JPS61232089A - Submerged arc welding method of cr-mo steel - Google Patents

Submerged arc welding method of cr-mo steel

Info

Publication number
JPS61232089A
JPS61232089A JP7102485A JP7102485A JPS61232089A JP S61232089 A JPS61232089 A JP S61232089A JP 7102485 A JP7102485 A JP 7102485A JP 7102485 A JP7102485 A JP 7102485A JP S61232089 A JPS61232089 A JP S61232089A
Authority
JP
Japan
Prior art keywords
amount
less
steel
weld metal
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7102485A
Other languages
Japanese (ja)
Inventor
Isao Sugioka
杉岡 勲
Saneji Nishimura
西村 実治
Akitomo Sueda
明知 末田
Masao Kamata
政男 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7102485A priority Critical patent/JPS61232089A/en
Publication of JPS61232089A publication Critical patent/JPS61232089A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To obtain a weld metal which has high strength and high toughness and decreases the embrittlement by tempering by combining a low-Si wire consisting of specific chemical components and a calcined flux contg. a large amt. of metallic carbonate and executing submerged arc welding of a Cr-Mo steel. CONSTITUTION:The wire is composed of 0.04-0.16wt% C, <=0.10% Si, 0.4-1.1% Mn, 2.0-3.8% Cr, 0.9-1.6% Mo and the balance Fe and inevitable impurities. The calcined flux is composed of 3.5-12% metallic carbonate in terms of CO2, 10-25% SiO2, 1.50-3.00 basicity determined by the formula, 0.05-0.50% C, 0.010-0.050 ratio of the content of C with respect to the content of the metallic carbonate in terms of CO2 and <=2.5% in total of >=1 kinds among 0.5-5.0% >=1 kinds of Ca and Mg, <=2.0% Si, <=2.0% Mn, <=1.0% Al, <=1.0% Ti. The submerged arc welding is made possible with the low diffusible hydrogen content and difficulty in the generation of a low-temp. crack by the above-mentioned combination of the wire and flux.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はCr−Mo鋼のサブマージアーク溶接方法に関
し、特に2−) Cr −I Mo鋼(A387、Gr
22鋼)および3Cr−IMo鋼(A387.Gr21
鋼)などのCr−Mo鋼の溶接構造物を製作するに際し
、溶接施工上問題となる耐割れ性を改善しながら、高強
度および高靭性を確保し、かつ使用中焼戻し脆化の程度
が、小さい溶接金属が得られるCr−M。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a submerged arc welding method for Cr-Mo steel, particularly 2-) Cr-I Mo steel (A387, Gr
22 steel) and 3Cr-IMo steel (A387.Gr21
When manufacturing welded structures of Cr-Mo steel such as steel, we ensure high strength and toughness while improving cracking resistance, which is a problem in welding work, and reduce the degree of tempering embrittlement during use. Cr-M yields small weld metal.

鋼のサブマージアーク溶接方法に関する。This invention relates to a method for submerged arc welding of steel.

(従来の技術) 2−) Cr −I Mo鋼や3Cr−IMo鋼などの
Cr−M。
(Prior Art) 2-) Cr-M such as Cr-I Mo steel and 3Cr-IMo steel.

鋼は、従来より石油化学工業用あるいは原子カニ業用の
各種中高温用圧力容器などに広く用いられている材料で
あるが、最近のそれら溶接構造物の大型化や、使用条件
の苛酷化にともなって、安全性面から脆性破壊の防止の
ために、溶接部特に溶接金属に要求される性能レベルは
、極めて高いものになりつつある。
Steel has traditionally been widely used in various medium- and high-temperature pressure vessels for the petrochemical industry and the atomic crab industry, but as these welded structures have recently become larger and the conditions of use have become more severe, Accordingly, from the viewpoint of safety, the performance level required of welded parts, especially weld metal, is becoming extremely high in order to prevent brittle fracture.

上記のようなCr−Mo鋼の溶接金属は、溶接のままで
は焼入れ性の大きいCr+Moを多く含有するため著し
く硬化しており、極めて低靭性を示す。
The weld metal of Cr--Mo steel as described above, when as welded, is extremely hardened because it contains a large amount of Cr+Mo, which has high hardenability, and exhibits extremely low toughness.

このため構造物の製作段階で溶接後、溶接時の応力を除
去し、軟化および靭性の改善などを目的とする溶接後熱
処理(以下SR処理)が行なわれている。
For this reason, post-weld heat treatment (hereinafter referred to as SR treatment) is performed after welding in the manufacturing stage of a structure to remove stress during welding and to improve softening and toughness.

しかし、構造物の大型化にともなう極厚材の使用や、溶
接継手箇所が多くなった場合、あるいは溶接部の硬さ規
制があった場合には、SR処理の時間が長くなったり、
温度が高くなるなど、焼戻しパラメータT P (TP
=TX (20+logt)XIO−3、T;加熱温度
(°K)、t;保持時間(hr) )が大きくなると、
強度の低下につれて靭性も低下するという現象を生じ、
構造物の使用前において、既に溶接金属の高靭性の確保
が困難になる。
However, when the structure becomes larger and extra-thick materials are used, the number of welded joints increases, or there are restrictions on the hardness of welded parts, the SR treatment time becomes longer.
Tempering parameters T P (TP
=TX (20+logt)XIO-3, T; heating temperature (°K), t; holding time (hr)) increases,
A phenomenon occurs in which toughness also decreases as strength decreases,
It becomes difficult to ensure high toughness of the weld metal before the structure is used.

さらに、Cr−Mo鋼の溶接金属に要求される性能で重
要なことは、それら構造物が焼戻し脆化が生ずる温度域
(375°〜575℃)で使用されることにより、高温
強度の確保とともに長時間使用後あるいは使用中の脆性
破壊防止のために、できるだけ使用中焼戻し脆化の程度
を小さくする必要がある。特に、2−4−Cr −I 
Mo鋼および3Cr−IM。
Furthermore, what is important about the performance required of Cr-Mo steel weld metals is that these structures are used in the temperature range where temper embrittlement occurs (375° to 575°C). In order to prevent brittle fracture after long-term use or during use, it is necessary to reduce the degree of tempering embrittlement during use as much as possible. In particular, 2-4-Cr-I
Mo steel and 3Cr-IM.

鋼の溶接金属の場合、他のCr−Mo鋼の溶接金属に比
べ焼戻し脆化の程度が大きく、このため使用中焼戻し脆
化に関する規制は相当きびしくなってきている。
In the case of steel weld metals, the degree of temper embrittlement is greater than that of other Cr-Mo steel weld metals, and therefore regulations regarding temper embrittlement during use have become considerably stricter.

なお、この使用中焼戻し脆化の程度を調べる場合、通常
、加速脆化処理(以下SC処理)が採用されている。こ
れら溶接金属の性能向上を目的として、従来より種々の
検討がなされてきており、SR処理後の高靭性化および
SC処理による焼戻し脆化の程度を小さくするために、
溶接金属の酸素量およびPやSb+ Sn+ Asなど
の不純物元素を少なくすること以外に、最近の研究によ
ればSi量をできるだけ少なくすることによる効果が明
らかになりつつある。
Note that when examining the degree of temper embrittlement during use, accelerated embrittlement treatment (hereinafter referred to as SC treatment) is usually employed. Various studies have been conducted to improve the performance of these weld metals, and in order to increase the toughness after SR treatment and reduce the degree of temper embrittlement caused by SC treatment,
In addition to reducing the amount of oxygen and impurity elements such as P and Sb+Sn+As in the weld metal, recent research has revealed the effect of reducing the amount of Si as much as possible.

そのような成分設計の溶接金属を得るための溶接材料の
開発および溶接方法が、種々提案されているが、例えば
特開昭57−85693号公報「高温用クロム・モリブ
デン鋼のサブマージアーク溶接方法」は、特定の特にS
i量の低いワイヤ(0,10%以下)と、特定の高塩基
性フラツクスを組合せて溶接することによって、溶接金
属のSi量を0.10%以下、P量を0.012%以下
、酸素量を0.040%以下にして、溶接金属の低温靭
性および耐焼戻し脆化特性を改善することを提案したも
のである。
There have been various proposals for the development of welding materials and welding methods for obtaining weld metals with such compositional designs, such as ``Submerged arc welding method for high-temperature chromium-molybdenum steel'' published in Japanese Patent Application Laid-Open No. 57-85693. In particular, S
By welding a wire with a low i content (0.10% or less) in combination with a specific highly basic flux, the weld metal has a Si content of 0.10% or less, a P content of 0.012% or less, and an oxygen content of 0.10% or less. It is proposed to improve the low-temperature toughness and temper embrittlement resistance of weld metal by reducing the amount to 0.040% or less.

他方、上記の溶接金属の性能面の要求とともに、溶接施
工面からは、製作コストの低減を目的とする予熱温度の
低下や、脱水素中間焼鈍処理の省略という強い要望があ
る。これは、2−4− Cr −I Mo鋼および3C
r−IMo鋼などのCr−Mo鋼の溶接金属は、その硬
化性により溶接の!までは著しく高強度であるため、低
温割れが発生しやすく、従って低温割れ防止のために予
熱温度を高くとり、また製作過程において、脱水素を目
的とした中間焼鈍処理が、従来必要とされていることに
よる。
On the other hand, in addition to the above-mentioned demands for the performance of weld metals, there are also strong demands from the viewpoint of welding work to lower the preheating temperature and to omit the dehydrogenation intermediate annealing treatment for the purpose of reducing manufacturing costs. This includes 2-4-Cr-I Mo steel and 3C
Welding metal of Cr-Mo steel such as r-IMo steel is difficult to weld due to its hardenability! Because it has extremely high strength, it is prone to cold cracking, so in order to prevent cold cracking, a high preheating temperature is required, and an intermediate annealing treatment for dehydrogenation is required in the manufacturing process. Depends on being there.

この場合、溶融製造時に、水素を多量に内蔵し、また使
用時の吸湿による悪影響が大きい高塩基性溶融型フラッ
クスを使用するよりも、CaCO3゜Mg CO、など
の各種金属炭酸塩を、組成として含有することができる
高塩基性焼成型フラックスを使用することは、それら金
属炭酸塩が、溶接時の分解反応によって発生するCO□
ガスが、アーク雰囲気中の水蒸気分圧を下げ、溶接金属
の拡散性水素量を著しく低減できるために極めて有利で
ある。
In this case, rather than using a highly basic molten flux that contains a large amount of hydrogen during melt production and has a large adverse effect due to moisture absorption during use, various metal carbonates such as CaCO3゜Mg CO can be used as a composition. The use of highly basic sintered fluxes that can contain CO
The gas is extremely advantageous because it can lower the water vapor partial pressure in the arc atmosphere and significantly reduce the amount of diffusible hydrogen in the weld metal.

しかし、低温割れの防止を考慮して、多量の金属炭酸塩
を含有させた場合、溶接作業性上のビード表置欠陥であ
るポックマークが多発し、また高塩基性成分系の組成で
あるにもかかわらず、溶接金属の酸素量が著しく増加し
、靭性が低下する七いう問題をともなう。このことは発
生するC0.ガスが、高温下において酸化性ガスとして
働くことによるもので、そこで002ガスの酸化性によ
る悪影響を防止するために、この種の金属炭酸塩を含有
する焼成型フラックスには、脱酸剤として各種の脱酸性
元素の添加が必要となる。
However, when a large amount of metal carbonate is included to prevent cold cracking, pock marks, which are surface defects on the bead that affect welding workability, occur frequently, and the composition is based on highly basic components. However, the amount of oxygen in the weld metal increases significantly, resulting in a decrease in toughness. This means that the C0. This is because the gas acts as an oxidizing gas at high temperatures, and in order to prevent the adverse effects of the oxidizing properties of the 002 gas, various types of deoxidizing agents are added to the calcined flux containing this type of metal carbonate. It is necessary to add a deoxidizing element.

従来の焼成型フラックスにおいては、Siが主体(およ
びMn+ Alt Tiなど)に添加されてきている。
In conventional sintered fluxes, Si has been mainly added (and Mn+AltTi, etc.).

しかし、金属炭酸塩を多量に含有する焼成型フラックス
を、特に溶接金属の低St化を目的に、前記特開昭57
−85693号公報に開示されているような、Si量の
低いワイヤと組合せて溶接を行なう場合の問題として、
ポックマークの発生や、溶接金属の酸素量の増加を抑え
るために、SiあるいはMn+ AIT Tiなどの脱
酸性元素を多量に添加しなければならず、この時、それ
ら脱酸性元素は、ポックマークの防止や溶接金属の酸素
量の低減に対しては有効に働くが、一方、溶接金属中へ
の歩留り量も多くなる。
However, the sintered flux containing a large amount of metal carbonate was used, especially for the purpose of lowering the St of weld metal, in the above-mentioned Japanese Patent Laid-Open No. 57
As a problem when welding is performed in combination with a wire with a low Si content as disclosed in Japanese Patent No. 85693,
In order to suppress the occurrence of pock marks and the increase in the amount of oxygen in the weld metal, it is necessary to add a large amount of deoxidizing elements such as Si or Mn + AIT Ti. Although it is effective in preventing oxygen and reducing the amount of oxygen in the weld metal, it also increases the yield in the weld metal.

2 +cr −IMOf!4や3Cr−IMo鋼などの
Cr−M。
2 +cr -IMOf! Cr-M such as 4 and 3Cr-IMo steel.

鋼の溶接金属において、SiあるいはMn+Aノ+ T
t量が適量以上に増加することは、SR処理の靭性を低
下させ、またSC処理による焼戻し脆化の程度を大きく
するものである。また、金属炭酸塩を多量に含有する焼
成型7シツクスを、低Siワイヤと組合せて溶接を行な
った場合、同様にCOtガスの酸化性により、溶接金属
のC量が高塩基性溶融型フラックスを使用した場合に比
べ低目・となり、焼入れ性不足によるSR後の靭性の低
下および高温強度が低下する傾向を示すという問題があ
った。
In steel weld metal, Si or Mn+A+T
An increase in the amount of t beyond an appropriate amount reduces the toughness of the SR treatment and increases the degree of temper embrittlement caused by the SC treatment. In addition, when welding is performed using a fired type 7-six containing a large amount of metal carbonate in combination with a low-Si wire, the amount of C in the weld metal increases due to the oxidizing property of COt gas, which is similar to that of a highly basic molten type flux. There was a problem that the toughness was lower than that when used, and the toughness after SR tended to decrease due to insufficient hardenability, and the high-temperature strength tended to decrease.

(発明が解決しようとする問題点) 本発明は2−)Cr −I Mo鋼や3Cr−IMo鋼
などのCr−Mo鋼の溶接構造物を製作するに際し、低
温割れ防止に有利な金属炭酸塩を多量に含有する焼成型
フラックスを使用しても、SR処理後の高強度、高靭性
を確保し、かつSC処理による使用中焼戻し脆化の程度
の小さい溶接金属が得られるCr−Mo鋼のサブマージ
アーク溶接方法の提供を目的とするものである。
(Problems to be Solved by the Invention) The present invention provides 2-) metal carbonates that are advantageous in preventing cold cracking when producing welded structures of Cr-Mo steel such as Cr-I Mo steel and 3Cr-IMo steel. Even if a sintered flux containing a large amount of The purpose is to provide a submerged arc welding method.

(問題点を解決するための手段) 本発明の要旨は(1)重量%で、C0,04〜0.16
%、Si0.10%以下、Mn 0.4〜1.1%、C
r 2.0〜3.8%、Mo0.9〜1.6%を含有し
、残部はFeおよび不可避不純物からなるワイヤと、金
属炭酸塩をCO2量換算値で3.5〜12%、SiO2
10〜25%を含有し、かつ下記(1)式で表わされる
塩基度Bが1.50〜3.00であって、さらに00.
05〜0.50%でかつ金属炭0.010=0.050
 、 CaもしくはMgの1種または2種の合計0.5
〜5.0%を含有し、かつS52.0%以下、Mn2.
0%以下、AJl、0%以下、Ti1.0%以下の1種
または2種以上の合計2.5%以下を含有する焼成型7
ラツクスを組合せて、溶接を行なうことを特徴とするC
r−Mo鋼のサブマージアーク溶接方法、および、(2
)重量%で、C0,04〜0.16%、Si0.10%
以下、Mn 0.4〜1.1%、Cr 2.0〜3.8
%、Mo0.9〜1.6%を含有し、さらにV 0.0
1〜0.10 jg、Nb0.01〜0.06%、Bo
、001〜0.015%のうちの1種以上を含有し、残
部はFeおよび不可避不純物からなるワイヤと、金属炭
酸塩をC02量換算値で3.5〜12%、SiO210
〜25%を含有し、かつ下記(11式で表わされる塩基
度Bが1.50〜3.00であって、さらにco、os
〜0.50%でかつ金属炭酸塩のCO□量換算値に対す
るC量の比の1種または2種の合計0.5〜5.0%を
含有し、かつSi2.0%以下、Mr+2.0%以下、
All、0%以下、Ti1.0%以下の1種、または2
種以上の合計2.5%以下を含有する焼成型フラックス
を組合せて、溶接を行なうことを特徴とするCr−Mo
鋼のサブマージアーク溶接方法にある。
(Means for solving the problems) The gist of the present invention is (1) C0.04 to 0.16% by weight.
%, Si 0.10% or less, Mn 0.4-1.1%, C
The wire contains 2.0 to 3.8% of r, 0.9 to 1.6% of Mo, and the remainder is Fe and unavoidable impurities, metal carbonate of 3.5 to 12% in terms of CO2 amount, and SiO2.
10 to 25%, and has a basicity B represented by the following formula (1) of 1.50 to 3.00, and further has a basicity of 00.
05-0.50% and metallic carbon 0.010=0.050
, a total of 0.5 of one or two of Ca or Mg
~5.0%, S52.0% or less, Mn2.
Firing mold 7 containing one or more of the following: 0% or less, AJl, 0% or less, Ti 1.0% or less, in total 2.5% or less
C characterized by combining latches and welding
r-Mo steel submerged arc welding method, and (2
) In weight%, C0.04-0.16%, Si0.10%
Below, Mn 0.4-1.1%, Cr 2.0-3.8
%, Mo 0.9-1.6%, and V 0.0
1~0.10 jg, Nb0.01~0.06%, Bo
, 001 to 0.015%, the remainder being Fe and unavoidable impurities, metal carbonate in an amount of 3.5 to 12% in terms of C02, and SiO210.
~25%, and the basicity B expressed by the following formula (11) is 1.50 to 3.00, and further co, os
~0.50%, and contains a total of 0.5 to 5.0% of one or two types of ratio of C amount to CO□ amount conversion value of metal carbonate, and Si2.0% or less, Mr+2. 0% or less,
All, 0% or less, Ti 1.0% or less, or 2
Cr-Mo characterized in that welding is performed by combining a sintered flux containing 2.5% or less of Cr-Mo in total.
In the method of submerged arc welding of steel.

本発明者らは、種々の成分系のワイヤおよび組成のフラ
ックスを試作し、またそれらワイヤおよびフラン・クス
の組合せにより詳細な検討を行なった。その結果、2+
Cr−lMo鋼および3Cr−IM。
The present inventors prototyped wires with various component systems and fluxes with various compositions, and conducted detailed studies on combinations of these wires and flan/x. As a result, 2+
Cr-1Mo steel and 3Cr-IM.

鋼などのCr−No鋼の溶接金属のSR処理後の高靭性
およびSC処理による使用中焼戻し脆化の程度を小さく
するためには、低酸素化(0,035%以下)および低
St化(Q、10%以下)が必須であり、まずワイヤと
して特にSi量をできるだけ少なくする必要がある。
In order to improve the toughness of weld metal of Cr-No steel such as steel after SR treatment and to reduce the degree of temper embrittlement during use due to SC treatment, it is necessary to lower oxygen (0,035% or less) and lower St ( Q, 10% or less) is essential, and first of all, it is necessary to reduce the amount of Si in the wire as much as possible.

さらにそのような、低Stワイヤ(Si0.10%以下
)と、低温割れの防止を考慮して、金属炭酸塩を多量に
含有する焼成型フラックスを組合せて溶接を行なった場
合に、問題となるポックマークの発生および酸素量の増
加を抑えるために、フラックスに添加する脱酸剤(脱酸
性元素)として、特にCとともにCaもしくはMg (
または両方)を同時添加し、かつ溶接金属中に適量以上
に歩留った場合に、スラグ焼付き発生や溶接金属性能を
劣化さセるSi+ Mnt Al、Tiの添加量を抑え
る必要がある。
Furthermore, when welding is performed using such a low St wire (Si 0.10% or less) in combination with a sintered flux containing a large amount of metal carbonate to prevent cold cracking, a problem arises. In order to suppress the occurrence of pockmarks and increase in oxygen content, Ca or Mg (
It is necessary to suppress the amount of Si+Mnt, Al, and Ti, which can cause slag seizure and deteriorate the performance of the weld metal if they are added at the same time and remain in the weld metal in excess of an appropriate amount.

またワイヤに限定された範囲のV、 NbおよヒBを添
加することは、高温強度上昇あるいはさらに高靭性化に
有効であることを見出し、上記Cr−M。
Furthermore, it has been found that adding V, Nb and B in a limited range to the wire is effective in increasing high temperature strength and further increasing toughness, and the above Cr-M.

鋼の溶接方法の開発により、前記問題点を解決したもの
である。
The above-mentioned problems have been solved by developing a method for welding steel.

(作用) 以下、本発明を作用とともに詳述する。(effect) Hereinafter, the present invention will be explained in detail along with its operation.

本発明は前記特定する化学成分のワイヤと、特定する組
成の焼成型フラックスを組合せて使用することによって
成立するものであるが、まずワイヤの化学成分範囲の限
定理由を述べる。
The present invention is realized by using a wire having the specified chemical composition in combination with a sintered flux having a specified composition. First, the reason for limiting the range of the chemical composition of the wire will be described.

Cは0.04〜0.16%の範囲でなければならない。C must be in the range 0.04-0.16%.

0.04%未満では強度不足となり、また焼入れ性が低
下し、SR処理後の高靭性が得られない。一方0.16
%を超えて多くなると高温割れが発生しやすくなる。
If it is less than 0.04%, strength will be insufficient, hardenability will decrease, and high toughness after SR treatment will not be obtained. On the other hand, 0.16
%, high temperature cracking is likely to occur.

SiはSR処理後の高靭性の確保および使用中焼戻し脆
化の程度を小さくするために、溶接金属中0.lO%以
下にすることが好ましく、従ってワイヤの化学成分とし
ても、できるだけ少なくする必要があり、0,10%以
下に限定した。
Si is added to the weld metal in order to ensure high toughness after SR treatment and to reduce the degree of temper embrittlement during use. It is preferable to reduce the content to 10% or less, and therefore the chemical components of the wire need to be as low as possible, and are limited to 0.10% or less.

Mnは0.4〜1.1%でなければならない。0.4%
未満では溶接金属が強度不足となり、また酸素量が増加
し、SR処理後の靭性が低下する。しかし1.1%を超
えて多くなると、Stが増加した場合と同様に、SC処
理による焼戻し脆化の程度が大きくなるとともに、高温
割れが発生しゃすくなる。
Mn must be between 0.4 and 1.1%. 0.4%
If it is less than this, the weld metal will lack strength, the oxygen content will increase, and the toughness after SR treatment will decrease. However, when the amount exceeds 1.1%, the degree of temper embrittlement due to SC treatment increases and hot cracking becomes more likely to occur, as in the case where St increases.

本発明は主に2 +Cr −i MO鋼および3Cr−
IM。
The present invention mainly focuses on 2+Cr-i MO steel and 3Cr-
I.M.

鋼を対象とするものであるから、耐酸化性、耐クリープ
性を確保するため、母材に相当するCrおよびMoを溶
接金属に含有させる必要がある。ワイヤのCrが2.6
%未満、Moが0.9%未満では溶接金属の強度向上効
果が微弱になる。しかし、Crが3.8%超、Moが1
.6%超では硬化性が大きくなり、溶接割れの発生やS
R処理後の靭性低下およびSC処理による焼戻し脆化の
程度が大きくなる。
Since the target is steel, it is necessary to contain Cr and Mo, which correspond to the base metal, in the weld metal in order to ensure oxidation resistance and creep resistance. Cr of wire is 2.6
% or less than 0.9%, the effect of improving the strength of the weld metal becomes weak. However, Cr is more than 3.8% and Mo is 1%.
.. If it exceeds 6%, hardenability increases, causing weld cracking and S
The toughness decreases after the R treatment and the degree of temper embrittlement due to the SC treatment increases.

上記限定された範囲のCr St+ Mnt Cr+ 
Moを含有するワイヤを使用して、得られる溶接金属よ
りもさらに高強度あるいは高靭性の溶接金属を得ようと
する場合には、溶接金属中にV、 NbあるいはBを含
有させることが効果的である。この場合、V・Nbある
いはBをフラックス中に添加することは、溶接条件など
によるそれら元素の歩留り量の変動を考慮しなければな
らず5一方、ワイヤの成分として含有させることは、溶
接金属中に所定の量を安定して添加することを可能にす
る。
Cr St+ Mnt Cr+ in the above limited range
When attempting to obtain a weld metal with higher strength or toughness than the resulting weld metal by using a wire containing Mo, it is effective to include V, Nb or B in the weld metal. It is. In this case, adding V, Nb or B to the flux requires consideration of fluctuations in the yield of these elements due to welding conditions, etc. 5 On the other hand, adding V, Nb or B to the flux requires consideration of variations in the yield of these elements due to welding conditions, etc. 5 On the other hand, adding V, Nb or B as a component of the wire This makes it possible to stably add a predetermined amount to

■およびNbは、適量の添加により溶接金属の靭性をあ
まり低下させずに、高温強度を上昇させる元素であり、
70.01〜010%、Nb0.01〜0.06%の範
囲で含有させることができる。しかし、■が(1,10
超、またはNbが0.06%超では、高温強度は上昇す
るが、SR処理後の靭性の低下が大きくなる。
■ and Nb are elements that increase the high-temperature strength without significantly reducing the toughness of the weld metal when added in appropriate amounts.
Nb can be contained in a range of 70.01 to 0.010% and Nb 0.01 to 0.06%. However, ■ is (1, 10
If the Nb content exceeds 0.06%, the high-temperature strength increases, but the toughness after SR treatment decreases significantly.

Bを0001〜0.015%の範囲で含有させることに
よって、SR処理後の靭性なさらに改善することができ
る。Bが0.001%未満ではその効果は少なく、00
15%超では高温割れが発生しやすくなる。
By containing B in the range of 0001 to 0.015%, the toughness after SR treatment can be further improved. If B is less than 0.001%, the effect is small;
If it exceeds 15%, hot cracking tends to occur.

以上、限定した化学成分以外に、ワイヤ溶解製造時に必
然的に含有されるP、Sなどの不可避不純物は、焼戻し
脆化を促進する元素であり、できるだけ少ないこと(P
≦0.015%、S60.010%)であることが好ま
しい。なお、同様にワイヤ溶解製造時に混入するAlお
よび窒素については、A10.05%以下、窒素0.0
15%以下であれば許容され、またワイヤ表面に防錆や
通電性を良好((するために、通常節こされているCu
メッキについても本発明の効果を損なうものではない。
In addition to the limited chemical components mentioned above, unavoidable impurities such as P and S that are inevitably contained during wire melting and manufacturing are elements that promote tempering embrittlement, and should be kept as low as possible (P
≦0.015%, S60.010%). Similarly, regarding Al and nitrogen mixed during wire melting manufacturing, Al should be 10.05% or less and nitrogen should be 0.0%.
If it is less than 15%, it is acceptable, and the wire surface has good rust prevention and electrical conductivity.
Plating also does not impair the effects of the present invention.

次に上記限定した化学成分のワイヤと組合せて使用する
焼成型フラックスの成分について限定理由を述べる。
Next, the reasons for limiting the components of the sintered flux used in combination with the wire having the chemical components defined above will be described.

溶接金属の拡散性水素量を低くして、低温割れの発生を
防止するためには、CaCO3+ MgC0,+BaC
O3などの金属炭酸塩を、CO2量換算値(CO。
In order to reduce the amount of diffusible hydrogen in the weld metal and prevent the occurrence of cold cracking, CaCO3+ MgC0, +BaC
Metal carbonates such as O3 are converted to CO2 amount (CO.

ガス発生量に同じ)で3.5%以上含有させなければな
らない。なお、この場合のWES1003(ガスクロマ
ドログラフ法)による拡散性水素量は、フラックスな大
気中に4 hr程度放置後においても、溶着金属100
.g当り4〜5 cc以下の値を示し、予熱温度を20
0℃以下50℃程度にまで低下することができ、また溶
接後の脱水素中間焼鈍処理の省略も可能となる。
The content must be 3.5% or more (same as the amount of gas generated). In this case, the amount of diffusible hydrogen determined by WES1003 (gas chromadrographic method) is that even after being left in a flux atmosphere for about 4 hours, the weld metal 100
.. It shows a value of 4 to 5 cc or less per g, and the preheating temperature is 20
The temperature can be lowered to about 50°C below 0°C, and it is also possible to omit the dehydrogenation intermediate annealing treatment after welding.

しかし、金属炭酸塩の含有量がCO2量換算値で12%
を超えると、CO2ガス発生量が過剰となり、極厚材の
狭開先溶接においては、アーク不安定、スラグ吹上げ、
ビード形状不良、さらにスラグ巻込み発生など溶接作業
性が不良となる。
However, the content of metal carbonates is 12% in terms of CO2 amount.
If it exceeds the amount, the amount of CO2 gas generated will be excessive, and in narrow gap welding of extremely thick materials, arc instability, slag blow-up,
Welding workability becomes poor due to poor bead shape and slag entrainment.

SiO2が25%を超えて多量に含有されると、溶融池
におけるスラグ−メタル間の還元反応により、溶接金属
中のSi量の増加が大きくなり、特にSC処理後の脆化
の程度を大きくする。また72ツクスの塩基度を低下さ
せる結果、溶接金属の酸素量が増加し、SR処理後も高
靭性が得られなくなる。
When SiO2 is contained in a large amount exceeding 25%, the amount of Si in the weld metal increases due to the reduction reaction between slag and metal in the molten pool, which increases the degree of embrittlement especially after SC treatment. . Furthermore, as a result of lowering the basicity of 72x, the amount of oxygen in the weld metal increases, making it impossible to obtain high toughness even after SR treatment.

また、5in2が10%未満ではスラグの粘性不足とな
り、25%を超えるとスラグの粘性が大きくなりすぎて
、ビード形状不良、スラグ剥離性不良など溶接作業性が
不良となる。
Furthermore, if 5in2 is less than 10%, the slag will lack viscosity, and if it exceeds 25%, the slag viscosity will become too large, resulting in poor welding workability such as poor bead shape and poor slag removability.

下記(1)式で表わす塩基度Bが1.50〜3.00%
でなければならない。塩基度Bが1.50未満では、溶
接金属の酸素量レベルが高くなり、SR処理後の高靭性
が得られない。しかし、塩基度Bが3.00を超えて高
くなると、アーク不安定、ビード形状不良(凸状ビード
)、スラグ巻込み発生など溶接作業性が不良になる。
Basicity B expressed by the following formula (1) is 1.50 to 3.00%
Must. If the basicity B is less than 1.50, the oxygen content level of the weld metal becomes high, and high toughness after SR treatment cannot be obtained. However, when the basicity B exceeds 3.00, welding workability becomes poor, such as arc instability, poor bead shape (convex bead), and occurrence of slag entrainment.

(1)式においてCaOおよびMgOについては、金属
炭酸塩として含有されるCaCO5およびMgCO3の
各酸化物量換算値(CaCO5%X 0.56、MgC
05X0.48)に相当する量を含めた量を示し、また
SiO2については、フラックスの造粒のために添加さ
れた場合の水ガラス(珪酸塩)中のSiO2量を含めた
量を示す。
In Equation (1), CaO and MgO are calculated based on the converted oxide amount of CaCO5 and MgCO3 contained as metal carbonates (CaCO5% x 0.56, MgC
05X0.48), and for SiO2, the amount includes the amount of SiO2 in water glass (silicate) when added for granulation of flux.

Cは0.05%以上0.50%以下の範囲で、金属炭酸
塩含有量のCO2量換算値に対するC量の比酸塩の含有
量に見合った量を必要とするのであるが、これにより溶
接金属の酸素量の増加を抑え、またポックマークの発生
を抑える働きをする。さらに、このCO2ガス発生量に
よるC添加量の限定は、溶接金属中にCを有効に供給し
、焼入れ性を高めSR処理後の靭性の低下および強度の
低下を   □防止する。
C is required to be in the range of 0.05% or more and 0.50% or less, and the amount of C is commensurate with the content of the specific acid salt relative to the CO2 equivalent value of the metal carbonate content. It suppresses the increase in the amount of oxygen in the weld metal and also suppresses the occurrence of pock marks. Furthermore, limiting the amount of C added by the amount of CO2 gas generated effectively supplies C into the weld metal, improves hardenability, and prevents a decrease in toughness and strength after SR treatment.

o、oio未溝未満合、C添加の効果は明らかでなく、
溶接金属の酸素量が増加し、またC量も高塩基性溶融型
フラックスを使用した場合に比べ低目となり、焼入れ性
が不足し、SR処理後の靭性低下および強度低下の原因
となる。しかし、Cの添0.050を超えた場合には、
溶接金属のC量の増加が大きくなり高温割れが発生しや
すくなる。なお、添加するCの形態は、C粉以外にFe
−Mnなどの金属粉中に含有されるC1あるいは炭化物
などでもよく、特に限定するものではない。
o, oio ungrooved, the effect of C addition is not clear,
The amount of oxygen in the weld metal increases, and the amount of C is also lower than when a highly basic molten flux is used, leading to insufficient hardenability and a decrease in toughness and strength after SR treatment. However, if the addition of C exceeds 0.050,
The increase in the amount of C in the weld metal increases, making hot cracking more likely to occur. In addition, the form of C added is Fe in addition to C powder.
- It may be C1 or carbide contained in metal powder such as Mn, and is not particularly limited.

CaもしくはMgの1種または2種の合計で%0.5〜
5.0%の範囲で添加しなければならない。Caおよび
MgはS 11 Mn + All + T sなどの
脱酸性元素を多量添加した場合のように、ビード表面に
スラグ焼付きが発生することなく、また溶接金属中に歩
留り、溶接金属の性能に悪影響をおよぼすこともなく、
溶接金属の酸素量の増加およびポックマークの発生を抑
える。しかし、CaまたはMgの添加量が、Caもしく
はMgの1種または2種の合計で0.5%未満の場合に
は、溶接金属の酸素量の低減およびポックマークの発生
防止に対し有効に作用しない。一方、CaもしくはMg
の1種または2種の合計が、5.0%を超えると、溶接
作業が不良(アーク不安定、ビード波形の乱れ、蛇行ビ
ード、スラグ巻込み発生)となる。
The total of one or two types of Ca or Mg is %0.5~
Must be added within a range of 5.0%. Ca and Mg do not cause slag burning on the bead surface, unlike when a large amount of deoxidizing elements such as S 11 Mn + All + Ts are added, and they remain in the weld metal and improve the performance of the weld metal. without any negative impact,
Suppresses the increase in the amount of oxygen in weld metal and the occurrence of pock marks. However, when the amount of Ca or Mg added is less than 0.5% in total of one or both of Ca or Mg, it is effective in reducing the amount of oxygen in the weld metal and preventing the occurrence of pock marks. do not. On the other hand, Ca or Mg
If the total of one or two of these exceeds 5.0%, welding operations will be defective (arc instability, bead waveform disturbance, meandering bead, slag entrainment).

さらに、前記CとCaもしくはMg (またはCa +
Mgの両方)を複合添加することは、金属炭酸塩を多量
に含有した焼成型フラックスを使用した場合においても
、溶接金属の酸素量を高塩基性溶融型フラックスを使用
した場合と、同等もしくは同等以下にまで容易に低減す
ることを可能にしたものである。このCr・Caもしく
は、Mgの同時添加による溶接金属の著しい酸素量の低
減効果は、アーク雰囲気中でワイヤ先端から、溶滴が溶
融池に落下するまでの移行段階における溶滴表面の過度
の酸化を防止し、また溶融池の脱酸反応段階においても
、十分な脱酸反応が促進されることによる相乗効果によ
るものであると考えられる。
Furthermore, the above C and Ca or Mg (or Ca +
The combined addition of Mg (both Mg and Mg) makes it possible to reduce the oxygen content of the weld metal to the same or the same amount as when using a highly basic molten flux, even when using a fired flux containing a large amount of metal carbonate. This makes it possible to easily reduce it to the following. This remarkable effect of reducing the amount of oxygen in the weld metal due to the simultaneous addition of Cr/Ca or Mg is due to the excessive oxidation of the droplet surface during the transition stage from the wire tip to the droplet falling into the molten pool in the arc atmosphere. This is thought to be due to the synergistic effect of preventing the deoxidation of the molten pool and promoting sufficient deoxidation reaction at the deoxidation reaction stage of the molten pool.

つまり、金属炭酸塩を多量に含有する焼成型7シツクス
を使用した場合、ワイヤ先端から溶融離脱した溶滴は、
アーク雰囲気中を移行中に金属炭酸塩の分解反応によっ
て発生したCO□ガスの酸化性により、溶滴表面が過度
に酸化されることにより、溶融金属中の酸素量が著しく
富化し、その結果溶接金属の酸素量が著しく増加する。
In other words, when using a firing type 7-six containing a large amount of metal carbonate, the droplets melted and detached from the wire tip are
Due to the oxidizing nature of CO□ gas generated by the decomposition reaction of metal carbonates during transfer in the arc atmosphere, the surface of the droplet is excessively oxidized, resulting in a significant enrichment of oxygen in the molten metal, resulting in welding. The amount of oxygen in the metal increases significantly.

これに対し、フラックス中のCは、溶融金属中に落下し
、溶融池における脱酸反応を行なうとともに、この時発
生するCOガスは、アーク雰囲気中の酸素分圧を下げ、
溶滴表面の酸化を抑制する。
On the other hand, C in the flux falls into the molten metal and performs a deoxidation reaction in the molten pool, and the CO gas generated at this time lowers the oxygen partial pressure in the arc atmosphere.
Suppresses oxidation of the droplet surface.

一方、CaおよびMgも沸点が低いのに加えて、融点に
おいても高い蒸気圧をもっているために、アーク雰囲気
中の酸素分圧を下げ、Cと同様に溶滴表面の酸化の抑制
に働く。また、溶融池の脱酸反応段階において、Cは溶
融金属が凝固に至る過程のその高温度域において、十分
な脱酸反応を行なうことができ、同時に添加するCa+
Mgも造粒されてなる焼成型フラックスの場合、個々の
粒子内に内蔵される部分が、溶融池に落下し、脱酸反応
を行なう。
On the other hand, since Ca and Mg also have a low boiling point and a high vapor pressure at their melting point, they lower the oxygen partial pressure in the arc atmosphere and, like C, work to suppress oxidation of the droplet surface. In addition, in the deoxidation reaction stage of the molten pool, C can carry out a sufficient deoxidation reaction in the high temperature range during the process of solidification of the molten metal, and at the same time Ca +
In the case of a fired flux in which Mg is also granulated, the portion contained within each particle falls into the molten pool and performs a deoxidizing reaction.

しかも、CaおよびMgは、酸素との親和力が極めて大
きい元素であり、溶融金属が凝固に至る直前の低温度域
においてまで、溶融池での脱酸反応に寄与することがで
きる。さらに、溶融金属中でのCの反応によるCOガス
の発生およびCa、Mgの反応(蒸気化含め)は、溶融
池の激しい沸とう攪拌をもたらし、ワイヤあるいは鋼材
の化学成分として、また脱酸剤として少量添加される場
合のSi+ Mn+ A7+ Tiなどの脱酸反応およ
び生成した各種酸化物、COガスなどの浮上を促進し、
溶接金属の著しい低酸素化を可能にする。
Furthermore, Ca and Mg are elements that have an extremely high affinity for oxygen, and can contribute to the deoxidation reaction in the molten pool even in the low temperature range just before the molten metal solidifies. Furthermore, the generation of CO gas due to the reaction of C in the molten metal and the reaction (including vaporization) of Ca and Mg result in intense boiling and agitation of the molten pool. It promotes the deoxidation reaction of Si + Mn + A7 + Ti etc. when added in small amounts as well as the levitation of various oxides and CO gas produced.
Enables significant oxygen reduction in weld metal.

Si2.0%以下、Mn2.0%以下、AA’1.0%
以下、Ti1.0%以下の1種、または2種以上の合計
2.5%以下を、金属粉または合金粉の形態で添加する
ことができる。これら元素は溶接金属の酸素量を低減し
、またポックマークの発生を抑えるが、上記限定範囲を
超えて多量に添加した場合、溶接金属中のS i+ M
n+ AA+ Ti量が増加し、SR処理後の靭性の低
下およびSC処理による焼戻し脆化の程度が大きくなる
Si2.0% or less, Mn2.0% or less, AA'1.0%
Hereinafter, one type of Ti of 1.0% or less, or a total of 2.5% or less of two or more types, can be added in the form of metal powder or alloy powder. These elements reduce the amount of oxygen in the weld metal and suppress the occurrence of pock marks, but if they are added in large amounts exceeding the above limited range, Si + M in the weld metal
The amount of n+ AA+ Ti increases, and the toughness decreases after the SR treatment and the degree of temper embrittlement due to the SC treatment increases.

以上、限定した各々成分以外に、Zrは1.0%以下の
添加で溶接金属の酸素量の低減に効果があるが、1.0
%を超えると、ビード表面にざらつきが目立ち、またス
ラグ焼付きが発生する。また、BはB2O3iに換算し
て0.08%以下の少量であれば添加することができ、
その場合SR処理後の靭性の改善に有効である。
In addition to the above-mentioned limited components, Zr is effective in reducing the amount of oxygen in the weld metal when added in an amount of 1.0% or less.
If it exceeds %, roughness becomes noticeable on the bead surface and slag burning occurs. In addition, B can be added as long as it is a small amount of 0.08% or less in terms of B2O3i,
In that case, it is effective in improving the toughness after SR treatment.

(実施例) 実施例1 第1表に示す化学成分の板厚t = 80 mmの2−
)Cr −I Mo鋼(Bl)および3Cr−IMo鋼
(B2)を、第1図(alに示す形状で、深さt+ =
 50 mm。
(Example) Example 1 2- of the chemical components shown in Table 1 and the plate thickness t = 80 mm.
) Cr-I Mo steel (Bl) and 3Cr-IMo steel (B2) in the shape shown in FIG.
50 mm.

R1= 6111111 R1α=4°のU溝開先とし
、第2表に示す化学成分のワイヤ(W1〜W20各4.
0iiφ)と、第3表に示す組成の焼成型フラックス(
Fl〜F24)を組合せて、第1図(blに示すように
、1層1バス盛の狭開先多層盛溶接試験を行なった。
R1 = 6111111 R1α = 4° U-groove groove, and wires with chemical components shown in Table 2 (W1 to W20 each 4.
0iiφ) and the sintered flux (
As shown in FIG. 1 (bl), a narrow gap multi-layer welding test of one layer and one bus welding was conducted using the combinations of F1 to F24).

溶接条件は500〜550 Amp−26〜28 Vo
A!を−30〜35c1n/1nin (A C電源)
、予熱温度50〜75℃、パス間温度150〜250℃
である。なお、溶接後の脱水素を目的とする後熱処理は
省略した。
Welding conditions are 500-550 Amp-26-28 Vo
A! -30~35c1n/1nin (AC power supply)
, preheating temperature 50-75℃, interpass temperature 150-250℃
It is. Note that post-heat treatment for the purpose of dehydrogenation after welding was omitted.

まず、溶接時の観察および溶接終了後96 hr以上経
過後に行なったX線透過試験により、アーク安定性、ビ
ード形状、外観およびスラグ巻込みや割れ発生の有無な
どの溶接作業性を調査した。
First, arc stability, bead shape, appearance, and welding workability such as the presence or absence of slag entrainment and cracking were investigated by observation during welding and by an X-ray transmission test conducted 96 hours or more after the completion of welding.

次いで、690℃X15hr保持(炉冷)のSR処理を
行なった溶接金属について、第1図(C)に示すように
、板厚方向t2=20mmの位置を中心にして、溶接金
属中心にノツチBを入れたJISJ号2 m’s vノ
ツチシャルピー衝撃試験片Aおよび6mmφ高温引張り
試験片C1同引張試験片と、同位置より分析試料、SR
処理後、さらに第2図に示す熱サイクルのSC処理を行
なった溶接金属について、上記SR処理後と同様に、衝
撃試験片を採取し、各々試験に供した。これら結果を第
4表(溶接作業性、溶接金属の機械的性能)および第5
表(溶接金属の化学成分)に示す。
Next, for the weld metal that has been subjected to SR treatment at 690°C for 15 hours (furnace cooling), a notch B is made in the center of the weld metal, centering on the position of t2 = 20 mm in the plate thickness direction, as shown in Fig. 1 (C). JISJ No. 2 m's V notch Charpy impact test piece A and 6mmφ high temperature tensile test piece C1 with the same tensile test piece, analysis sample from the same position, SR
After the treatment, the weld metals were further subjected to the SC treatment of the thermal cycle shown in FIG. 2, and impact test pieces were taken in the same manner as after the SR treatment described above and each was subjected to the test. These results are shown in Table 4 (welding workability, mechanical performance of weld metal) and Table 5.
Shown in the table (chemical composition of weld metal).

試験/161〜10およびA30〜36は1本発明例で
、いずれも良好な溶接作業性とともにSR処理後が高強
度、高靭性で、かつSC処理による焼戻し脆化の程度が
小さい高性能の溶接金属が得られている。これに対し、
、%11〜29および、%37〜43は比較例である。
Tests/161-10 and A30-36 are examples of the present invention, and both have good welding workability, high strength and toughness after SR treatment, and high performance welding with a small degree of temper embrittlement due to SC treatment. metal is obtained. On the other hand,
, %11-29 and %37-43 are comparative examples.

/1611はワイヤ(W12)の81量が多すぎるため
に、/l612はワイヤ(W13)にTiが多量に含有
されているために、それぞれ溶接金属のSi量またはT
i量が増加し、特にSCM理後の靭性が著しく低下した
。413はワイヤ(W14)のC+ Mn Jiが少な
すぎるためにポックマークの発生が見られ、また強度の
低下とともに溶接金属の酸素量が増加し、SR処理後の
靭性が低下した。
/1611 is because the wire (W12) contains too much 81, and /1612 is because the wire (W13) contains a large amount of Ti.
The amount of i increased, and especially the toughness after SCM processing significantly decreased. In No. 413, the wire (W14) had too little C+MnJi, so pock marks were observed, and as the strength decreased, the amount of oxygen in the weld metal increased, and the toughness after the SR treatment decreased.

A14はワイヤ(W15)のC量が多すぎるために高温
割れが発生した。A15はワイヤ(W16)のSi、M
n量が多すぎるために、溶接金属のSfrMn量が増加
し、SC処理後の靭性が低下した。A16はフラックス
(Fll)の金属炭酸塩の含有量が少なすぎるために低
温割れが発生した。A17は7ラツクス(F12)の金
属炭酸塩の含有量が多すぎるために、アークが不安定に
なりスラグ吹上げやビード形状不良、スラグ巻込みの発
生など溶接作業性が著しく不良となった。
In A14, hot cracking occurred because the amount of C in the wire (W15) was too large. A15 is wire (W16) Si, M
Because the amount of n was too large, the amount of SfrMn in the weld metal increased and the toughness after SC treatment decreased. In A16, low temperature cracking occurred because the content of metal carbonate in the flux (Fll) was too low. Since A17 contained too much metal carbonate of 7 lux (F12), the arc became unstable and the welding workability was extremely poor, such as slag blow-up, poor bead shape, and slag entrainment.

/VL18はフラックス(F13)のSiO2量が多く
塩基度が低すぎるために、溶接金属の酸素量が増加し、
SR処理後の靭性が著しく低下した。腐19はフラック
ス(F14)のSiO2量が多く、溶接金属のSi量が
増加し、SC後の靭性の低下が大きくなった。なお、A
618およびA19はフラックスのSiO2 fが多す
ぎるためにスラグ剥離性が不良であった。
/VL18 has a large amount of SiO2 in the flux (F13) and has too low basicity, so the amount of oxygen in the weld metal increases,
The toughness after SR treatment was significantly reduced. In rot No. 19, the amount of SiO2 in the flux (F14) was large, and the amount of Si in the weld metal increased, resulting in a large decrease in toughness after SC. In addition, A
618 and A19 had poor slag removability because the flux contained too much SiO2f.

/1620は7ラツクス(Pls)の塩基度が高すぎる
ためにビード形状が不良となり、スラグ巻込みが発生し
た。/1621はフラックス(F16)のFe−8i添
加量(Si量)が多すぎるために、スラグ焼付きの発生
および溶接金属のSi量が増加し、SR処理後、SC処
理後とも低靭性を示した。A22はフラックス(Fz7
)の金属炭酸塩の含有量に対し、脱酸剤の添加量が少な
すぎるためにポックマークが多発した。
/1620 had too high a basicity of 7 lux (Pls), resulting in poor bead shape and slag entrainment. /1621 has too much Fe-8i added (Si amount) in the flux (F16), which causes slag seizure and increases the amount of Si in the weld metal, resulting in low toughness both after SR treatment and SC treatment. Ta. A22 is flux (Fz7
) Pockmarks occurred frequently because the amount of deoxidizing agent added was too small relative to the metal carbonate content.

/1623はフラックス(F’18)のC添加量が少な
すぎるために、溶接金属のC量の低下および酸素量が増
加し、強度低下およびSR処理後の靭性が低下した。A
24はフラックス(F19)のC添加量が多すぎるため
に高温割れが発生した。A25はフラックス(F20)
のTi添加量が多すぎるために、またSiとTiの添加
量の合計が多すぎるためにスラグ焼付きが発生し、また
溶接金属のTi量が増加し、SC処理後の靭性が著しく
低下した。
In /1623, since the amount of C added to the flux (F'18) was too small, the amount of C in the weld metal decreased and the amount of oxygen increased, resulting in a decrease in strength and toughness after SR treatment. A
In No. 24, hot cracking occurred because the amount of C added to the flux (F19) was too large. A25 is flux (F20)
Slag seizure occurred because the amount of Ti added was too large, and the total amount of Si and Ti added was too large, and the amount of Ti in the weld metal increased, resulting in a significant decrease in toughness after SC treatment. .

A26はフラックス(F21)のMg添加量が多すぎる
ためにビード形状が不良となりスラグ巻込みが発生した
。A27はフラックス(F22)のMn添加量が多すぎ
るために、/1628はフラックス(F23)のAI!
添加量が多すぎるために、それぞれ溶接金属のMnまた
はAl量が増加し、SR処理後の靭性が低下した。洗2
9はフラックス(F24)のSirMn・Al・Ti添
加量の合計が多すぎるために、スラグ焼付きが発生し、
またSR処理後およびSC処理後の靭性が低下した。
In A26, the amount of Mg added to the flux (F21) was too large, resulting in poor bead shape and slag entrainment. A27 is because the amount of Mn added to flux (F22) is too large, and /1628 is the AI of flux (F23)!
Since the amount added was too large, the amount of Mn or Al in the weld metal increased, and the toughness after SR treatment decreased. Wash 2
9, slag burning occurred because the total amount of SirMn, Al, and Ti added to the flux (F24) was too large.
Furthermore, the toughness after the SR treatment and the SC treatment decreased.

A37はワイヤ(Wl7)のV量が多すぎるために、A
38はワイヤ(Wl8)のNb量が多すぎるために、/
1639はワイヤ(Wl 9 )のVおよびNb量が多
すぎるために、それぞれSR処理後およびSC処理後の
靭性が低下した。魔40はワイヤ(W2−0)のB量が
多すぎるために割れが発生した。A41はフラックス(
Fl3)のSiO□量が多く、塩基度が低すぎるために
スラグ剥離性が不良で、また溶接金属の酸素量が増加し
、SR処理後の靭性が著しく低下したO 屑42はフラックス(Fl6)のSt添加量が多すぎる
ために、スラグ焼付きが発生し、また溶接金属のSt量
が増加し、SR処理後、SC処理後とも低靭性を示した
。A43はフラックス(F24)のS i+ Mn r
 Alr T i添加量の合計が多すぎるために、スラ
グ焼付きが発生し、またSR処理後およびSC処理後の
靭性が低下した。
A37 has too much V in the wire (Wl7), so
38 has too much Nb in the wire (Wl8), so /
In 1639, since the amount of V and Nb in the wire (Wl 9 ) was too large, the toughness after the SR treatment and the SC treatment decreased, respectively. In the case of Ma40, cracks occurred because the amount of B in the wire (W2-0) was too large. A41 is flux (
Fl3) has a large amount of SiO□ and has too low basicity, resulting in poor slag removability, and an increased amount of oxygen in the weld metal, resulting in a significant decrease in toughness after SR treatment.O scrap 42 is flux (Fl6) Because the amount of St added was too large, slag seizure occurred, and the amount of St in the weld metal increased, resulting in low toughness both after the SR treatment and the SC treatment. A43 is flux (F24) S i + Mn r
Because the total amount of Alr Ti added was too large, slag seizure occurred and the toughness after the SR treatment and the SC treatment decreased.

実施例2 第3表に示す組成の焼成型フラックス(Fl。Example 2 Sintered flux (Fl.

F7.F9.Fil)を、350℃X1hr保持の条件
で再乾燥し、その直後および大気中(気温24〜25℃
、湿度64〜68%)に4 hr放置後、WES100
3(ガスクロマトロ法)に準じて、溶接金属の拡散性水
素量を測定した。第6表に結果を示す。
F7. F9. The film was re-dried at 350°C for 1 hr, and immediately after that and in the atmosphere (temperature 24-25°C).
, humidity 64-68%) for 4 hr, WES100
3 (gas chromatography method), the amount of diffusible hydrogen in the weld metal was measured. Table 6 shows the results.

試験/161〜3は金属炭酸塩をCO2量換算値で、3
.5%以上含有するフラックス(Fl、 F7. F9
)を使用した場合で拡散性水素量は大気中4hr放置後
においても、溶着金属100.g当り5CC未満という
極めて低い値を示したのに対し、/i64はフラックス
(Fil)の金属炭酸塩の含有量が少なく、上記フラッ
クスを使用した場合に比べ著しく高い値を示した。なお
、第6表中の備考欄には、前記実施例1において実施し
た狭開先多層盛溶接試験における低温割れ発生の有無を
併記した。
Test/161-3 is metal carbonate in CO2 equivalent value, 3
.. Flux containing 5% or more (Fl, F7. F9
), the amount of diffusible hydrogen was 100% in the deposited metal even after being left in the atmosphere for 4 hours. On the other hand, /i64 had a low metal carbonate content in the flux (Fil) and showed a significantly higher value than when the above flux was used. In addition, in the remarks column of Table 6, the presence or absence of low-temperature cracking in the narrow gap multi-layer welding test conducted in Example 1 is also written.

第1表 鋼板の化学成分(重量%) 注1)(1)式:塩基度B 注2) 脱酸剤の種類: Fe−8i(40%Si  
0.3% C) 。
Table 1 Chemical composition of steel sheet (weight%) Note 1) Formula (1): Basicity B Note 2) Type of deoxidizer: Fe-8i (40%Si
0.3% C).

Si粉、 Fe−Mn (75%Mn5%C)、Fe−
Al(51A11)、Al粉、Fe−Ti(70チTi
)。
Si powder, Fe-Mn (75%Mn5%C), Fe-
Al (51A11), Al powder, Fe-Ti (70 Ti
).

Ti粉、C粉、 Ca−8i(60%Ca  40%S
i)。
Ti powder, C powder, Ca-8i (60%Ca 40%S
i).

Ca Mg’(80%Ca  20%Mg)+ Mg粉
Ca Mg' (80% Ca 20% Mg) + Mg powder.

注3)残部:に20.Na20.L1□03および不可
避不純物 1ヘ  ヘ     … ヘ  1へ     央 一     囚        の #i   坦     坦 第6表 溶接金属の拡散性水素 試験結果(wEs1003.ガスクロマド法)注1) 
フラックス記号 *印:適合フラックス 無印:比較フラックス 注2)拡散性水素量は各3本の平均値 性3)判定 O印:合格、×印:不合格(発明の効果) 本発明はCr −Mo鋼、特に2−) Cr  I M
o鋼および3Cr  IMo鋼などの各種溶接構造物を
、サブマージアーク溶接によって製作するに際し、溶接
金属の拡散性水素量か低く、低温割れ力?発生しに(<
、予熱温度の低下や、脱水素中間焼鈍処理の省略か“可
能で、また良好な溶接作業性のもとに高強度、高靭性を
確保し、かつ使用中焼戻し脆化の程度か°°小さい溶接
金属を得ることを可能にしたCr  Mo鋼のサブマー
ジアーク溶接方法であり、工業的効果は極めて高いもの
である。
Note 3) Remainder: 20. Na20. L1□03 and unavoidable impurities 1 He... He 1
Flux symbol * mark: Applicable flux No mark: Comparative flux Note 2) The amount of diffusible hydrogen is the average value of each three pieces. 3) Judgment O mark: Pass, × mark: Reject (effect of the invention) The present invention is Cr-Mo Steel, especially 2-) Cr I M
When manufacturing various welded structures such as O steel and 3Cr IMo steel by submerged arc welding, the amount of diffusible hydrogen in the weld metal is low and the low-temperature cracking strength is low. To occur (<
It is possible to lower the preheating temperature and omit the dehydrogenation intermediate annealing treatment, and it also ensures high strength and toughness with good welding workability, and the degree of tempering embrittlement during use is small. This is a submerged arc welding method for CrMo steel that makes it possible to obtain weld metal, and has extremely high industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1における(alは開先形状、(b)は
累層法、(C)は衝撃試験片と引張り試験片の採取位置
および衝撃試験片のノツチ位置金示す説明図、第2図は
加速脆化処理の熱サイクルの概略図である。 第1図 (α)   (b>   CC) 第2図 (1)明細書@20頁6行目「このOr、Caもしく手
続補正書(自発) 昭和60年5月10日
Figure 1 is an explanatory diagram showing the sampling position of the impact test piece and the tensile test piece and the notch position of the impact test piece in Example 1 (al is the groove shape, (b) is the layered method, (C) is the sampling position of the impact test piece and the tensile test piece, Figure 2 is a schematic diagram of the thermal cycle of accelerated embrittlement treatment. Calligraphy (spontaneous) May 10, 1985

Claims (1)

【特許請求の範囲】 1、重量%で、C0.04〜0.16%、Si0.10
%以下、Mn0.4〜1.1%、Cr2.0〜3.8%
、Mo0.9〜1.6%を含有し、残部はFeおよび不
可避不純物からなるワイヤと、金属炭酸塩をCO_2量
換算値で3.5〜12%、SiO_210〜25%を含
有し、かつ下記式で表わされる塩基度Bが1.50〜3
.00であつて、さらにC0.05〜0.50%でかつ
金属炭酸塩含有量のCO_2量換算値に対するC量の比
(C%/CO_2%)が、0.010〜0.050Ca
もしくはMgの1種または2種の合計0.5〜5.0%
を含有し、かつSi2.0%以下、Mn2.0%以下、
Al1.0%以下、Ti1.0%以下の1種、または2
種以上の合計2.5%以下を含有する焼成型フラックス
を組合せて、溶接を行なうことを特徴とするCr−Mo
鋼のサブマージアーク溶接方法。 塩基度B=(CaO%+MgO%+CaF_2%)/(
SiO_2%+0.5Al_2O_3%)(重量%) 2、重量%で、C0.04〜0.16%、Si0.10
%以下、Mn0.4〜1.1%、Cr2.0〜3.8%
、Mo0.9〜1.6%を含有し、さらにV0.01〜
0.10%、Nb0.01〜0.06%、B0.001
〜0.015%のうちの1種以上を含有し、残部はFe
および不可避不純物からなるワイヤと、金属炭酸塩をC
O_2量換算値で3.5〜12%、SiO_210〜2
5%を含有し、かつ下記式で表わされる塩基度Bが1.
50〜3.00であつて、さらにC0.05〜0.50
%でかつ金属炭酸塩のCO_2量換算値に対するC量の
比(C%/CO_2%)が0.010〜0.050、C
aもしくはMgの1種または2種の合計0.5〜5.0
%を含有し、かつSi2.0%以下、Mn2.0%以下
、Al1.0%以下、Ti1.0%以下の1種または2
種以上の合計2.5%以下を含有する焼成型フラックス
を、組合せて溶接を行なうことを特徴とするCr−Mo
鋼のサブマージアーク溶接方法。 塩基度B=(CaO%+MgO%+CaF_2%)/(
SiO_2%+0.5Al_2O_3%)(重量%)
[Claims] 1. In weight%, C0.04-0.16%, Si0.10
% or less, Mn0.4-1.1%, Cr2.0-3.8%
, Mo0.9 to 1.6%, the balance being Fe and unavoidable impurities, a metal carbonate of 3.5 to 12% in terms of CO_2 amount, SiO_210 to 25%, and the following: Basicity B expressed by the formula is 1.50 to 3
.. 00, and furthermore, C is 0.05 to 0.50%, and the ratio of C amount to the CO_2 amount conversion value of metal carbonate content (C%/CO_2%) is 0.010 to 0.050 Ca.
Or a total of 0.5 to 5.0% of one or two types of Mg
and containing 2.0% or less of Si, 2.0% or less of Mn,
Al 1.0% or less, Ti 1.0% or less, or 2
Cr-Mo characterized in that welding is performed by combining a sintered flux containing 2.5% or less of Cr-Mo in total.
Submerged arc welding method for steel. Basicity B=(CaO%+MgO%+CaF_2%)/(
SiO_2% + 0.5Al_2O_3%) (weight%) 2. In weight%, C0.04-0.16%, Si0.10
% or less, Mn0.4-1.1%, Cr2.0-3.8%
, contains Mo0.9 to 1.6%, and further contains V0.01 to
0.10%, Nb0.01-0.06%, B0.001
~0.015%, and the remainder is Fe.
and unavoidable impurities, and metal carbonate.
3.5-12% in O_2 amount conversion value, SiO_210-2
5%, and the basicity B expressed by the following formula is 1.
50 to 3.00, and further C0.05 to 0.50
% and the ratio of C amount to CO_2 amount conversion value of metal carbonate (C%/CO_2%) is 0.010 to 0.050, C
Total of one or two of a or Mg 0.5 to 5.0
%, and one or two of Si 2.0% or less, Mn 2.0% or less, Al 1.0% or less, Ti 1.0% or less
Cr-Mo, characterized in that welding is performed in combination with sintered flux containing 2.5% or less of Cr-Mo in total.
Submerged arc welding method for steel. Basicity B=(CaO%+MgO%+CaF_2%)/(
SiO_2% + 0.5Al_2O_3%) (weight%)
JP7102485A 1985-04-05 1985-04-05 Submerged arc welding method of cr-mo steel Pending JPS61232089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7102485A JPS61232089A (en) 1985-04-05 1985-04-05 Submerged arc welding method of cr-mo steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7102485A JPS61232089A (en) 1985-04-05 1985-04-05 Submerged arc welding method of cr-mo steel

Publications (1)

Publication Number Publication Date
JPS61232089A true JPS61232089A (en) 1986-10-16

Family

ID=13448540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7102485A Pending JPS61232089A (en) 1985-04-05 1985-04-05 Submerged arc welding method of cr-mo steel

Country Status (1)

Country Link
JP (1) JPS61232089A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220993A (en) * 1987-03-09 1988-09-14 Nippon Steel Corp Submerged arc welding method for 9cr-1mo steel
US4994647A (en) * 1989-02-21 1991-02-19 Kabushiki Kaisha Kobe Seiko Sho Covered electrode for use in arc welding of Cr-Mo type low alloy steels
CN105269127A (en) * 2014-07-18 2016-01-27 株式会社神户制钢所 Narrow-groove twin-wire tandem submerged arc welding method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220993A (en) * 1987-03-09 1988-09-14 Nippon Steel Corp Submerged arc welding method for 9cr-1mo steel
US4994647A (en) * 1989-02-21 1991-02-19 Kabushiki Kaisha Kobe Seiko Sho Covered electrode for use in arc welding of Cr-Mo type low alloy steels
CN105269127A (en) * 2014-07-18 2016-01-27 株式会社神户制钢所 Narrow-groove twin-wire tandem submerged arc welding method
KR20160010340A (en) * 2014-07-18 2016-01-27 가부시키가이샤 고베 세이코쇼 Narrow-gap tandem submerged arc welding process

Similar Documents

Publication Publication Date Title
US6940042B2 (en) Flux-cored wire for gas-shielded arc welding
JP5928726B2 (en) Covered arc welding rod
WO2015099218A1 (en) Welding material for heat resistant steel
JP5744816B2 (en) Bond flux for submerged arc welding
JP2000158183A (en) Welding material of martensite system stainless steel, welding joint, and manufacture thereof
JP2005230906A (en) Gas shielded arc welding method
JPS61232089A (en) Submerged arc welding method of cr-mo steel
JPH02205293A (en) Stainless steel coated electrode for cryogenic service
JPS62252695A (en) Submerged arc welding method for low temperature steel
CA1181667A (en) Method for submerged-arc welding a very low carbon steel
JPS589795A (en) Flux for submerged arc welding by belt-like electrode
JP5515796B2 (en) Welding method of high strength thin steel sheet
JP2711071B2 (en) Bond flux for submerged arc welding
JPS6174797A (en) Baked flux for sumberged arc welding
JP4522042B2 (en) Steel with excellent high-pass temperature weldability and its welded joint
JPS6171196A (en) Submerged arc welding method of low cr-mo alloy steel
JP2013126680A (en) Fused flux for submerged arc welding
JPH03294096A (en) Combined wire for electrogas arc welding
JPS59125294A (en) Submerged arc welding method of heat resisting low alloy steel
RU2688021C1 (en) Agglomerated flux for welding and surfacing with stainless steels
JPS59191590A (en) Submerged arc welding method of cr-mo alloy steel
JPS6233091A (en) Submerged arc welding method by which high-toughness weld metal is obtained
JPS62220300A (en) Low hydrogen type coated arc electrode
JPH01266990A (en) Covered electrode for enclosed arc welding of rail
JP5978064B2 (en) Weld metal, strip electrode, sintered flux and submerged arc welding method