JP2016022503A - Narrow groove tandem submerged arc welding method - Google Patents

Narrow groove tandem submerged arc welding method Download PDF

Info

Publication number
JP2016022503A
JP2016022503A JP2014147997A JP2014147997A JP2016022503A JP 2016022503 A JP2016022503 A JP 2016022503A JP 2014147997 A JP2014147997 A JP 2014147997A JP 2014147997 A JP2014147997 A JP 2014147997A JP 2016022503 A JP2016022503 A JP 2016022503A
Authority
JP
Japan
Prior art keywords
mass
welding
less
wire
submerged arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014147997A
Other languages
Japanese (ja)
Other versions
JP6209135B2 (en
Inventor
和也 井海
Kazuya Iumi
和也 井海
山下 賢
Masaru Yamashita
賢 山下
繁樹 西山
Shigeki Nishiyama
繁樹 西山
中西 智明
Tomoaki Nakanishi
智明 中西
山田 雅人
Masato Yamada
雅人 山田
禎 池内
Tadashi Ikeuchi
禎 池内
伊久雄 前田
Ikuo Maeda
伊久雄 前田
利昭 深田
Toshiaki Fukada
利昭 深田
難波 茂信
Shigenobu Nanba
茂信 難波
畑野 等
Hitoshi Hatano
等 畑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2014147997A priority Critical patent/JP6209135B2/en
Priority to CN201510411817.2A priority patent/CN105269127B/en
Priority to KR1020150100414A priority patent/KR102034470B1/en
Publication of JP2016022503A publication Critical patent/JP2016022503A/en
Application granted granted Critical
Publication of JP6209135B2 publication Critical patent/JP6209135B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • B23K9/186Submerged-arc welding making use of a consumable electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/24Features related to electrodes
    • B23K9/28Supporting devices for electrodes
    • B23K9/287Supporting devices for electrode holders

Abstract

PROBLEM TO BE SOLVED: To provide, in a narrow groove tandem submerged arc welding method of improved 9Cr-1Mo steel, a welding method which is excellent in welding efficiency, satisfactory in a slag peeling efficiency and a bead state, and which can suppress the occurrence of a hot crack of molten metal.SOLUTION: A narrow groove tandem submerged arc welding method uses as a mother material an improved 9Cr-1Mo steel containing C, Si, Mn, P, S, Ni, Cr, Mo, V, Nb, Al, Ti, Zr and N in predetermined quantities, and the remainder being Fe and an inevitable impurity, and a welding wire containing C, Si, Mn, P, S, Ni, Cr, Mo, V, Nb, N and O at predetermined quantities, and the remainder being Fe and an inevitable impurity and having a wire diameter of 4.0 mmφ, uses an AC power source indicating depending characteristics with the combination of said welding wire and a welding flux of a predetermined alkaline degree, and performs the welding under the predetermined conditions of a wire feeding speed Vof the preceding electrode, a wire feeding speed Vof the trailing electrode, a welding speed v, and the deposition quantity per unit length.SELECTED DRAWING: None

Description

本発明は、サブマージアーク溶接法に関し、より詳しくは、改良9Cr−1Mo鋼についての狭開先内のタンデムサブマージアーク溶接方法に関する。   The present invention relates to a submerged arc welding method, and more particularly to a tandem submerged arc welding method in a narrow groove for improved 9Cr-1Mo steel.

脱硫、重油分解を行う化学反応容器(リアクタ)は、重油の有効利用、石油精製の効率化に使用される圧力容器である。リアクタは、高温、高圧で運転されるため、材料としては、1.25Cr−0.5Mo,2.25Cr−1.0Mo,2.25Cr−1.0Mo−V鋼などのフェライト系耐熱鋼が適用される。現在、2.25Cr−1.0Mo−V鋼が主要材料で、その設計温度は一般に454℃までである。近年、重油の有効利用や石油精製において、さらなる高効率化が求められており、設計温度500℃前後での運転が可能とされる、改良9Cr−1Mo鋼製のリアクタの研究開発が積極的に進められている。   A chemical reaction vessel (reactor) that performs desulfurization and heavy oil decomposition is a pressure vessel used for effective use of heavy oil and efficiency of petroleum refining. Since the reactor is operated at a high temperature and high pressure, ferritic heat resistant steels such as 1.25Cr-0.5Mo, 2.25Cr-1.0Mo, 2.25Cr-1.0Mo-V steel are applied as materials. Is done. At present, 2.25Cr-1.0Mo-V steel is the main material, and its design temperature is generally up to 454 ° C. In recent years, there has been a demand for higher efficiency in the effective use of heavy oil and petroleum refining, and research and development of an improved 9Cr-1Mo steel reactor that can be operated at a design temperature of around 500 ° C has been actively conducted. It is being advanced.

改良9Cr−1Mo鋼は、9Cr−1Mo鋼にNbおよびVを添加し、高温強度の向上を図った鋼である。例えば、ASTM(American Society for Testing and Materials:米国材料試験協会)あるいはASME(American Society of Mechanical Engineers:米国機械協会)規格に規定されたSA335Gr.P91およびSA213Gr.T91などがある。改良9Cr−1Mo鋼は、その多くは火力発電用のボイラ分野で実績がある。   The improved 9Cr-1Mo steel is steel in which Nb and V are added to the 9Cr-1Mo steel to improve the high temperature strength. For example, SA335Gr. As defined in ASTM (American Society for Testing and Materials) or ASME (American Society of Mechanical Engineers) standards. P91 and SA213Gr. T91 etc. Many of the improved 9Cr-1Mo steels have a track record in the field of boilers for thermal power generation.

リアクタは、板厚50mm以上、内径3〜5m、全長数十m、重量数百トンの縦型円筒状の圧力容器である。リアクタの胴体は、板巻きで溶接したリングあるいは鍛造リングの端部を機械加工し、リング同士を周溶接することで製造される。そのため、構造上、圧力容器に占める溶接部の割合が大きくなるため、溶接材料の低減、溶接の高能率化が強く求められている。一般的に、溶接材料の低減に対しては、開先幅を狭くかつ開先角度を小さくすることで、溶接部を減らす方法がある。また、高能率化に対しては、初層から最終層までをタンデム電極でサブマージアーク溶接する方法がある。しかしながら、溶接時の高温割れに対しては、いずれも不利な条件となるため、その抑制技術の開発が過去に検討されている。   The reactor is a vertical cylindrical pressure vessel having a thickness of 50 mm or more, an inner diameter of 3 to 5 m, a total length of several tens of meters, and a weight of several hundred tons. The body of the reactor is manufactured by machining the end of a ring or forged ring welded by plate winding and circumferentially welding the rings. For this reason, the proportion of the welded portion in the pressure vessel is increased due to the structure, so that there is a strong demand for reduction of welding materials and higher efficiency of welding. In general, there is a method for reducing the weld material by reducing the weld width by narrowing the groove width and reducing the groove angle. In order to improve efficiency, there is a method of performing submerged arc welding from the first layer to the last layer with a tandem electrode. However, since it is a disadvantageous condition for hot cracking during welding, development of a suppression technique has been studied in the past.

例えば、特許文献1には、開先幅が10〜25mm、開先角度が15度以下である狭開先をサブマージアーク溶接により1層1パスで溶接するに当たり、先行電極として1.6〜3.2mmφの電極を、又後行電極として4.0〜4.8mmφの電極を夫々使用すると共に、電極間距離を50〜150mmとし、焼結型フラックスを用いて溶接することを特徴とするナロウギャップサブマージアーク溶接方法が開示されている。
この溶接方法では、タンデム溶接で電極間距離を50〜150mmとすることで、ビード形状比(ビード深さH/ビード幅W)を抑えている。その際、先行電極のワイヤ径を1.6〜3.2mmφ、後行電極のワイヤ径を4.0〜4.8mmφとしている。これにより、高温割れの発生を抑制している。
For example, Patent Document 1 discloses that when a narrow groove having a groove width of 10 to 25 mm and a groove angle of 15 degrees or less is welded in one layer and one pass by submerged arc welding, 1.6 to 3 is used as a leading electrode. Narrow, characterized in that a 2 mmφ electrode and a 4.0 to 4.8 mmφ electrode are used as the trailing electrode, and the distance between the electrodes is 50 to 150 mm, and welding is performed using a sintered flux. A gap submerged arc welding method is disclosed.
In this welding method, the bead shape ratio (bead depth H / bead width W) is suppressed by setting the distance between the electrodes to 50 to 150 mm by tandem welding. At that time, the wire diameter of the leading electrode is set to 1.6 to 3.2 mmφ, and the wire diameter of the trailing electrode is set to 4.0 to 4.8 mmφ. Thereby, generation | occurrence | production of a hot crack is suppressed.

特開昭60−177966号公報JP-A-60-177966

しかしながら、従来の技術においては以下の問題がある。
特許文献1において、実施例に記載されている溶接用ソリッドワイヤは、軟鋼である。ここで、改良9Cr−1Mo鋼と共材で構成された溶接用ソリッドワイヤは軟鋼と共材で構成された溶接用ソリッドワイヤと比較し、ジュール発熱が大きいため、溶着量が大きくなり高温割れの感受性が高まる。つまり、特許文献1に記載の方法のみで、改良9Cr−1Mo鋼の溶接における高温割れについての課題を解決することは難しい。また、先行の電極で形成したスラグが、後行の電極で十分溶融しきれないリスクもあり、リアクタの周溶接のような高品質を要求される箇所に適さない。
However, the conventional techniques have the following problems.
In Patent Document 1, the solid wire for welding described in Examples is mild steel. Here, the welding solid wire composed of the improved 9Cr-1Mo steel and the co-material has a larger Joule heat generation than the welding solid wire composed of the mild steel and the co-material, so that the amount of welding is increased and hot cracking occurs. Increases sensitivity. That is, it is difficult to solve the problem of hot cracking in welding of improved 9Cr-1Mo steel only by the method described in Patent Document 1. Further, there is a risk that the slag formed by the preceding electrode cannot be sufficiently melted by the succeeding electrode, and is not suitable for a place where high quality is required such as circumferential welding of the reactor.

また、厚板を高能率で溶接するためには、溶接入熱を上げる、すなわち、溶接電流、アーク電圧を高め、溶接速度を低めにすることが有効である。しかし、溶接入熱を上げると、特に狭開先ではビード形状がなし型となりやすく、高温割れの発生リスクが高まる。ここで問題となる高温割れは、溶接金属中に含まれるP、S、Si、Nbなどの低融点化合物が凝固時にデンドライト間やオーステナイト結晶粒界に偏析し、溶接収縮ひずみが加わって発生するいわゆる凝固割れである。
そのため、高温割れの抑制策として、ワイヤの成分、具体的には、P、S等の不純物を超高純度(Extra High Purity)溶解で100ppm以下に抑えることも効果的である。しかしながら、超高純度溶解は電子ビーム溶解や専用の特殊炉壁耐火材を使わざるを得ないことから経済的に難点がある。このため、一般的な不純物レベルでも、高温割れの発生を抑制できる技術が求められている。
In order to weld thick plates with high efficiency, it is effective to increase the welding heat input, that is, increase the welding current and arc voltage and decrease the welding speed. However, when the welding heat input is increased, the bead shape tends to become a die, especially in a narrow groove, and the risk of occurrence of hot cracking increases. The hot crack that is a problem here is a so-called "hot cracking" that occurs when low melting point compounds such as P, S, Si, and Nb contained in the weld metal segregate between dendrites and austenite grain boundaries during solidification, and weld shrinkage strain is added. It is a solidification crack.
Therefore, as a measure for suppressing hot cracking, it is also effective to suppress the components of the wire, specifically, impurities such as P and S to 100 ppm or less by dissolving with ultra high purity (Extra High Purity). However, ultra-high purity melting is economically difficult because it requires the use of electron beam melting and special furnace wall refractory materials. For this reason, the technique which can suppress generation | occurrence | production of a hot crack even at a general impurity level is calculated | required.

また、本発明で対象にする改良9Cr−1Mo鋼と共材で構成された溶接用ソリッドワイヤは、1.25Cr−0.5Mo,2.25Cr−1.0Mo,2.25Cr−1.0Mo−V鋼と共材で構成された各溶接用ソリッドワイヤと比較し、ジュール発熱が高く、溶着量が大きくなるため、高温割れ感受性がより高まっている。したがって、改良9Cr−1Mo鋼に対して高温割れの発生を抑制できる技術が求められている。
また、タンデムサブマージアーク溶接では、溶接能率の向上に加え、良好なスラグ剥離性や、ビードの状態が良好であることも求められる。
Moreover, the solid wire for welding comprised by the improved 9Cr-1Mo steel and a co-material made into object by this invention is 1.25Cr-0.5Mo, 2.25Cr-1.0Mo, 2.25Cr-1.0Mo-. Compared to each welding solid wire made of V steel and co-material, Joule heat generation is high and the amount of welding is increased, so the hot cracking sensitivity is further increased. Therefore, there is a need for a technique that can suppress the occurrence of hot cracking for the improved 9Cr-1Mo steel.
Further, in tandem submerged arc welding, in addition to improving the welding efficiency, it is also required that the slag peelability and the bead state are good.

本発明は、上記事情に鑑みてなされたものであり、その課題は、改良9Cr−1Mo鋼の狭開先タンデムサブマージアーク溶接において、溶接能率に優れるとともに、スラグ剥離性およびビードの状態が良好であり、溶接金属の高温割れの発生を抑制できる溶接方法を提供することにある。   This invention is made | formed in view of the said situation, The subject is in the narrow gap tandem submerged arc welding of improved 9Cr-1Mo steel, while being excellent in welding efficiency, and the state of slag peelability and a bead is favorable. It is to provide a welding method capable of suppressing the occurrence of hot cracks in the weld metal.

本発明者らは、鋭意研究した結果、以下の事項を見出した。
狭開先タンデム溶接について鋭意研究を重ねた結果、本発明で規定した成分の母材、溶接ワイヤ、溶接フラックスを使用し、先行極および後行極のワイヤの送給速度、溶接速度、両者の比で算出される単位長さ当りの溶着量を規定することにより、高温割れの発生を抑制できることがわかった。
As a result of intensive studies, the present inventors have found the following matters.
As a result of earnest research on narrow groove tandem welding, using the base material, welding wire, and welding flux of the components specified in the present invention, the wire feeding speed, welding speed, It was found that the occurrence of hot cracking can be suppressed by defining the amount of welding per unit length calculated by the ratio.

すなわち、本発明に係る狭開先タンデムサブマージアーク溶接方法は、C:0.08〜0.12質量%、Si:0.20〜0.50質量%、Mn:0.30〜0.60質量%、P:0.020質量%以下、S:0.010質量%以下、Ni:0.40質量%以下、Cr:8.00〜9.50質量%、Mo:0.85〜1.05質量%、V:0.18〜0.25質量%、Nb:0.06〜0.10質量%、Al:0.02質量%以下、Ti:0.01質量%以下、Zr:0.01質量%以下、N:0.030〜0.070質量%を含有し、残部がFeおよび不可避的不純物である改良9Cr−1Mo鋼を母材として、C:0.03〜0.08質量%、Si:0.05〜0.30質量%、Mn:0.50〜2.20質量%、P:0.015質量%以下、S:0.010質量%以下、Ni:0.30〜1.00質量%、Cr:8.00〜10.50質量%、Mo:0.80〜1.20質量%、V:0.10〜0.40質量%、Nb:0.020〜0.080質量%、N:0.016〜0.055質量%、O:0.03質量%以下を含有し、残部がFeおよび不可避的不純物であり、ワイヤ径が4.0mmφの溶接ワイヤを用い、前記溶接ワイヤと、下記式(1)で示す塩基度が2.3〜2.7の溶接フラックスの組合せで、垂下特性を示す交流電源を用いて、先行極のワイヤ送給速度Vを45〜90g/min、後行極のワイヤ送給速度Vを60〜110g/min、溶接速度vを30〜55cm/min、単位長さ当りの溶着量を2.8〜3.8g/cmとする条件で溶接することを特徴とする。
塩基度=(CaF+CaO+MgO+SrO+NaO+LiO+1/2(MnO+FeO))/(SiO+1/2(Al+TiO+ZrO))・・・・(1)
ここで、各化合物はフラックス全質量あたりの各化合物の含有量(質量%)を示す。
That is, the narrow groove tandem submerged arc welding method according to the present invention has C: 0.08 to 0.12 mass%, Si: 0.20 to 0.50 mass%, Mn: 0.30 to 0.60 mass. %, P: 0.020 mass% or less, S: 0.010 mass% or less, Ni: 0.40 mass% or less, Cr: 8.00 to 9.50 mass%, Mo: 0.85 to 1.05 % By mass, V: 0.18 to 0.25% by mass, Nb: 0.06 to 0.10% by mass, Al: 0.02% by mass or less, Ti: 0.01% by mass or less, Zr: 0.01 Less than mass%, N: 0.030-0.070 mass%, with the balance being Fe and inevitable impurities 9Cr-1Mo steel as a base material, C: 0.03-0.08 mass%, Si: 0.05-0.30 mass%, Mn: 0.50-2.20 mass%, P: 0.015 mass% Below, S: 0.010 mass% or less, Ni: 0.30-1.00 mass%, Cr: 8.00-10.50 mass%, Mo: 0.80-1.20 mass%, V: 0 10 to 0.40 mass%, Nb: 0.020 to 0.080 mass%, N: 0.016 to 0.055 mass%, O: 0.03 mass% or less, with the balance being Fe and inevitable It shows a drooping characteristic by using a welding wire having a wire diameter of 4.0 mmφ and a combination of the welding wire and a welding flux having a basicity of 2.3 to 2.7 represented by the following formula (1). using an AC power source, a wire feed rate V L of the leading electrode 45~90g / min, the trailing electrode wire feed rate V T the 60~110g / min, the welding speed v the 30~55cm / min, units Welding under the condition that the welding amount per length is 2.8 to 3.8 g / cm And features.
Basicity = (CaF 2 + CaO + MgO + SrO + Na 2 O + Li 2 O + 1/2 (MnO + FeO)) / (SiO 2 +1/2 (Al 2 O 3 + TiO 2 + ZrO 2 )) (1)
Here, each compound shows content (mass%) of each compound per flux total mass.

かかる溶接方法によれば、改良9Cr−1Mo鋼を母材とする狭開先タンデムサブマージアーク溶接方法(以下、適宜、サブマージアーク溶接方法あるいは、単に溶接方法という)は、ワイヤ成分を規定することで、溶接金属のクリープ破断強度、靭性、耐酸化性、高温強度が向上するとともに、溶接金属の高温割れ感受性が低下する。また、ワイヤ径を規定することで、溶着量が適度となり、溶接能率が向上するとともに溶接金属の高温割れや靭性の劣化が抑制される。
また、フラックスの塩基度を規定することで、溶接金属の靭性が向上するとともに、ビード外観やビード形状が良好となる。また、垂下特性を示す交流電源を用いることで、安定した溶接を行うことができる。さらに、ワイヤの送給速度、溶接速度、単位長さ当りの溶着量を規定することにより、溶接能率、ビードの状態およびスラグ剥離性が向上するとともに溶接金属の高温割れの発生が抑制される。
According to such a welding method, a narrow groove tandem submerged arc welding method (hereinafter, referred to as a submerged arc welding method or simply a welding method, as appropriate) using a modified 9Cr-1Mo steel as a base material defines a wire component. The creep rupture strength, toughness, oxidation resistance and high temperature strength of the weld metal are improved, and the hot cracking sensitivity of the weld metal is reduced. Also, by defining the wire diameter, the amount of welding becomes appropriate, the welding efficiency is improved, and the hot cracking and toughness deterioration of the weld metal are suppressed.
Further, by defining the basicity of the flux, the toughness of the weld metal is improved, and the bead appearance and bead shape are improved. Moreover, stable welding can be performed by using an AC power source exhibiting drooping characteristics. Furthermore, by regulating the wire feeding speed, welding speed, and welding amount per unit length, the welding efficiency, the bead state and the slag peelability are improved, and the occurrence of hot cracks in the weld metal is suppressed.

本発明の狭開先タンデムサブマージアーク溶接方法は、改良9Cr−1Mo鋼の溶接において、溶接能率に優れるとともに、ビードの状態が良好であり、スラグ剥離性、耐高温割れ性に優れた溶接金属を得ることができる。   The narrow groove tandem submerged arc welding method of the present invention is an improved 9Cr-1Mo steel welded metal that is excellent in welding efficiency, has a good bead state, and has excellent slag peelability and hot crack resistance. Can be obtained.

本発明の溶接方法における先行極と後行極の状態を示す正面図である。It is a front view which shows the state of the leading electrode and the trailing electrode in the welding method of this invention. 本発明の溶接方法における溶接チップの形状を示す正面図である。It is a front view which shows the shape of the welding tip in the welding method of this invention. 図2に示す溶接チップの側面図である。It is a side view of the welding tip shown in FIG. 図2に示す溶接チップのチップ先端部側の端面図である。FIG. 3 is an end view of the tip end side of the welding tip shown in FIG. 2. 本発明の溶接方法における溶接チップの状態を示す正面図である。It is a front view which shows the state of the welding tip in the welding method of this invention. 本発明の溶接方法における溶接チップの状態を示す正面図である。It is a front view which shows the state of the welding tip in the welding method of this invention. 本発明の溶接方法における溶接チップの状態を示す正面図である。It is a front view which shows the state of the welding tip in the welding method of this invention. 本発明の溶接方法における溶接チップの状態を示す正面図である。It is a front view which shows the state of the welding tip in the welding method of this invention. 本発明の溶接方法における溶接チップの状態を示す正面図である。It is a front view which shows the state of the welding tip in the welding method of this invention. 本発明の溶接方法における溶接チップの状態を示す正面図である。It is a front view which shows the state of the welding tip in the welding method of this invention. 実施例で用いた試験体および溶接金属の積層状態を示す断面図である。It is sectional drawing which shows the lamination | stacking state of the test body and weld metal which were used in the Example.

以下、本発明の実施の形態について詳細に説明する。
本発明の溶接方法は、狭開先の溶接を対象とする狭開先タンデムサブマージアーク溶接方法である。タンデムサブマージアーク溶接方法とは、例えば図1に示すように、改良9Cr−1Mo鋼で構成された母材10を、ワイヤ12a、12bがそれぞれ内挿された溶接チップ11a、11bと、図示しない溶接フラックスを用いてアーク溶接で溶接する方法である。すなわち、本発明の溶接方法は、図1に示すように、先行極15aおよび後行極15bの2電極で溶接するものである。ここで、本発明において、母材10の狭開先は、板厚tが50mm以上、開先角度θが0〜5°の開先と定義する(図11参照)。例えば、後述する実施例で用いる図11の試験体20では、板厚tが250mm、開先角度θが、2°+2°の4°である。
Hereinafter, embodiments of the present invention will be described in detail.
The welding method of the present invention is a narrow groove tandem submerged arc welding method intended for narrow groove welding. The tandem submerged arc welding method refers to, for example, as shown in FIG. 1, a base material 10 made of modified 9Cr-1Mo steel, welding tips 11 a and 11 b in which wires 12 a and 12 b are respectively inserted, and welding not shown. It is a method of welding by arc welding using a flux. That is, in the welding method of the present invention, as shown in FIG. 1, welding is performed with two electrodes, a leading electrode 15a and a trailing electrode 15b. Here, in the present invention, the narrow groove of the base material 10 is defined as a groove having a plate thickness t of 50 mm or more and a groove angle θ of 0 to 5 ° (see FIG. 11). For example, in the test body 20 of FIG. 11 used in the examples described later, the plate thickness t is 250 mm, and the groove angle θ is 4 ° which is 2 ° + 2 °.

また、チップ形状は、図1に示すような直管状、図2〜4に示すようなベンド角材状、あるいは特公昭62−58827公報のFig.3bに示されるような形状でも構わず、ワイヤ送給性と給電位置安定化を確保する観点から適宜選択される。特に、図2〜4に示すような、ワイヤ送給を阻害しない範囲でチップ先端部30aが曲げられたベンド角材状チップでは、給電位置が安定化して、結果としてワイヤ送給速度が安定化する。
なお、図2〜10は先行極あるいは後行極を示しており、便宜上、これらをまとめて図示している。
The tip shape is a straight tubular shape as shown in FIG. 1, a bend square shape as shown in FIGS. 2 to 4, or FIG. The shape as shown in 3b may be used, and is appropriately selected from the viewpoint of securing wire feedability and feeding position stabilization. In particular, in a bend square bar shaped tip in which the tip end portion 30a is bent within a range that does not hinder wire feeding as shown in FIGS. 2 to 4, the feeding position is stabilized, and as a result, the wire feeding speed is stabilized. .
2 to 10 show the leading electrode or the trailing electrode, which are collectively shown for convenience.

ここで、チップ/母材間距離は、図1、図5〜7、図8〜10に示すように、ワイヤ12a、12b、40が最終的に溶接チップ11a、11b、30から突出する部分であるチップ先端部13a、13b、30aと、母材10との間の垂直な距離Lである。
チップ角度は、図1、図5〜7、図8〜10に示すように、母材10の表面に対して垂直な線と、ワイヤ12a、12b、40が最終的に溶接チップ11a、11b、30から突出する部分であるチップ先端部13a、13b、30aでの軸線とがなす角度である。
なお、符号αはチップ角度における後退角、符号βはチップ角度における前進角である。
電極間距離は、図1に示すように、先行極15aのワイヤ12aの先端と後行極15bのワイヤ12bの先端との水平な距離Wである。
Here, as shown in FIGS. 1, 5 to 7, and FIGS. 8 to 10, the tip / base material distance is a portion where the wires 12a, 12b, and 40 finally protrude from the welding tips 11a, 11b, and 30. This is a vertical distance L between a tip end portion 13a, 13b, 30a and the base material 10.
As shown in FIGS. 1, 5 to 7, and 8 to 10, the tip angle is a line perpendicular to the surface of the base material 10, and the wires 12 a, 12 b, and 40 are finally welded tips 11 a, 11 b, This is an angle formed by the axis at the tip end portions 13a, 13b, and 30a that are portions protruding from 30.
The symbol α is the receding angle at the tip angle, and the symbol β is the advancing angle at the tip angle.
As shown in FIG. 1, the interelectrode distance is a horizontal distance W between the tip of the wire 12a of the leading electrode 15a and the tip of the wire 12b of the trailing electrode 15b.

本発明の狭開先タンデムサブマージアーク溶接方法は、C、Si、Mn、P、S、Ni、Cr、Mo、V、Nb、Al、Ti、Zr、Nを所定量含有し、残部がFeおよび不可避的不純物である改良9Cr−1Mo鋼を母材として、C、Si、Mn、P、S、Ni、Cr、Mo、V、Nb、N、Oを所定量含有し、残部がFeおよび不可避的不純物であり、ワイヤ径が4.0mmφの溶接ワイヤを用いるものである。   The narrow groove tandem submerged arc welding method of the present invention contains a predetermined amount of C, Si, Mn, P, S, Ni, Cr, Mo, V, Nb, Al, Ti, Zr, N, the balance being Fe and Using a modified 9Cr-1Mo steel, which is an inevitable impurity, as a base material, it contains a predetermined amount of C, Si, Mn, P, S, Ni, Cr, Mo, V, Nb, N, and O, the balance being Fe and inevitable A welding wire which is an impurity and has a wire diameter of 4.0 mmφ is used.

そして、サブマージアーク溶接方法は、前記溶接ワイヤと、所定の塩基度の溶接フラックスの組合せで、垂下特性を示す交流電源を用いて、先行極のワイヤ送給速度V、後行極のワイヤ送給速度V、溶接速度v、単位長さ当りの溶着量を所定とする条件で溶接する方法である。
以下、母材およびワイヤの成分限定理由、溶接条件等について説明する。なお、以下に説明する母材の各成分含有量は、母材全体に対するものであり、溶接ワイヤの各成分含有量は、溶接ワイヤ全体に対するものである。
Then, the submerged arc welding method uses a combination of the welding wire and a welding flux of a predetermined basicity, and an AC power source that exhibits drooping characteristics, using a wire feeding speed V L for the leading electrode, and a wire feeding for the trailing electrode. In this method, welding is performed under conditions in which the feeding speed V T , the welding speed v, and the amount of welding per unit length are predetermined.
Hereinafter, the reasons for limiting the components of the base material and the wire, welding conditions, and the like will be described. In addition, each component content of the base material demonstrated below is with respect to the whole base material, and each component content of a welding wire is with respect to the whole welding wire.

[母材の化学成分]
母材の化学成分は、C:0.08〜0.12質量%、Si:0.20〜0.50質量%、Mn:0.30〜0.60質量%、P:0.020質量%以下、S:0.010質量%以下、Ni:0.40質量%以下、Cr:8.00〜9.50質量%、Mo:0.85〜1.05質量%、V:0.18〜0.25質量%、Nb:0.06〜0.10質量%、Al:0.02質量%以下、Ti:0.01質量%以下、Zr:0.01質量%以下、N:0.030〜0.070質量%を含有し、残部がFeおよび不可避的不純物である改良9Cr−1Mo鋼である。
[Chemical composition of base material]
The chemical composition of the base material is C: 0.08 to 0.12% by mass, Si: 0.20 to 0.50% by mass, Mn: 0.30 to 0.60% by mass, P: 0.020% by mass. Hereinafter, S: 0.010 mass% or less, Ni: 0.40 mass% or less, Cr: 8.00 to 9.50 mass%, Mo: 0.85 to 1.05 mass%, V: 0.18 to 0.25% by mass, Nb: 0.06 to 0.10% by mass, Al: 0.02% by mass or less, Ti: 0.01% by mass or less, Zr: 0.01% by mass or less, N: 0.030 It is a modified 9Cr-1Mo steel containing ˜0.070% by mass with the balance being Fe and inevitable impurities.

本発明は被溶接材(母材)として改良9Cr−1Mo鋼を対象とする。これには各種の規格があり改良9Cr−1Mo鋼(以下、Mod.9Cr−1Mo鋼ともいう)は、9Cr−1Mo鋼にNb及びVを添加したものであり、例えば、ASTM規格あるいはASME規格に規定されたSA335Gr.P91およびSA213Gr.T91、EN規格(European standards:欧州規格)に規定されたX10CrMoVNb9−1、並びに火力技術規準に規定された火STBA28、火STPA28、火SCMV28及び火SFVAF28がある。
本発明で規定している母材の成分はこれらの規格を満足する範囲である。
The present invention is directed to improved 9Cr-1Mo steel as a material to be welded (base material). There are various standards, and improved 9Cr-1Mo steel (hereinafter also referred to as Mod. 9Cr-1Mo steel) is obtained by adding Nb and V to 9Cr-1Mo steel. For example, the ASTM standard or ASME standard The defined SA335Gr. P91 and SA213Gr. There are T10, X10CrMoVNb9-1 defined in EN standards (European standards), and Fire STBA28, Fire STPA28, Fire SCMV28, and Fire SFVAF28 defined in thermal power technical standards.
The components of the base material defined in the present invention are in a range satisfying these standards.

[溶接ワイヤの化学成分およびサイズ]
<C:0.03〜0.08質量%>
Cは、Cr、Mo、VおよびNbと結合して各種炭化物を析出し、クリープ破断強度を向上させる効果がある。ただし、C含有量が0.03質量%未満では十分な効果が得られない。一方、Cを過剰に添加すると、具体的には、C含有量が0.08質量%を超えると、耐高温割れ性が劣化する。よって、溶接ワイヤのC含有量は0.03〜0.08質量%とする。C含有量は、前記効果をより向上させる観点から、好ましくは0.04質量%以上、より好ましくは0.045質量%以上である。また、耐高温割れ性をより向上させる観点から、好ましくは0.07質量%以下、より好ましくは0.065質量%以下である。
[Chemical composition and size of welding wire]
<C: 0.03-0.08 mass%>
C combines with Cr, Mo, V and Nb to precipitate various carbides, and has the effect of improving the creep rupture strength. However, if the C content is less than 0.03% by mass, sufficient effects cannot be obtained. On the other hand, when C is added excessively, specifically, when the C content exceeds 0.08% by mass, the hot cracking resistance deteriorates. Therefore, C content of a welding wire shall be 0.03-0.08 mass%. The C content is preferably 0.04% by mass or more, more preferably 0.045% by mass or more, from the viewpoint of further improving the effect. Moreover, from a viewpoint of improving a hot cracking resistance more, Preferably it is 0.07 mass% or less, More preferably, it is 0.065 mass% or less.

<Si:0.05〜0.30質量%>
Siは、脱酸剤として作用し、溶接金属中の酸素量を低減して溶接金属の靱性を改善する効果がある。ただし、Si含有量が0.05質量%未満では十分な効果が得られない。一方、Siはフェライト生成元素であり、過剰に添加すると、具体的には、Si含有量が0.30質量%を超えると、溶接金属におけるδ−フェライトの残留を引き起こし、溶接金属の靱性が劣化する。よって、溶接ワイヤのSi含有量は0.05〜0.30質量%とする。Si含有量は、前記効果をより向上させる観点から、好ましくは0.10質量%以上である。また、溶接金属の靱性の劣化をより抑制する観点から、好ましくは0.25質量%以下である。
<Si: 0.05-0.30 mass%>
Si acts as a deoxidizer and has an effect of reducing the amount of oxygen in the weld metal and improving the toughness of the weld metal. However, if the Si content is less than 0.05% by mass, sufficient effects cannot be obtained. On the other hand, Si is a ferrite-forming element, and when added in excess, specifically, if the Si content exceeds 0.30 mass%, δ-ferrite remains in the weld metal and the toughness of the weld metal deteriorates. To do. Therefore, Si content of a welding wire shall be 0.05-0.30 mass%. The Si content is preferably 0.10% by mass or more from the viewpoint of further improving the effect. Moreover, it is preferably 0.25% by mass or less from the viewpoint of further suppressing the deterioration of the toughness of the weld metal.

<Mn:0.50〜2.20質量%、Ni:0.30〜1.00質量%>
Mnは脱酸剤として作用し、溶接金属中の酸素量を低減して靱性を改善する効果がある。また、MnおよびNiはオーステナイト生成元素であり、いずれも溶接金属におけるδ−フェライトの残留による靱性劣化を抑制する効果がある。ただし、Mn含有量が0.50質量%未満の場合、または、Ni含有量が0.30質量%未満の場合は、これらの効果は得られず溶接金属の靱性が劣化する。一方、Mn含有量が2.20質量%を超える場合、または、Ni含有量が1.00質量%を超える場合は、溶接金属の靱性が劣化する。よって、溶接ワイヤのMn含有量は0.50〜2.20質量%、溶接ワイヤのNi含有量は0.30〜1.00質量%とする。
<Mn: 0.50 to 2.20 mass%, Ni: 0.30 to 1.00 mass%>
Mn acts as a deoxidizer and has the effect of reducing the amount of oxygen in the weld metal and improving toughness. Further, Mn and Ni are austenite-forming elements, and both have the effect of suppressing toughness deterioration due to residual δ-ferrite in the weld metal. However, when the Mn content is less than 0.50% by mass or when the Ni content is less than 0.30% by mass, these effects cannot be obtained and the toughness of the weld metal deteriorates. On the other hand, when the Mn content exceeds 2.20% by mass or when the Ni content exceeds 1.00% by mass, the toughness of the weld metal deteriorates. Therefore, the Mn content of the welding wire is 0.50 to 2.20 mass%, and the Ni content of the welding wire is 0.30 to 1.00 mass%.

Mn含有量は、前記効果をより向上させる観点から、好ましくは0.80質量%以上、より好ましくは1.10質量%以上である。また、溶接金属の靱性の劣化をより抑制する観点から、好ましくは1.90質量%以下、より好ましくは1.60質量%以下である。
Ni含有量は、前記効果をより向上させる観点から、好ましくは0.40質量%以上、より好ましくは0.50質量%以上である。また、溶接金属の靱性の劣化をより抑制する観点から、好ましくは0.90質量%以下、より好ましくは0.80質量%以下である。
The Mn content is preferably 0.80% by mass or more, more preferably 1.10% by mass or more, from the viewpoint of further improving the above effects. Further, from the viewpoint of further suppressing deterioration of the toughness of the weld metal, it is preferably 1.90% by mass or less, more preferably 1.60% by mass or less.
The Ni content is preferably 0.40% by mass or more, more preferably 0.50% by mass or more, from the viewpoint of further improving the above effects. Further, from the viewpoint of further suppressing deterioration of the toughness of the weld metal, it is preferably 0.90% by mass or less, more preferably 0.80% by mass or less.

<Cr:8.00〜10.50質量%>
Crは、本発明で用いる溶接ワイヤが対象としているMod.9Cr−1Mo鋼の主要元素であり、耐酸化性、高温強度を確保するために不可欠な元素である。ただし、Cr含有量が8.00質量%未満では、耐酸化性および高温強度が不十分になる。一方、Crはフェライト生成元素であり、過剰に添加すると、具体的には、Cr含有量が10.50質量%を超えると、δ−フェライトの残留を引き起こし、溶接金属の靱性が劣化する。よって、溶接ワイヤのCr含有量は8.00〜10.50質量%とする。これにより、優れた耐酸化性および高温強度が得られる。Cr含有量は、前記効果をより向上させる観点から、好ましくは8.40質量%以上、より好ましくは8.60質量%以上である。また、溶接金属の靱性の劣化をより抑制する観点から、好ましくは9.40質量%以下、より好ましくは9.20質量%以下である。
<Cr: 8.00 to 10.50% by mass>
Cr is the Mod. Targeted for the welding wire used in the present invention. It is a main element of 9Cr-1Mo steel, and an indispensable element for ensuring oxidation resistance and high temperature strength. However, if the Cr content is less than 8.00% by mass, the oxidation resistance and high-temperature strength are insufficient. On the other hand, Cr is a ferrite-forming element, and when it is added in excess, specifically, if the Cr content exceeds 10.50 mass%, δ-ferrite remains and the toughness of the weld metal deteriorates. Therefore, Cr content of a welding wire shall be 8.00-10.50 mass%. Thereby, excellent oxidation resistance and high temperature strength can be obtained. The Cr content is preferably 8.40% by mass or more, more preferably 8.60% by mass or more, from the viewpoint of further improving the effect. Further, from the viewpoint of further suppressing the deterioration of the toughness of the weld metal, it is preferably 9.40% by mass or less, more preferably 9.20% by mass or less.

<Mo:0.80〜1.20質量%>
Moは、固溶強化元素であり、クリープ破断強度を向上させる効果がある。ただし、Mo含有量が0.80質量%未満では、十分なクリープ破断強度が得られない。一方、Moはフェライト生成元素であるため、過剰に添加すると、具体的には、Moを含有量が1.20質量%を超えると、溶接金属におけるδ−フェライトの残留を引き起こし、溶接金属の靱性が劣化する。よって、溶接ワイヤのMo含有量は0.80〜1.20質量%とする。Mo含有量は、前記効果をより向上させる観点から、好ましくは0.90質量%以上である。また、溶接金属の靱性の劣化をより抑制する観点から、好ましくは1.10質量%以下である。
<Mo: 0.80 to 1.20 mass%>
Mo is a solid solution strengthening element and has an effect of improving the creep rupture strength. However, if the Mo content is less than 0.80% by mass, sufficient creep rupture strength cannot be obtained. On the other hand, since Mo is a ferrite-forming element, if added in excess, specifically, if the Mo content exceeds 1.20% by mass, δ-ferrite remains in the weld metal and the toughness of the weld metal. Deteriorates. Therefore, the Mo content of the welding wire is 0.80 to 1.20 mass%. The Mo content is preferably 0.90% by mass or more from the viewpoint of further improving the above effects. Further, from the viewpoint of further suppressing the deterioration of the toughness of the weld metal, it is preferably 1.10% by mass or less.

<V:0.10〜0.40質量%>
Vは、析出強化元素であり、炭窒化物として析出してクリープ破断強度を向上させる効果がある。ただし、V含有量が0.10質量%未満では、十分なクリープ破断強度が得られない。一方、Vはフェライト生成元素でもあり、過剰に添加すると、具体的には、V含有量が0.40質量%を超えると、溶接金属におけるδ−フェライトの残留を引き起こし、溶接金属の靱性が劣化する。よって、溶接ワイヤのV含有量は0.10〜0.40質量%とする。V含有量は、前記効果をより向上させる観点から、好ましくは0.15質量%以上、より好ましくは0.20質量%以上である。また、溶接金属の靱性の劣化をより抑制する観点から、好ましくは0.35質量%以下、より好ましくは0.30質量%以下である。
<V: 0.10 to 0.40 mass%>
V is a precipitation strengthening element and has the effect of improving the creep rupture strength by being precipitated as carbonitride. However, if the V content is less than 0.10% by mass, sufficient creep rupture strength cannot be obtained. On the other hand, V is also a ferrite-forming element, and when added excessively, specifically, if the V content exceeds 0.40% by mass, δ-ferrite remains in the weld metal and the toughness of the weld metal deteriorates. To do. Therefore, V content of a welding wire shall be 0.10-0.40 mass%. The V content is preferably 0.15% by mass or more, more preferably 0.20% by mass or more, from the viewpoint of further improving the effect. Further, from the viewpoint of further suppressing the deterioration of the toughness of the weld metal, it is preferably 0.35 mass% or less, more preferably 0.30 mass% or less.

<Nb:0.020〜0.080質量%>
Nbは、固溶強化および窒化物として析出してクリープ破断強度の安定化に寄与する元素である。ただし、Nb含有量が0.020質量%未満では、十分なクリープ破断強度が得られない。一方、Nbはフェライト生成元素でもあり、過剰に添加すると、具体的には、Nb含有量が0.080質量%を超えると、溶接金属におけるδ−フェライトの残留を引き起こし、溶接金属の靱性が劣化する。よって、溶接ワイヤのNb含有量は0.020〜0.080質量%とする。Nb含有量は、前記効果をより向上させる観点から、好ましくは0.030質量%以上、より好ましくは0.035質量%以上である。また、溶接金属の靱性の劣化をより抑制する観点から、好ましくは0.070質量%以下、より好ましくは0.065質量%以下である。
<Nb: 0.020 to 0.080 mass%>
Nb is an element that contributes to stabilization of creep rupture strength by precipitation as solid solution strengthening and nitride. However, if the Nb content is less than 0.020% by mass, sufficient creep rupture strength cannot be obtained. On the other hand, Nb is also a ferrite-forming element. When it is added excessively, specifically, if the Nb content exceeds 0.080 mass%, δ-ferrite remains in the weld metal and the toughness of the weld metal deteriorates. To do. Therefore, Nb content of a welding wire shall be 0.020-0.080 mass%. The Nb content is preferably 0.030% by mass or more, more preferably 0.035% by mass or more, from the viewpoint of further improving the above effects. Moreover, from a viewpoint of suppressing the toughness deterioration of a weld metal more, Preferably it is 0.070 mass% or less, More preferably, it is 0.065 mass% or less.

<P:0.015質量%以下>
Pは、高温割れ感受性を高める元素である。P含有量が0.015質量%を超えると、耐高温割れ性が劣化する。よって、溶接ワイヤのP含有量は0.015質量%以下に規制する。P含有量は、耐高温割れ性の劣化をより抑制する観点から、好ましくは0.010質量%以下、より好ましくは0.005質量%以下である。なお、P含有量は0質量%が好ましいが、実質的に、0.003質量%が下限値となる。
<P: 0.015 mass% or less>
P is an element that enhances hot cracking sensitivity. When P content exceeds 0.015 mass%, hot cracking resistance will deteriorate. Therefore, the P content of the welding wire is regulated to 0.015% by mass or less. The P content is preferably 0.010% by mass or less, more preferably 0.005% by mass or less, from the viewpoint of further suppressing deterioration of hot cracking resistance. The P content is preferably 0% by mass, but substantially 0.003% by mass is the lower limit.

<S:0.010質量%以下>
Sは、高温割れ感受性を高める元素である。S含有量が0.010質量%を超えると、耐高温割れ性が劣化する。よって、溶接ワイヤのS含有量は0.010質量%以下に規制する。S含有量は、耐高温割れ性の劣化をより抑制する観点から、好ましくは0.008質量%以下、より好ましくは0.005質量%以下である。なお、S含有量は0質量%が好ましいが、実質的に、0.003質量%が下限値となる。
<S: 0.010 mass% or less>
S is an element that enhances hot cracking sensitivity. When S content exceeds 0.010 mass%, hot cracking resistance will deteriorate. Therefore, the S content of the welding wire is regulated to 0.010% by mass or less. The S content is preferably 0.008% by mass or less, more preferably 0.005% by mass or less, from the viewpoint of further suppressing deterioration of hot cracking resistance. The S content is preferably 0% by mass, but substantially 0.003% by mass is the lower limit.

<N:0.016〜0.055質量%>
Nは、固溶強化および窒化物として析出してクリープ破断強度の安定化に寄与する元素である。ただし、N含有量が0.016質量%未満では、十分なクリープ破断強度が得られない。一方、Nを過剰に添加すると、具体的には、N含有量が0.055質量%を超えると、ブローホールが発生する。よって、溶接ワイヤのN含有量は0.016〜0.055質量%とする。N含有量は、前記効果をより向上させる観点から、好ましくは0.025質量%以上である。また、ブローホールの発生をより抑制する観点から、好ましくは0.045質量%以下である。
<N: 0.016-0.055 mass%>
N is an element that contributes to stabilization of creep rupture strength by precipitation as a solid solution strengthening and nitride. However, if the N content is less than 0.016% by mass, sufficient creep rupture strength cannot be obtained. On the other hand, when N is added excessively, specifically, when the N content exceeds 0.055% by mass, blowholes are generated. Therefore, N content of a welding wire shall be 0.016-0.055 mass%. The N content is preferably 0.025% by mass or more from the viewpoint of further improving the above effects. Moreover, from a viewpoint of suppressing generation | occurrence | production of a blowhole more, Preferably it is 0.045 mass% or less.

<O:0.03質量%以下>
Oは、溶接金属中に酸化物として残存して溶接金属の靱性を劣化させる。具体的には、O含有量が0.03質量%を超えると、残存酸化物が増加して溶接金属の靱性が劣化する。よって、溶接ワイヤのO含有量は0.03質量%以下に規制する。O含有量は、溶接金属の靱性の劣化をより抑制する観点から、好ましくは0.02質量%以下、より好ましくは0.015質量%以下である。なお、O含有量は0質量%が好ましいが、実質的に、0.002質量%が下限値となる。
<O: 0.03 mass% or less>
O remains as an oxide in the weld metal and degrades the toughness of the weld metal. Specifically, if the O content exceeds 0.03% by mass, the residual oxide increases and the toughness of the weld metal deteriorates. Therefore, the O content of the welding wire is regulated to 0.03% by mass or less. The O content is preferably 0.02% by mass or less, more preferably 0.015% by mass or less, from the viewpoint of further suppressing the deterioration of the toughness of the weld metal. The O content is preferably 0% by mass, but substantially 0.002% by mass is the lower limit.

<残部:Feおよび不可避的不純物>
溶接ワイヤの成分の残部は、Feおよび不可避的不純物である。不可避的不純物としては、例えば、Cu、As、Sb、Sn等が挙げられる。Cuはワイヤ表面に銅めっきする事により含まれる。
<Balance: Fe and inevitable impurities>
The balance of the welding wire components is Fe and inevitable impurities. Examples of inevitable impurities include Cu, As, Sb, and Sn. Cu is contained by copper plating on the wire surface.

<溶接ワイヤのワイヤ径>
本発明で用いるワイヤ径は4.0mmφが必須となる。本発明において、ワイヤ径は先行極、後行極ともに4.0mmφを使用する。ワイヤ径が3.2mmφでは、十分な溶着量を得ることができず、溶接能率が犠牲になる。一方、4.8φmmでは、溶着量が多いため、高温割れを抑制する溶着量のコントロールが難しくなる。また、4.8mmφでは、層厚が大きくなるため、溶接金属の靭性が劣化する問題もある。よって、ワイヤ径は、先行極、後行極ともに、4.0mmφとする。
<Wire diameter of welding wire>
The diameter of the wire used in the present invention is essential to 4.0 mmφ. In the present invention, the wire diameter is 4.0 mmφ for both the leading and trailing electrodes. When the wire diameter is 3.2 mmφ, a sufficient amount of welding cannot be obtained, and the welding efficiency is sacrificed. On the other hand, at 4.8 mm, since the amount of welding is large, it becomes difficult to control the amount of welding that suppresses hot cracking. Further, at 4.8 mmφ, the layer thickness increases, so that there is a problem that the toughness of the weld metal deteriorates. Therefore, the wire diameter is 4.0 mmφ for both the leading electrode and the trailing electrode.

<溶接フラックスの塩基度>
本発明で使用するサブマージアーク溶接用フラックスは、塩基度が2.3〜2.7であることが必須である。塩基度が2.3未満では、溶接金属中の酸素量が十分に下がらず低靭性となる。一方、塩基度が2.7を超えると、ビード外観やビード形状が劣化する。よって、塩基度は2.3〜2.7の範囲内とする。塩基度は、溶接金属の靱性の劣化をより抑制する観点から、好ましくは2.4質量%以上である。また、ビード外観やビード形状の劣化をより抑制する観点から、好ましくは2.6質量%以下である。
なお、本発明での塩基度は下記式(1)による。
<Basicity of welding flux>
It is essential that the submerged arc welding flux used in the present invention has a basicity of 2.3 to 2.7. When the basicity is less than 2.3, the amount of oxygen in the weld metal is not sufficiently lowered and the toughness is lowered. On the other hand, when the basicity exceeds 2.7, the bead appearance and bead shape deteriorate. Therefore, the basicity is in the range of 2.3 to 2.7. The basicity is preferably 2.4% by mass or more from the viewpoint of further suppressing the deterioration of the toughness of the weld metal. Moreover, it is 2.6 mass% or less from a viewpoint of suppressing a bead external appearance and bead shape deterioration more.
In addition, the basicity in this invention is based on following formula (1).

塩基度=(CaF+CaO+MgO+SrO+NaO+LiO+1/2(MnO+FeO))/(SiO+1/2(Al+TiO+ZrO))・・・・(1)
ここで、各化合物はフラックス全質量あたりの各化合物の含有量(質量%)を示す。
なお、本発明で用いるフラックスとしては、塩基度が前記範囲を満たすものであれば、成分などの他の条件は特に規定されるものではない。
Basicity = (CaF 2 + CaO + MgO + SrO + Na 2 O + Li 2 O + 1/2 (MnO + FeO)) / (SiO 2 +1/2 (Al 2 O 3 + TiO 2 + ZrO 2 )) (1)
Here, each compound shows content (mass%) of each compound per flux total mass.
In addition, as long as basicity satisfy | fills the said range as a flux used by this invention, other conditions, such as a component, are not prescribed | regulated in particular.

[溶接条件]
高温割れの発生を抑制する手法の一つとして、入熱を制限するという手法がとられる。しかしながら、溶接電流やアーク電圧は、ワークの状態、通電点などの溶接環境により、ワイヤの溶融に使われるエネルギーが変わってしまう傾向がある。すなわち、同じ入熱で溶接しても、高温割れの発生の有無に差が出る可能性がある。そこで、本発明者らは、ワイヤの送給速度、溶接速度、単位長さ当りの溶着量を規定することにより、その課題を解決した。
[Welding conditions]
As one of methods for suppressing the occurrence of hot cracking, a method of restricting heat input is taken. However, the welding current and the arc voltage tend to change the energy used for melting the wire depending on the welding environment such as the state of the workpiece and the energization point. That is, even if welding is performed with the same heat input, there may be a difference in the presence or absence of hot cracking. Therefore, the present inventors solved the problem by defining the wire feeding speed, the welding speed, and the amount of welding per unit length.

<ワイヤの送給速度:先行極のワイヤ送給速度Vが45〜90g/min、後行極のワイヤ送給速度Vが60〜110g/min>
先行極のワイヤの送給速度が45g/min未満、または、後行極のワイヤ送給速度が60g/min未満では、溶接電流が小さすぎてアークが不安定となり、溶込不良が発生する。一方、先行極のワイヤの送給速度が90g/minを超える、または、後行極のワイヤ送給速度が110g/minを超えると、溶着量が多すぎて高温割れが発生すると共に、スラグ剥離性も劣化する。よって、ワイヤ送給速度は、先行極のワイヤ送給速度Vを45〜90g/min、後行極のワイヤ送給速度Vを60〜110g/minとする。
<Wire feed speed: wire feed rate V L of the leading electrode is 45~90g / min, the trailing electrode wire feed rate V T is 60~110g / min>
If the wire feeding speed of the leading electrode is less than 45 g / min, or the wire feeding speed of the trailing electrode is less than 60 g / min, the welding current is too small and the arc becomes unstable, resulting in poor penetration. On the other hand, if the wire feeding speed of the leading electrode exceeds 90 g / min, or the wire feeding speed of the trailing electrode exceeds 110 g / min, the amount of welding is excessive and hot cracking occurs, and slag peeling Also deteriorates. Thus, the wire feed rate is the leading electrode wire feed speed V L to 45~90g / min, the trailing electrode wire feed speed V T and 60~110g / min.

先行極のワイヤ送給速度は、溶込不良の発生をより抑制する観点から、好ましくは50g/min以上、より好ましくは55g/min以上である。また、高温割れの発生、スラグ剥離性の劣化をより抑制する観点から、好ましくは85g/min以下、より好ましくは80g/min以下である。後行極のワイヤ送給速度は、溶込不良の発生をより抑制する観点から、好ましくは65g/min以上、より好ましくは70g/min以上である。また、高温割れの発生、スラグ剥離性の劣化をより抑制する観点から、好ましくは105g/min以下、より好ましくは100g/min以下である。   The wire feeding speed of the leading electrode is preferably 50 g / min or more, more preferably 55 g / min or more from the viewpoint of further suppressing the occurrence of poor penetration. Moreover, from a viewpoint of suppressing generation | occurrence | production of a hot crack and deterioration of slag peelability more, Preferably it is 85 g / min or less, More preferably, it is 80 g / min or less. The wire feeding speed of the trailing electrode is preferably 65 g / min or more, more preferably 70 g / min or more from the viewpoint of further suppressing the occurrence of poor penetration. Moreover, from a viewpoint of suppressing generation | occurrence | production of a hot crack and deterioration of slag peelability more, Preferably it is 105 g / min or less, More preferably, it is 100 g / min or less.

ワイヤの送給速度について、先行極のワイヤ送給速度の範囲と、後行極のワイヤ送給速度の範囲とを比較すると、先行極のワイヤ送給速度の範囲のほうが小さめである。ここで、先行極による溶接金属量と後行極による溶接金属量は、先行極によるものと後行極によるものとで等分にするより、先行極による溶接金属量が少なめとなることで、ビード深さを小さく、ビード幅を大きくできる。このため、高温割れに対し有利となる。したがって、ワイヤの送給速度は、「先行極V<後行極V」が好ましい。 When comparing the wire feed speed range of the leading electrode and the wire feed speed range of the trailing electrode, the wire feed speed range of the leading electrode is smaller. Here, the amount of weld metal by the leading electrode and the amount of welding metal by the trailing electrode are equally divided by the leading electrode and the trailing electrode, so that the amount of welding metal by the leading electrode is smaller, The bead depth can be reduced and the bead width can be increased. This is advantageous for hot cracking. Therefore, the wire feeding speed is preferably “leading pole V L <following pole V T ”.

<溶接速度v:30〜55cm/min>
溶接速度が30cm/min未満では、溶着量が多すぎて高温割れが発生する。一方、溶接速度が55cm/minを超えると、溶融金属の供給が間に合わず、ビード形状が不安定となって、融合不良やスラグ巻き込みが発生する。よって、溶接速度vは30〜55cm/minとする。溶接速度は、高温割れの発生をより抑制する観点から、好ましくは35cm/min以上である。また、ビード形状安定化と融合不良・スラグ巻込み防止の観点から、好ましくは50cm/min以下である。なお、溶接速度とは、図1に示すように、溶接機の溶接チップ11a、11bの溶接方向への移動速度である。
<Welding speed v: 30 to 55 cm / min>
If the welding speed is less than 30 cm / min, the amount of welding is too large and hot cracking occurs. On the other hand, if the welding speed exceeds 55 cm / min, the molten metal cannot be supplied in time, the bead shape becomes unstable, and fusion failure and slag entrainment occur. Therefore, the welding speed v is set to 30 to 55 cm / min. The welding speed is preferably 35 cm / min or more from the viewpoint of further suppressing the occurrence of hot cracking. Moreover, it is preferably 50 cm / min or less from the viewpoint of bead shape stabilization and prevention of poor fusion and slag entrainment. In addition, the welding speed is a moving speed in the welding direction of the welding tips 11a and 11b of the welding machine as shown in FIG.

<単位長さ当りの溶着量:2.8〜3.8g/cm>
単位長さ当りの溶着量は、「ワイヤの送給速度/溶接速度」により計算される。すなわち、単位長さ当りの溶着量は、ワイヤの送給速度と溶接速度との比で求める。なお、ワイヤの送給速度は、先行極のワイヤ送給速度と、後行極のワイヤ送給速度との合計である。
本発明のポイントはこの単位長さ当りの溶着量を適切に制御することである。単位長さ当りの溶着量が2.8g/cm未満では、溶着量が少なすぎて溶接能率が悪化する。一方、単位長さ当りの溶着量が3.8g/cmを超えると、収縮に伴う力が大きくなる。また、ビードの形状は、なし形に近くなるため、溶接金属の凝固方向がビード中央に向かって水平になり、収縮力のかかる方向が最終凝固部に対し垂直となる。そのため、高温割れが発生しやすくなる。よって、単位長さ当りの溶着量は2.8〜3.8g/cmとする。単位長さ当りの溶着量は、溶接能率をより向上させる観点から、好ましくは2.9g/cm以上、より好ましくは3.0g/cm以上である。また、高温割れの発生をより抑制する観点から、好ましくは3.7g/cm以下、より好ましくは3.6g/cm以下である。
<Welding amount per unit length: 2.8 to 3.8 g / cm>
The welding amount per unit length is calculated by “wire feeding speed / welding speed”. That is, the amount of welding per unit length is obtained by the ratio of the wire feeding speed and the welding speed. The wire feeding speed is the sum of the wire feeding speed of the leading electrode and the wire feeding speed of the trailing electrode.
The point of the present invention is to appropriately control the amount of welding per unit length. If the welding amount per unit length is less than 2.8 g / cm, the welding amount is too small and the welding efficiency is deteriorated. On the other hand, when the amount of welding per unit length exceeds 3.8 g / cm, the force accompanying shrinkage increases. Further, since the shape of the bead is close to the shape of a bead, the solidification direction of the weld metal is horizontal toward the center of the bead, and the direction in which the contraction force is applied is perpendicular to the final solidified portion. Therefore, hot cracking is likely to occur. Therefore, the welding amount per unit length is set to 2.8 to 3.8 g / cm. The amount of deposition per unit length is preferably 2.9 g / cm or more, more preferably 3.0 g / cm or more, from the viewpoint of further improving the welding efficiency. Moreover, from a viewpoint of suppressing generation | occurrence | production of a hot crack more, Preferably it is 3.7 g / cm or less, More preferably, it is 3.6 g / cm or less.

<垂下特性を示す交流溶接機>
溶接電流およびアーク電圧は、上記ワイヤ送給速度を適正範囲にコントロールする一手段として調整される。
本発明で使用する溶接機は、垂下特性を示す交流溶接機である。垂下特性とは、アーク長が変動しても、電流の変化が少なく安定した溶接ができる電源の特性のことである。具体的には、アーク長が長くなった場合は、一時的にワイヤの送給速度が速くなり、アーク長が短くなった場合はワイヤの送給速度が遅くなる。つまり、電源特性がワイヤ送給速度に影響を及ぼすため、ワイヤ送給速度は、本発明の範囲で管理する必要がある。一般的には施工条件は溶接電流、アーク電圧で決定されるが、それでは不十分で本発明においてワイヤ送給速度で管理する必要があることを見出した。溶接電流が一定でもアークの状態、ワイヤの角度等で変化するためワイヤ送給速度をパラメータとする必要がある。
そして本発明では、垂下特性を示す交流電源を用いることとした。
<AC welding machine showing drooping characteristics>
The welding current and the arc voltage are adjusted as one means for controlling the wire feeding speed within an appropriate range.
The welding machine used in the present invention is an AC welding machine showing drooping characteristics. The drooping characteristic is a characteristic of a power source that can perform stable welding with little change in current even if the arc length varies. Specifically, when the arc length is increased, the wire feeding speed is temporarily increased, and when the arc length is decreased, the wire feeding speed is decreased. That is, since the power supply characteristic affects the wire feeding speed, the wire feeding speed needs to be managed within the scope of the present invention. In general, the construction conditions are determined by the welding current and the arc voltage, but this is not sufficient, and it has been found that the present invention needs to be managed at the wire feed speed. Even if the welding current is constant, the wire feed speed needs to be used as a parameter because it changes depending on the arc state, wire angle, and the like.
In the present invention, an AC power supply exhibiting drooping characteristics is used.

以上のとおり、本発明は、脱硫、重油分解を行う化学反応容器(リアクタ)に使用される改良9Cr−1Mo鋼のサブマージアーク溶接に適したものである。   As described above, the present invention is suitable for submerged arc welding of improved 9Cr-1Mo steel used in a chemical reaction vessel (reactor) that performs desulfurization and heavy oil decomposition.

以下、本発明の範囲に入る実施例について、その効果を本発明の範囲から外れる比較例と比較して説明する。
表1に示す化学成分の母材を用い、ASTM SA335Gr.P91の化学成分に合致した改良9Cr−1Mo鋼を3種類用意した。この改良9Cr−1Mo鋼について、図11に示すように、板厚tが250mm、溝底の曲率半径Rが10mm、開先角度θが、2°+2°の4°の狭開先を機械加工で形成して改良9Cr鋼の試験体20とした。
また、表2に示す化学成分のワイヤを3種類使用した。ワイヤ径は4.0mmφである。また、表3に示す粒度、化学成分、塩基度のフラックスを3種類使用した。
Hereinafter, examples that fall within the scope of the present invention will be described in comparison with comparative examples that depart from the scope of the present invention.
Using a base material of chemical components shown in Table 1, ASTM SA335Gr. Three types of modified 9Cr-1Mo steels corresponding to the chemical composition of P91 were prepared. For this improved 9Cr-1Mo steel, as shown in FIG. 11, a 4 ° narrow groove with a plate thickness t of 250 mm, a groove bottom radius of curvature R of 10 mm, and a groove angle θ of 2 ° + 2 ° is machined. A modified 9Cr steel specimen 20 was formed.
Three types of chemical component wires shown in Table 2 were used. The wire diameter is 4.0 mmφ. Further, three kinds of fluxes of particle size, chemical composition and basicity shown in Table 3 were used.

Figure 2016022503
Figure 2016022503

Figure 2016022503
Figure 2016022503

Figure 2016022503
Figure 2016022503

そして、図11に示す試験体20の狭開先内を、表2に記載のワイヤと表3に記載のフラックスを用いて、ワイヤ送給速度および溶接速度を変化させサブマージアーク溶接を実施した。ワイヤ送給速度は、溶接電流、溶接速度を変化させることによりコントロールした。なお、本溶接において、溶接金属21は、図中の矢印方向に積層される。
溶接条件は以下のとおりである。また、その他の条件は表4に示す。なお、表中、本発明の範囲を満たさないものは数値に下線を引いて示す。
Then, submerged arc welding was performed in the narrow gap of the test body 20 shown in FIG. 11 using the wires shown in Table 2 and the flux shown in Table 3 while changing the wire feeding speed and the welding speed. The wire feed speed was controlled by changing the welding current and welding speed. In the main welding, the weld metal 21 is laminated in the direction of the arrow in the figure.
The welding conditions are as follows. Other conditions are shown in Table 4. In the table, those not satisfying the scope of the present invention are indicated by underlining the numerical values.

<溶接条件>
チップ/母材間距離:先行極25mm、後行極30mm
チップ角度:先行極;−5°(後退角5°)、後行極;40°(前進角40°)
電極間距離:20mm
極性:AC−ACタンデム
電源特性:垂下特性
溶接姿勢:下向き
積層方法:初層1パス、以降1層2パス
<Welding conditions>
Tip / base material distance: leading electrode 25 mm, trailing electrode 30 mm
Tip angle: Leading pole: -5 ° (retraction angle 5 °), trailing pole: 40 ° (advancing angle 40 °)
Distance between electrodes: 20mm
Polarity: AC-AC tandem Power supply characteristics: Drooping characteristics Welding posture: Down Laminating method: 1st layer 1 pass, 1 layer 2 passes thereafter

この溶接を行った試験体20について、スラグ剥離性、ビードの状態、溶接能率、耐高温割れ性を評価した。
<スラグ剥離性の評価>
溶接終了後、ビード表面に付着したフラックスをハンマーで3回たたき、容易に剥離した条件は○、剥離しなかった条件は×と判定した。
About the test body 20 which performed this welding, slag peelability, the state of a bead, welding efficiency, and hot crack resistance were evaluated.
<Evaluation of slag peelability>
After completion of welding, the flux adhering to the bead surface was hit with a hammer three times, and the condition for easy peeling was judged as ◯, and the condition for not peeling was judged as x.

<ビードの状態の評価>
前記スラグ剥離性の評価においてスラグを剥離した後の表面外観を目視で確認し、溶接欠陥がなく、ビード形状が良好であれば○、溶接欠陥が発生した場合またはビード形状が不安定な場合は×と判定した。
<Evaluation of bead state>
In the evaluation of the slag peelability, the surface appearance after peeling the slag is visually confirmed. If there is no weld defect and the bead shape is good, ○, if a weld defect occurs or the bead shape is unstable X was determined.

<溶接能率の評価>
溶接能率は、積層方法が1層当たり2パスで溶接可能であれば○、溶着量が減り1層当たり3パス以上で溶接が必要になった場合は×と評価した。
<Evaluation of welding efficiency>
The welding efficiency was evaluated as ○ when the lamination method can be welded in 2 passes per layer, and × when the amount of welding was reduced and welding was required in 3 passes or more per layer.

<耐高温割れ性の評価>
溶接ビードのスタート、エンド部を除外した300mmの範囲で、50mmごとの断面でマクロ組織を観察した。計5つの断面全てで、割れが発生していない条件を○、割れが発生した条件を×と判定した。
これらの結果を表4に示す。なお、表中、「−」は、評価を行わなかったものである。
<Evaluation of hot cracking resistance>
The macrostructure was observed in cross sections every 50 mm within the range of 300 mm excluding the start and end of the weld bead. In all of the five cross sections, the condition in which no cracks occurred was judged as ◯, and the condition in which cracks occurred was judged as x.
These results are shown in Table 4. In the table, “−” indicates that no evaluation was performed.

Figure 2016022503
Figure 2016022503

表4に示すように、No.1〜7は本発明の範囲を満たしており、スラグ剥離性、ビードの状態、溶接能率に問題なく、高温割れが未発生であった。
No.8は、先行極および後行極のワイヤの送給速度が本発明の下限を外れている。No.8では、溶接電流が小さくワイヤの送給速度が少ないため、アークが安定せず、開先面とビードの境界で溶込不良が発生した。また、単位長さ当りの溶着量が本発明の下限を外れた。なお、ビードの状態が不良のため、溶接能率および耐高温割れ性の評価は行わなかった。
No.9は、先行極および後行極のワイヤの送給速度が本発明の上限を外れている。溶接電流が大きくワイヤの送給速度が大きいため、溶着量が多すぎて高温割れが発生すると共に、スラグ剥離性も低下した。また、単位長さ当りの溶着量が本発明の上限を外れ、高温割れが発生した。なお、スラグ剥離性が不良のため、ビードの状態および溶接能率の評価は行わなかった。
As shown in Table 4, Nos. 1 to 7 satisfied the scope of the present invention, and there was no problem in slag peelability, bead state, and welding efficiency, and no hot cracking occurred.
In No. 8, the wire feeding speeds of the leading electrode and the trailing electrode are out of the lower limit of the present invention. In No. 8, since the welding current was small and the wire feed speed was small, the arc was not stable, and poor penetration occurred at the boundary between the groove surface and the bead. Further, the amount of welding per unit length deviated from the lower limit of the present invention. Since the bead state was poor, the welding efficiency and hot crack resistance were not evaluated.
In No. 9, the wire feeding speeds of the leading electrode and the trailing electrode are out of the upper limit of the present invention. Since the welding current was large and the wire feeding speed was large, the amount of welding was too large, causing hot cracks, and the slag peelability also decreased. Further, the amount of welding per unit length deviated from the upper limit of the present invention, and hot cracking occurred. Since the slag peelability was poor, the bead state and welding efficiency were not evaluated.

No.10は、溶接速度が本発明の下限を外れている。溶接速度が遅いため、溶着量が多すぎて高温割れが発生した。また、単位長さ当りの溶着量が本発明の上限を外れ、高温割れが発生した。
No.11は、溶接速度が本発明の上限を外れている。よって、ワイヤの送給が溶接速度に対して間に合わず、ビード幅が不安定となった。なお、ビードの状態が不良のため、溶接能率および耐高温割れ性の評価は行わなかった。
In No. 10, the welding speed is out of the lower limit of the present invention. Since the welding speed was slow, the amount of welding was too high and hot cracking occurred. Further, the amount of welding per unit length deviated from the upper limit of the present invention, and hot cracking occurred.
In No. 11, the welding speed is outside the upper limit of the present invention. Therefore, the wire feeding is not in time for the welding speed, and the bead width becomes unstable. Since the bead state was poor, the welding efficiency and hot crack resistance were not evaluated.

No.12、14、15は、単位長さ当りの溶着量が本発明の上限を外れている。よって、ビード形状がなし型に近くなり、高温割れが発生した。
No.13は、単位長さ当りの溶着量が本発明の下限を外れている。よって、溶着量が小さいため、開先内部の溶接回数が増え、溶接能率が低下した。なお、溶接能率が不良のため、耐高温割れ性の評価は行わなかった。
In Nos. 12, 14, and 15, the amount of welding per unit length is outside the upper limit of the present invention. Therefore, the bead shape was close to that of a mold and hot cracking occurred.
In No. 13, the welding amount per unit length is outside the lower limit of the present invention. Therefore, since the welding amount is small, the number of weldings inside the groove is increased, and the welding efficiency is lowered. In addition, since the welding efficiency was poor, the hot crack resistance was not evaluated.

なお、本発明は、先行極および後行極のワイヤ送給速度、溶接速度、単位長さ当りの溶着量を規定したことに特徴を有するため、ワイヤ成分等、その他の要件の比較例は省略した。ワイヤ成分等、その他の要件の限定理由は、本明細書中に記載のとおりである。   Since the present invention is characterized in that the wire feeding speed, welding speed, and welding amount per unit length of the leading electrode and the trailing electrode are defined, comparative examples of other requirements such as wire components are omitted. did. The reasons for limiting other requirements such as wire components are as described in this specification.

以上、本発明について実施の形態および実施例を示して詳細に説明したが、本発明の趣旨は前記した内容に限定されることなく、その権利範囲は特許請求の範囲の記載に基づいて広く解釈しなければならない。なお、本発明の内容は、前記した記載に基づいて広く改変・変更等することが可能であることはいうまでもない。   The present invention has been described in detail with reference to the embodiments and examples. However, the gist of the present invention is not limited to the above-described contents, and the scope of right is widely interpreted based on the description of the claims. Must. Needless to say, the contents of the present invention can be widely modified and changed based on the above description.

10 母材(被溶接材)
11a、11b、30 溶接チップ
12a、12b、40 溶接ワイヤ
13a、13b、30a チップ先端部
15a 先行極
15b 後行極
20 試験体
10 Base material (material to be welded)
11a, 11b, 30 Welding tip 12a, 12b, 40 Welding wire 13a, 13b, 30a Tip tip 15a Leading electrode 15b Trailing electrode 20 Specimen

Claims (1)

C:0.08〜0.12質量%、Si:0.20〜0.50質量%、Mn:0.30〜0.60質量%、P:0.020質量%以下、S:0.010質量%以下、Ni:0.40質量%以下、Cr:8.00〜9.50質量%、Mo:0.85〜1.05質量%、V:0.18〜0.25質量%、Nb:0.06〜0.10質量%、Al:0.02質量%以下、Ti:0.01質量%以下、Zr:0.01質量%以下、N:0.030〜0.070質量%を含有し、残部がFeおよび不可避的不純物である改良9Cr−1Mo鋼を母材として、
C:0.03〜0.08質量%、Si:0.05〜0.30質量%、Mn:0.50〜2.20質量%、P:0.015質量%以下、S:0.010質量%以下、Ni:0.30〜1.00質量%、Cr:8.00〜10.50質量%、Mo:0.80〜1.20質量%、V:0.10〜0.40質量%、Nb:0.020〜0.080質量%、N:0.016〜0.055質量%、O:0.03質量%以下を含有し、残部がFeおよび不可避的不純物であり、ワイヤ径が4.0mmφの溶接ワイヤを用い、
前記溶接ワイヤと、下記式(1)で示す塩基度が2.3〜2.7の溶接フラックスの組合せで、
垂下特性を示す交流電源を用いて、先行極のワイヤ送給速度Vを45〜90g/min、後行極のワイヤ送給速度Vを60〜110g/min、溶接速度vを30〜55cm/min、単位長さ当りの溶着量を2.8〜3.8g/cmとする条件で溶接することを特徴とする狭開先タンデムサブマージアーク溶接方法。
塩基度=(CaF+CaO+MgO+SrO+NaO+LiO+1/2(MnO+FeO))/(SiO+1/2(Al+TiO+ZrO))・・・・(1)
ここで、各化合物はフラックス全質量あたりの各化合物の含有量(質量%)を示す。
C: 0.08 to 0.12 mass%, Si: 0.20 to 0.50 mass%, Mn: 0.30 to 0.60 mass%, P: 0.020 mass% or less, S: 0.010 % By mass or less, Ni: 0.40% by mass or less, Cr: 8.00 to 9.50% by mass, Mo: 0.85 to 1.05% by mass, V: 0.18 to 0.25% by mass, Nb : 0.06-0.10 mass%, Al: 0.02 mass% or less, Ti: 0.01 mass% or less, Zr: 0.01 mass% or less, N: 0.030-0.070 mass% Containing, as a base material, improved 9Cr-1Mo steel containing Fe and the inevitable impurities in the balance,
C: 0.03-0.08 mass%, Si: 0.05-0.30 mass%, Mn: 0.50-2.20 mass%, P: 0.015 mass% or less, S: 0.010 % By mass or less, Ni: 0.30 to 1.00% by mass, Cr: 8.00 to 10.50% by mass, Mo: 0.80 to 1.20% by mass, V: 0.10 to 0.40% by mass %, Nb: 0.020 to 0.080 mass%, N: 0.016 to 0.055 mass%, O: 0.03 mass% or less, the balance being Fe and inevitable impurities, the wire diameter Uses a welding wire of 4.0 mmφ,
A combination of the welding wire and a welding flux having a basicity of 2.3 to 2.7 represented by the following formula (1):
Using an AC power source showing the drooping characteristics, 30~55Cm wire feed rate V L the 45~90g / min of the leading electrode, the trailing electrode wire feed rate V T the 60~110g / min, the welding speed v / Min, a narrow groove tandem submerged arc welding method, wherein welding is performed under the condition that the amount of welding per unit length is 2.8 to 3.8 g / cm.
Basicity = (CaF 2 + CaO + MgO + SrO + Na 2 O + Li 2 O + 1/2 (MnO + FeO)) / (SiO 2 +1/2 (Al 2 O 3 + TiO 2 + ZrO 2 )) (1)
Here, each compound shows content (mass%) of each compound per flux total mass.
JP2014147997A 2014-07-18 2014-07-18 Narrow groove tandem submerged arc welding method Expired - Fee Related JP6209135B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014147997A JP6209135B2 (en) 2014-07-18 2014-07-18 Narrow groove tandem submerged arc welding method
CN201510411817.2A CN105269127B (en) 2014-07-18 2015-07-14 Narrow groove mariages tandem submerged arc soldering method
KR1020150100414A KR102034470B1 (en) 2014-07-18 2015-07-15 Narrow-gap tandem submerged arc welding process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014147997A JP6209135B2 (en) 2014-07-18 2014-07-18 Narrow groove tandem submerged arc welding method

Publications (2)

Publication Number Publication Date
JP2016022503A true JP2016022503A (en) 2016-02-08
JP6209135B2 JP6209135B2 (en) 2017-10-04

Family

ID=55139440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014147997A Expired - Fee Related JP6209135B2 (en) 2014-07-18 2014-07-18 Narrow groove tandem submerged arc welding method

Country Status (3)

Country Link
JP (1) JP6209135B2 (en)
KR (1) KR102034470B1 (en)
CN (1) CN105269127B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106238879A (en) * 2016-08-30 2016-12-21 安徽鸿路钢结构(集团)股份有限公司 A kind of steel beam column double wire hidden arc welding connects technique
CN106425049A (en) * 2016-12-06 2017-02-22 武汉天高熔接股份有限公司 Submerged-arc welding deep penetration single-side welding technology of thick plates
JP2017042799A (en) * 2015-08-27 2017-03-02 株式会社神戸製鋼所 Weld metal and method for production of weld metal

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107303630A (en) * 2016-04-22 2017-10-31 海宁瑞奥金属科技有限公司 High arrest toughness welding wire for submerged-arc welding, solder flux and weld metal
CN108672902A (en) * 2018-06-01 2018-10-19 河海大学常州校区 A method of tandem double wire hidden arc welding welding procedure is optimized based on gray Analysis method
CN110640277B (en) * 2019-09-30 2021-08-13 广州黄船海洋工程有限公司 Q420 high-strength steel thick plate non-preheating double-wire submerged-arc welding process

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5584279A (en) * 1978-12-19 1980-06-25 Nippon Steel Corp Narrow groove submerged arc welding method
JPS61115682A (en) * 1984-11-09 1986-06-03 Kawasaki Steel Corp Two-electrode submerged arc welding
JPS6352794A (en) * 1986-08-22 1988-03-05 Nippon Steel Corp Baked flux for submerged arc welding
JPS63220993A (en) * 1987-03-09 1988-09-14 Nippon Steel Corp Submerged arc welding method for 9cr-1mo steel
JPS6411092A (en) * 1987-01-02 1989-01-13 Kobe Steel Ltd Wire for welding 9cr-1mo steel
JPH05208276A (en) * 1991-12-11 1993-08-20 Ishikawajima Harima Heavy Ind Co Ltd Welding method for 9cr-1mo steel
JPH0796390A (en) * 1993-09-29 1995-04-11 Kobe Steel Ltd Wire for welding 9cr-1mo steel
JP2005329415A (en) * 2004-05-18 2005-12-02 Kobe Steel Ltd Welding wire for modified 9cr-1mo steel
JP2013215768A (en) * 2012-04-09 2013-10-24 Jfe Steel Corp Narrow gap submerge arc welding method of steel
JP2014024098A (en) * 2012-07-27 2014-02-06 Jfe Steel Corp Melting type flux used for submerged arc welding and welding method using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177966A (en) 1984-02-24 1985-09-11 Kobe Steel Ltd Narrow gap submerged arc welding method
JPS61232089A (en) * 1985-04-05 1986-10-16 Nippon Steel Corp Submerged arc welding method of cr-mo steel
US7105772B2 (en) * 2003-03-24 2006-09-12 Lincoln Global, Inc. Arc welding system and method
CN101564785A (en) * 2008-04-25 2009-10-28 中国海洋石油总公司 Double wire automatic submerged arc welding process
RU2597186C2 (en) * 2012-03-08 2016-09-10 ДжФЕ СТИЛ КОРПОРЕЙШН Welding torch for first electrode for multiplate submerged-arc welding and welding method using such torch
JP5987737B2 (en) * 2012-04-09 2016-09-07 Jfeスチール株式会社 Narrow groove welding method for steel
JP6098494B2 (en) * 2013-12-04 2017-03-22 トヨタ自動車株式会社 Headrest support structure for vehicle seat

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5584279A (en) * 1978-12-19 1980-06-25 Nippon Steel Corp Narrow groove submerged arc welding method
JPS61115682A (en) * 1984-11-09 1986-06-03 Kawasaki Steel Corp Two-electrode submerged arc welding
JPS6352794A (en) * 1986-08-22 1988-03-05 Nippon Steel Corp Baked flux for submerged arc welding
JPS6411092A (en) * 1987-01-02 1989-01-13 Kobe Steel Ltd Wire for welding 9cr-1mo steel
JPS63220993A (en) * 1987-03-09 1988-09-14 Nippon Steel Corp Submerged arc welding method for 9cr-1mo steel
JPH05208276A (en) * 1991-12-11 1993-08-20 Ishikawajima Harima Heavy Ind Co Ltd Welding method for 9cr-1mo steel
JPH0796390A (en) * 1993-09-29 1995-04-11 Kobe Steel Ltd Wire for welding 9cr-1mo steel
JP2005329415A (en) * 2004-05-18 2005-12-02 Kobe Steel Ltd Welding wire for modified 9cr-1mo steel
JP2013215768A (en) * 2012-04-09 2013-10-24 Jfe Steel Corp Narrow gap submerge arc welding method of steel
JP2014024098A (en) * 2012-07-27 2014-02-06 Jfe Steel Corp Melting type flux used for submerged arc welding and welding method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017042799A (en) * 2015-08-27 2017-03-02 株式会社神戸製鋼所 Weld metal and method for production of weld metal
CN106238879A (en) * 2016-08-30 2016-12-21 安徽鸿路钢结构(集团)股份有限公司 A kind of steel beam column double wire hidden arc welding connects technique
CN106425049A (en) * 2016-12-06 2017-02-22 武汉天高熔接股份有限公司 Submerged-arc welding deep penetration single-side welding technology of thick plates

Also Published As

Publication number Publication date
KR20160010340A (en) 2016-01-27
JP6209135B2 (en) 2017-10-04
CN105269127B (en) 2017-12-29
KR102034470B1 (en) 2019-10-21
CN105269127A (en) 2016-01-27

Similar Documents

Publication Publication Date Title
JP6209135B2 (en) Narrow groove tandem submerged arc welding method
JP6290024B2 (en) Tandem submerged arc welding method for high Cr system CSEF steel
JP5411820B2 (en) Flux-cored welding wire and overlay welding arc welding method using the same
KR101970076B1 (en) Flux-cored wire for gas-shielded arc welding
JP5671364B2 (en) Weld metal with excellent creep properties
JP5928726B2 (en) Covered arc welding rod
JP6290023B2 (en) Single submerged arc welding method for high Cr system CSEF steel
KR102088179B1 (en) Submerged Arc Welding Wire
JP2008161899A (en) Plasma arc hybrid welding method for improving fatigue strength of lap fillet welding joint
JP6661516B2 (en) Non-consumable nozzle type electroslag welding method and method for manufacturing electroslag welding joint
JP6282190B2 (en) Single submerged arc welding method for high Cr system CSEF steel
JP6282191B2 (en) First layer submerged arc welding method of high Cr CSEF steel
JP6641084B2 (en) Low hydrogen coated arc welding rod with excellent resistance to bar burn during welding
JP2011206828A (en) Flux-cored welding wire for fine diameter wire multiple electrode submerged arc welding
JP2017170515A (en) Flux-cored wire for gas shield arc welding
JP6247196B2 (en) Duplex stainless steel and duplex stainless steel pipe
WO2017038975A1 (en) Wire for submerged arc welding
JP2022099821A (en) Submerged arc welding flux

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170908

R150 Certificate of patent or registration of utility model

Ref document number: 6209135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees