZrO
3等の酸化物、複合酸化物が挙げられる。T1は極めて
少量で切欠靭性を高める作用があり、その効果は0.0
1%以上で有効に発揮される。この場合前述した範囲の
Zrや0.01〜0.2%のBと併用するとその効果は
一段と顕著になる。但しTi量が0.5%を越えるとス
ラグの焼付きが著しくなり、ビード外観及び溶接能率が
悪化する。尚Tj源としては金属Ti.Fe−Ti等の
合金の他、TlO2やTl2O3等の酸化物、あるいは
Li2TiO3、CaTl2O4、CaTlO2等の複
合酸化物を使用することもてきる。Bは単独では切欠靭
性改善効果を殆んど示さないが、前述の様に適量のTi
と併用することによつてTiの効果を助長する働きがあ
る。
As a Zr source, alloys such as Fe-ZrlZr-Si and K
2ZrF6, Na! Common monsters such as RF6, Alliha Zr
O2, ZrSiO4 (zircon sand), Li2ZrO
Examples include oxides such as No. 3 oxides and composite oxides. T1 has the effect of increasing notch toughness in a very small amount, and its effect is 0.0
Effective at 1% or more. In this case, the effect becomes even more remarkable when used in combination with Zr in the range mentioned above and B in an amount of 0.01 to 0.2%. However, if the Ti amount exceeds 0.5%, slag seizure becomes significant, and the bead appearance and welding efficiency deteriorate. The Tj source is metal Ti. In addition to alloys such as Fe-Ti, oxides such as TlO2 and Tl2O3, or composite oxides such as Li2TiO3, CaTl2O4, and CaTlO2 may also be used. B alone shows almost no effect on improving notch toughness, but as mentioned above, an appropriate amount of Ti
When used in combination with Ti, it works to enhance the effect of Ti.

こうした効果は0.01%以上の配合で有効に発揮され
るが、0.2%を越えると焼入れ硬化によつて耐割れ性
がこ低下し、切欠靭性も乏しくなる。B源としてはFe
−B等の合金やB2O3等の酸化物、あるいはLi2B
4O7、Na2B4O7等の複合酸化物が挙げられる。
この他、本発明で使用する充填フラックス中に5は、溶
接金属の高温強度等の機械的性質や耐食性を改善する為
にCr..MO..Cu..Nb.V..CO..P等
の元素を配合することもできる。
These effects are effectively exhibited when the content is 0.01% or more, but when the content exceeds 0.2%, the cracking resistance decreases due to quench hardening and the notch toughness also becomes poor. Fe as a B source
-Alloys such as B, oxides such as B2O3, or Li2B
Examples include complex oxides such as 4O7 and Na2B4O7.
In addition, Cr.5 is added to the filling flux used in the present invention to improve the mechanical properties such as high temperature strength and corrosion resistance of the weld metal. .. M.O. .. Cu. .. Nb. V. .. C.O. .. Elements such as P can also be blended.

以上、鋼製鞘内に充填するフラックス組成について説明
したが、それら各成分の効果を有効に発4揮させる為に
はフラックスの充填率も極めて重要であり、ワイヤ全重
量に対する充填量が10〜30%の範囲となる様に充填
率を設定しなければならない。
The composition of the flux to be filled into the steel sheath has been explained above, but in order to effectively exhibit the effects of each component, the filling rate of the flux is also extremely important, and the amount of filling relative to the total weight of the wire is 10 to 10%. The filling rate must be set within the range of 30%.

即ち充填率が10%未満では先に規定したフラックス構
成成分の個々の含有量が不足する為に満足な効果を得る
ことができず、一方30%を越えると溶着金属中のAe
等の合金量が過剰になつて目標程度の機械的性質が得ら
れなくなつたり、あるいは生成スラグ量が過大になつて
スラグの巻込みが著しくなつたり溶接作業性が低下する
等の問題が言才)れる。銅製鞘の材質としては軟鋼が最
も一般的であるが、用途によつては低合金鋼や高合金鋼
等を使用゛することもでき、またその断面構造も特に限
定されないが、2Tr0nφ以下の細径の場合は比較的
単純な円筒形のものが、また2.4〜4Tn!nφ程度
の太径ワイヤの場合は鞘材を内部へ複雑に折り込んだ構
造のものが一般的である。本発明は概略以上の様に構成
されており、特に鋼製鞘内へ充填するフラックスの成分
組成を特定することによつて、ビットや融合不良等の溶
接欠陥がなく且つ機械的諸特性(特に靭性)の優れた溶
接金属をあらゆる溶接姿性て得ることのできるセルフシ
ールドアーク溶接用フラックス入りワイヤを提供し得る
ことになつた。
That is, if the filling rate is less than 10%, a satisfactory effect cannot be obtained because the content of each of the flux constituents specified above is insufficient, while if it exceeds 30%, the Ae in the weld metal
There are problems such as an excessive amount of alloys such as, making it impossible to obtain the target level of mechanical properties, or an excessive amount of slag produced, resulting in significant slag entrainment and reduced welding workability. talented) Mild steel is the most common material for copper sheaths, but low alloy steel or high alloy steel can also be used depending on the purpose, and the cross-sectional structure is not particularly limited, but fine steel with a diameter of 2Tr0nφ or less may be used. In terms of diameter, a relatively simple cylindrical one is 2.4 to 4Tn! In the case of a wire with a large diameter of about nφ, it is common to have a structure in which the sheath material is folded inside in a complicated manner. The present invention is generally constructed as described above, and by specifically specifying the composition of the flux to be filled into the steel sheath, it is possible to eliminate welding defects such as bits and poor fusion, and to prevent mechanical properties (especially It has now become possible to provide a flux-cored wire for self-shielded arc welding that allows weld metal with excellent toughness to be obtained in any welding position.

次に実験例を挙けて本発明の効果を明確にする。Next, experimental examples will be given to clarify the effects of the present invention.

実験例 第1表に示す化学成分の鋼製鞘内に第2表に示す成分組
成の粉粒状フラックスを充填(充填率20%)して伸線
加工し、2TI011φのフラックス入りワイヤを製造
した。
Experimental Example Powder-like flux having the chemical composition shown in Table 2 was filled into a steel sheath having the chemical composition shown in Table 1 (filling rate 20%) and wire drawing was performed to produce a 2TI011φ flux-cored wire.

得られた各ワイヤを用いて下記の条件で溶接実験を行な
つた。
Welding experiments were conducted using each of the obtained wires under the following conditions.

結果を第3表に示す。〔溶接条件〕 試験板 :JISG3lOeKSM−50A1板厚45
藺×長さ500TI0n開先形状:×開先(第4図) 溶接電流:250(A)、■〔ワイヤ(−)〕溶接電圧
:21〜n■)溶接速度:13〜24(c!RL/分)
ワイヤ突出長さ: 20〜25(w$L)累層法
:表・裏側共に8層14バス 溶接姿勢:下向 裏はつりニアークエアガウジング後グラインダ
で黒皮除去〔試験法〕 引張試験:JISZ3lll 第2,3表からも明らかな様に、本発明で規定する要件
を充足するワイヤ(NO.l〜7)を用いて場合は、溶
接作業性が良好でブローホールやスラグ巻込み、融合不
良等の欠陥がなく、溶着金属の機械的性質も良好である
The results are shown in Table 3. [Welding conditions] Test plate: JISG3lOeKSM-50A1 plate thickness 45
藺×Length 500TI0nGave shape: / minute)
Wire protrusion length: 20 to 25 (w$L) Layer method: 8 layers and 14 baths on both front and back sides Welding position: Downward back side, near air gouging, then grinder
[Test method] Tensile test: JIS Z3llll As is clear from Tables 2 and 3, welding workability is There are no defects such as blowholes, slag entrainment, or poor fusion, and the mechanical properties of the welded metal are also good.

中でもフラックス中に適量のZrを配合したワイヤ(N
O.6)及びTj.l5Zrを配合したワイヤ(NO.
2,3)を用いて得た溶着金属の低温(−30′C)靭
性は極めて優れている。これに対し本発明の要件を欠く
比較ワイヤ(NO.8〜12)を用いた場合は、溶接作
業性、超音波探傷性能及び機械的性質の何れかが劣悪で
あり、本発明の目的を達成することができない。
Among them, wire containing an appropriate amount of Zr in flux (N
O. 6) and Tj. Wire containing l5Zr (NO.
The low-temperature (-30'C) toughness of the weld metal obtained using 2, 3) is extremely excellent. On the other hand, when comparison wires (No. 8 to 12) lacking the requirements of the present invention were used, either the welding workability, ultrasonic flaw detection performance, or mechanical properties were poor, and the purpose of the present invention was not achieved. Can not do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1,2図は充填フラックス中のLiF又はLjBaF
3の含有率と適正アーク電圧範囲及び欠陥発生率の関係
を示すグラフ、第3,5図は実験で採用した開先形状を
示す図、第4図は水分の経時的な増加量を示すグラフで
ある。
Figures 1 and 2 show LiF or LjBaF in the filling flux.
A graph showing the relationship between the content of No. 3 and the appropriate arc voltage range and defect occurrence rate, Figures 3 and 5 are graphs showing the groove shape adopted in the experiment, and Figure 4 is a graph showing the amount of moisture increase over time. It is.

Claims (1)

【特許請求の範囲】 1 銅製鞘内に、下記の成分を必須成分として含有する
粉粒状フラックスを、ワイヤ全重量に対して10〜3重
量%充填してなることを特徴とするセルフシールドアー
ク溶接用フラックス入りワイヤ。 LiBaF_3:5〜75重量% Al:3〜12〃 Mg:2〜10〃 Mn:0.5〜10〃
[Scope of Claims] 1. Self-shielded arc welding characterized in that a copper sheath is filled with powdery flux containing the following components as essential components in an amount of 10 to 3% by weight based on the total weight of the wire. flux-cored wire. LiBaF_3: 5-75% by weight Al: 3-12〃 Mg: 2-10〃 Mn: 0.5-10〃
JP15243182A 1982-08-31 1982-08-31 Flux-cored wire for self-shield arc welding Expired JPS6045996B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP15243182A JPS6045996B2 (en) 1982-08-31 1982-08-31 Flux-cored wire for self-shield arc welding
KR1019840000955A KR900001676B1 (en) 1982-08-31 1984-02-27 Flux cored electrodes for self-shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15243182A JPS6045996B2 (en) 1982-08-31 1982-08-31 Flux-cored wire for self-shield arc welding

Publications (2)

Publication Number Publication Date
JPS5956997A JPS5956997A (en) 1984-04-02
JPS6045996B2 true JPS6045996B2 (en) 1985-10-14

Family

ID=15540373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15243182A Expired JPS6045996B2 (en) 1982-08-31 1982-08-31 Flux-cored wire for self-shield arc welding

Country Status (1)

Country Link
JP (1) JPS6045996B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61169196A (en) * 1985-01-22 1986-07-30 Kobe Steel Ltd Flux cored wire for self-shielded arc welding
US10421160B2 (en) 2013-03-11 2019-09-24 The Esab Group, Inc. Alloying composition for self-shielded FCAW wires with low diffusible hydrogen and high Charpy V-notch impact toughness
CN103949795B (en) * 2014-04-11 2016-01-27 洛阳双瑞特种合金材料有限公司 A kind of medicine core powder for making seamless self-shielded welding wire
CN104028913A (en) * 2014-05-30 2014-09-10 洛阳双瑞特种合金材料有限公司 Seamless self-protection flux-cored wire
CN104259684B (en) * 2014-07-29 2016-09-07 洛阳双瑞特种合金材料有限公司 A kind of self-protection flux-cored wire for welding X90 pipe line steel and preparation method

Also Published As

Publication number Publication date
JPS5956997A (en) 1984-04-02

Similar Documents

Publication Publication Date Title
KR880002508B1 (en) Flux cored wire for gas shielded arc welding
US4571480A (en) Flux cored wire electrodes for self-shielded arc welding
CN1895839B (en) Barium and lithium ratio for flux cored electrode
JP3476125B2 (en) Flux-cored wire for duplex stainless steel welding
CN108296667B (en) Flux-cored wire for underwater welding and preparation method
CN109789519B (en) Welding wire for electroslag welding, flux for electroslag welding, and welded joint
US20170239758A1 (en) Flux-cored wire for arc welding of duplex stainless steel and weld metal
JP6901868B2 (en) Electroslag welding wire, electroslag welding flux and welded joints
JP2007160314A (en) Flux cored wire for welding high-strength stainless steel
JPS6313694A (en) Baked flux for submerged arc welding
KR102675635B1 (en) Flux Cored Wire and Welding Methods
JP6891630B2 (en) Flux-cored wire for gas shielded arc welding and welding joint manufacturing method
US3924091A (en) Welding method and materials
KR101719797B1 (en) Flux cored wire
JP2679880B2 (en) Flux-cored wire for gas shielded arc welding
JP5843164B2 (en) Flux-cored wire for submerged arc welding
JP2687006B2 (en) Flux-cored wire for gas shielded arc welding for refractory steel
JPH08257785A (en) Flux cored wire for arc welding to improve low temp. crack resistance of steel weld zone
JPS6045996B2 (en) Flux-cored wire for self-shield arc welding
JP3686545B2 (en) A groove filler for simple single-sided submerged arc welding and a welding method using the same.
JPH0545360B2 (en)
WO2021090953A1 (en) Fluxed core wire and method for manufacturing weld joint
JP3208556B2 (en) Flux-cored wire for arc welding
KR20190118898A (en) Titania Based Flux Cored Wire of Gas Shielded Arc Welding for excellent hot cracking resistance
JPS6357155B2 (en)