JPS6233091A - Submerged arc welding method by which high-toughness weld metal is obtained - Google Patents

Submerged arc welding method by which high-toughness weld metal is obtained

Info

Publication number
JPS6233091A
JPS6233091A JP17223185A JP17223185A JPS6233091A JP S6233091 A JPS6233091 A JP S6233091A JP 17223185 A JP17223185 A JP 17223185A JP 17223185 A JP17223185 A JP 17223185A JP S6233091 A JPS6233091 A JP S6233091A
Authority
JP
Japan
Prior art keywords
flux
wire
less
weld metal
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17223185A
Other languages
Japanese (ja)
Inventor
Isao Sugioka
杉岡 勲
Saneji Nishimura
西村 實治
Akitomo Sueda
明知 末田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17223185A priority Critical patent/JPS6233091A/en
Publication of JPS6233091A publication Critical patent/JPS6233091A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high-toughness weld metal by specifying the content of N2 in a wire and adding AlF3 to a flux having specific flux basicity in the stage of welding a mild steel and high tensile steel. CONSTITUTION:The wire limited to <=0.0055% N2 by weight % and the fused flux which has >=1.0 basicity calculated by equation I and is added and mixed with 1-15% aluminum fluoride AlF3 are used. Ti or Ti compd. is incorporated at <=0.5% calculated by equation II into either the wire or flux, then submerged arc welding is executed. The respective components are by weight %. The high-toughness weld metal is thereby obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は高靭性溶接金属の得られる潜弧溶接方法に係
り、詳しくは軟鋼や高張力鋼の溶接に際し単層あるいは
多層盛の高靭性溶接金属を得るための潜弧溶接方法に関
するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a submerged arc welding method for obtaining high-toughness weld metal, and more specifically, high-toughness welding of single-layer or multi-layer welds when welding mild steel or high-strength steel. It concerns a submerged arc welding method for obtaining metal.

(従来の技術) 最近、各種の石油掘削用の海洋構造物が多く製作されて
いるが、石油資源の枯渇化の傾向とともに北海および北
極海近傍の寒冷地向のものが多くなシつつある。このよ
うな寒冷地向の海洋構造物の鋼材および溶接部に対して
は低温におけるぜい性破壊に耐え得るよう、極めて高靭
性のものであることが要求され、その要求値は増々厳し
くなってきている。
(Prior Art) Recently, many types of offshore structures for oil drilling have been manufactured, but with the trend of depletion of petroleum resources, more and more structures are being built for cold regions near the North Sea and the Arctic Ocean. The steel materials and welded parts of offshore structures for use in cold regions are required to have extremely high toughness in order to withstand brittle fracture at low temperatures, and these requirements are becoming increasingly strict. ing.

従来、軟鋼や高張力鋼における溶接金属の低温靭性を上
げるための手段としては特公昭52−906号公報や特
公昭51−48448号公報で公知のごとくワイヤもし
くは7ラツクス中にTtあるいはTi化合物やBあるい
はB化合物を添加して低酸素溶接金属中にTiおよびB
を含有せしめてミクロ組織を初析フェライトの少ない均
一なアシキラーフェライト組織にすることによシ高靭性
が得られることが明らかとなっている。
Conventionally, as a means to increase the low-temperature toughness of weld metal in mild steel and high-strength steel, as is known from Japanese Patent Publication No. 52-906 and Japanese Patent Publication No. 51-48448, Tt or Ti compounds are added to the wire or 7 lacs. Ti and B are added to the low-oxygen weld metal by adding B or B compounds.
It has been revealed that high toughness can be obtained by containing .

一方、潜弧フラックスには溶融型フラックスと焼成型フ
ラックスがあり、そのうち溶融型フラックスはスラグは
く離性や高速溶接においてビード形状が良好になること
、フラックスが粉化しにくく、吸湿性が少ないこと、さ
らには成分偏析がなく安定した性能が得られるなどの利
点より、多くの分野で使用されている。この作業性の良
い溶融型7ラククスとTfもしくはTI−Bを含有する
ワイヤとを組合せるか、あるいは溶融型フラックス成分
中にTIOhるいはTiO2とB2O2とを含有せしめ
、溶接金属中にTIあるいはTi−B を含有させるい
わゆるTI−B系溶接材料金用いた溶接方法が広く実用
されつつある。
On the other hand, there are two types of submerged arc flux: molten type flux and sintered type flux. Of these, fused type flux has the advantage of good slag releasability, good bead shape during high-speed welding, less pulverization, and less hygroscopicity. It is used in many fields due to its advantages such as no component segregation and stable performance. By combining this molten flux with good workability and a wire containing Tf or TI-B, or by including TIOh or TiO2 and B2O2 in the molten flux component, TI or Ti can be added to the weld metal. A welding method using so-called TI-B welding material gold containing -B is becoming widely used.

しかし、最近では厳しい低温靭性が要求されるようにな
シ、このような醒接方法では十分にこの要求値に応えら
れないことが明らかとなった、(発明の解決しようとす
る問題点) すなわち、溶融型フラックスを使用する際、とくに高靭
性を得るための必要条件である低酸素溶接金属が得られ
るように、フラックス中成を高塩基性組成にした場合、
焼成フラックスのようにフラックス中に炭酸塩などのガ
ス発生剤を含有しないのでフラックス粒子間に存在する
空気(N2)が溶接金属中にそのまま入り込み、このN
2が、T1あるいはTi−Hによる高靭化効果、即ちT
iOがアシキラーフェライトの生成核となシ、Bがr粒
界に偏析し、初析フェライトの析出を防ぐ効果を低減さ
せることがわかってきている。このN21ftの増加量
は、溶接条件、フラックス粒度などによっても異なるが
、10〜40 ppmにも達することがわかっており、
いわゆる芯液作業性のよいTi−B系溶接材料を使用し
fca弧溶液溶接法る溶接金属の靭性改善効果に限界か
あ・ることか明らかとなっている。
However, in recent years, severe low-temperature toughness has been required, and it has become clear that such a welding method cannot sufficiently meet this requirement (problem to be solved by the invention). When using molten flux, especially when the flux has a highly basic composition so as to obtain a low oxygen weld metal, which is a necessary condition for obtaining high toughness,
Unlike fired flux, the flux does not contain gas generating agents such as carbonates, so the air (N2) existing between the flux particles directly enters the weld metal, and this N2
2 is the toughening effect of T1 or Ti-H, that is, T
It has been found that iO does not act as a generation nucleus for ash killer ferrite, and B segregates at the r-grain boundaries, reducing the effect of preventing the precipitation of pro-eutectoid ferrite. The amount of increase in N21ft varies depending on welding conditions, flux particle size, etc., but it is known to reach 10 to 40 ppm.
It has become clear that there is a limit to the effect of improving the toughness of weld metal using FCA arc solution welding using a Ti-B welding material with good core liquid workability.

(問題点全解決するための手段) 太Uaa去ムけと鉛ム^凹暦よ4λl・嶌1 芦位り業
性をそこなうことなく、溶融型フラックスを使用する潜
弧溶接方法について溶接ワイヤおよびフラックス両面か
ら検討した結果、ワイヤ中のN2量をある限度以下に抑
え、かつフラックス塩基度を一定値以上の塩基性組成の
鹸融型フラックスにフッ化アルミニウム(ALF、 )
を適量混合添加したフラックスを使用することにょプ作
業性を全く害することなく、N2量の増加のない、極め
て高じん性の溶接金属が得られることを見出した。
(Means for solving all the problems) Welding wire and As a result of examining both sides of the flux, we found that aluminum fluoride (ALF,
It has been found that by using a flux to which an appropriate amount of N2 is mixed and added, an extremely high toughness weld metal without any increase in the amount of N2 can be obtained without impairing workability at all.

すなわち、本発明は軟鋼及び高張力鋼を溶接するに当り
、重量%で、N2′Ik:0.0055−以下に制限し
次ワイヤと、下記(9式で計算される塩基度が1.0以
上で且つフッ化アルミニウムを1〜15チ添加混合した
溶融型フラックスとを用い、さらにこれらワイヤもしく
はフラックスの少くとも一方KTiもしくはT1化合物
を下記(B)式で計算してo、 5 l以下含有するか
、又は上記のワイヤもしくはフラックスの少くとも一方
にBもしくはB化物全下記(C)式で計算して0.01
(l以下含有せしめて潜弧落塀−tふとシを載指シナス
恵靭枇広培仝輩の得られる潜弧溶接方法である。
That is, when welding mild steel and high-strength steel, the present invention limits N2'Ik to 0.0055- or less in weight percent, and the basicity calculated by the following formula (9) is 1.0. Using the above-mentioned molten flux mixed with 1 to 15 g of aluminum fluoride, at least one of these wires or fluxes contains a KTi or T1 compound, calculated using the following formula (B), to contain not more than 5 l. or at least one of the above wires or fluxes contains B or B oxide, calculated using the following formula (C): 0.01
(This is a submerged arc welding method in which a submerged arc welding method is obtained by containing less than 1 liter of submerged arc welding material.

但し、 (但し各成分は重1チ) (但し、各成分は電縫チ) 以下、本発明の詳細な説明する。however, (However, each ingredient weighs 1 inch) (However, each component is ERW) The present invention will be explained in detail below.

(作用) まず、本発明にいう軟鋼及び高張力領とはm接可能な鋼
材で、引張強度が41キロ〜80キロ級の炭素鋼〜低合
金鋼全意味しJIS G 3101 、3106の88
41 、5M41以上の強度の相当品、荒53001゜
JISG3128相当品あるいは、As匹A316 、
 A337 。
(Function) First, the term "mild steel" and "high tensile strength region" as used in the present invention refers to steel materials that can be joined to m, and refers to all carbon steels to low alloy steels with a tensile strength of 41 kg to 80 kg, as per JIS G 3101, 3106, 88.
41, 5M41 or higher strength equivalent, rough 53001° JIS G3128 equivalent, or As A316,
A337.

A333 、 A317鋼相当品等がこれに該当する。This applies to products equivalent to A333 and A317 steel.

板厚は10w前後のものから200m程度の極厚材まで
の広い範囲のものを対象とするものである。又、ここで
いう高靭性とは、−30〜−100℃の低温において、
2■Vシヤルピーエネルギ値で2,8k17−m〜5.
6 kg−m以上のレベルのものを意味する。
The target is a wide range of plate thicknesses, from around 10w to extremely thick materials of around 200m. Also, high toughness here means that at a low temperature of -30 to -100°C,
2.8k17-m~5.
It means a level of 6 kg-m or more.

次に本発明において用いられるワイヤの成分については
N2量1kO,00551以下に制限する必要がある。
Next, regarding the components of the wire used in the present invention, it is necessary to limit the amount of N2 to 1 kO, 00551 or less.

TiおよびT%−B系溶接金属においてはこのN2がも
っとも有害な成分となっており、とくに−60℃以下の
低温での高靭性あるいはさらに応力除去焼鈍後の靭性を
要求される場合には、このN2はできるだけ低くする必
要がある。N2量が0.0055$を超えると静融型フ
ラックスにフッ化アルミニウム(AtF、)を添加して
N2増加を抑えて溶接金属の高靭性を得る効果が殆どみ
られなくなる。
This N2 is the most harmful component in Ti and T%-B weld metals, especially when high toughness at low temperatures below -60°C or even toughness after stress relief annealing is required. This N2 needs to be as low as possible. When the amount of N2 exceeds 0.0055 $, there is almost no effect of adding aluminum fluoride (AtF) to the static flux to suppress the increase in N2 and obtain high toughness of the weld metal.

この他のワイヤ成分としては次のような成分範囲で使用
できる。即ち、 C0,16%以下、 810.50%以下、Mn 2.
709b以下を基本成分とし、さらに、Ni 8%以下
、Cr1、0 %以下、Mo0.8%以下、Cu 1.
2 %以下、T10、50 %以下、Vo、03%以下
、Nb O,02%以下の1種又は2種以上を含み、P
、S O,03%以下、0□0.02%以下とし、その
他、F・及び不可避不純物を含むものである。
As other wire components, the following component ranges can be used. That is, C0.16% or less, 810.50% or less, Mn 2.
The basic components are 709b or less, Ni 8% or less, Cr 1.0% or less, Mo 0.8% or less, Cu 1.
Contains one or more of the following: 2% or less, T10, 50% or less, Vo, 03% or less, Nb O, 02% or less, P
, SO, 03% or less, 0□0.02% or less, and also contains F and inevitable impurities.

フラックスの塩基度は下記(A)式で1.0以上である
必要がある。これが1.0未満であると溶接金属の酸累
量が0.04%を超すようになり、T1またはTi−B
の効果がみられなくなり、低靭性を示す。
The basicity of the flux needs to be 1.0 or more according to the following formula (A). If this is less than 1.0, the cumulative acid content of the weld metal will exceed 0.04%, and T1 or Ti-B
This effect is no longer observed and low toughness is exhibited.

但し、 なお、この(At式は国際溶接学会(IIW)で認めら
れて、一般に使用されているフラックス塩基度を表示す
るための式である。
However, this (At formula) is recognized by the International Institute of Welding (IIW) and is a commonly used formula for indicating flux basicity.

次に、フラックスに混合添加されるAtF、は溶接時ア
ーク雰囲気中でガス状となり、フラックス粒間のN2を
除去するものと推察されるが、このフラックスへのAt
F’、の添加量は1%未満ではN、の増加を抑える効果
は十分でなく、靭性改善に殆ど効果はみられない。一方
15チを超えて添加するとピード外観、形状が不良とな
シ好ましくない。
Next, it is assumed that AtF mixed and added to the flux becomes gaseous in the arc atmosphere during welding and removes N2 between the flux particles.
If the amount of F' added is less than 1%, the effect of suppressing the increase in N is not sufficient, and almost no effect is seen on improving toughness. On the other hand, if it is added in excess of 15 inches, the appearance and shape of the peas will be poor, which is not preferable.

AtF、の粒度は使用する溶融型フラックス粒度構成に
合わせた粒度が好ましく、20メツシユ以下が適当であ
る。
The particle size of AtF is preferably a particle size that matches the particle size structure of the melting type flux used, and is suitably 20 mesh or less.

次に溶接金属を高靭性とするためT%もしくはTi −
B ’iワイヤもしくはフラックスの少くとも一方に添
加する必要があるがその添加手段はT1の場合ワイヤ中
では最高0.50 %添加できる。フラックスから添加
する場合はTIO□などの酸化物でも添加できるが作業
性の点よシ最高30−までである。
Next, in order to make the weld metal high toughness, T% or Ti −
It is necessary to add it to at least one of the B'i wire or the flux, and in the case of T1, it can be added at a maximum of 0.50% in the wire. When adding from flux, oxides such as TIO□ can also be added, but from the viewpoint of workability, the maximum amount is 30-.

フラックスおよびワイヤ両方から添加する場合は下記(
B)式で0.50%まで添加できる。(B)の値が0、
5%を超えるとむしろ、N2鰍との関係から硬化性が大
きくなり、低靭性を示す。
When adding from both flux and wire, see below (
It can be added up to 0.50% using formula B). The value of (B) is 0,
If it exceeds 5%, the hardening property will increase due to the relationship with N2, resulting in low toughness.

(但し各成分はMゴl なお、この(B)式はT1の溶接金属への歩留りおよび
靭性の点より実験的にもとめたもので、フラックス中の
TlO2値を50で除するのはこれがワイヤ11社とm
接金拠へのT1の歩留りに関しほぼ等価となることによ
る。
(However, each component is Mgol.) This equation (B) was determined experimentally from the viewpoint of the yield and toughness of T1 to the weld metal, and the reason for dividing the TlO2 value in the flux by 50 is to 11 companies and m
This is because the yield of T1 to the welding base is almost equivalent.

又これにBを添加する場合もT%と同様(0式にもとす
きワイヤおよびフラックスから添加できるがワイヤから
添加する場合は0.010’S以下にする必要がある。
Also, when adding B to this, it is the same as T% (it can be added to formula 0 from the plow wire and flux, but if it is added from the wire, it needs to be 0.010'S or less.

又フラックスから添加する場合は、硼砂など醸化物や化
合物で添加できる。
When adding flux, it can be added as a fermentation product or compound such as borax.

しかし、Bは過大に添加すると高温われが生ずることと
当発明のごとく低N21W接金属の場合、靭性を逆に低
下させるので(C)式で0.010%以下にする必要が
ある。
However, if too much B is added, high-temperature cracking will occur, and in the case of a low N21W weld metal such as the present invention, it will conversely reduce the toughness, so it must be kept at 0.010% or less in formula (C).

但し、 (但し各成分は重j1%) なお、この(C)式はBの溶接金属への歩留シ及び靭性
の点よシ実験的にもとめたもので、フラックス中のB2
O3換算値(チ)を100で除するのけこれがワイヤ中
のB量と溶接金属へのBの歩留りに関しはソ等価となる
ことによる。
However, (however, each component is 1% by weight) This formula (C) was obtained experimentally from the viewpoint of the yield of B in the weld metal and the toughness, and the B2 in the flux
This is because the amount of B in the wire and the yield of B in the weld metal are equivalent to dividing the O3 equivalent value (H) by 100.

次にm融型フラックスの組成としては、主成分として以
下の成分範囲のものが良好な性能を示す。
Next, regarding the composition of the m-melting type flux, those having the following composition range as the main component exhibit good performance.

なお、下記のフラックスはいづれも(9式を満足する必
要のあることはいうまでもない。このうち、とくに溶接
金属の酸素針の点からは5to2IIの上限値、CaF
2 ilの下限値(5チ)が重要である。
It goes without saying that all of the fluxes listed below must satisfy formula 9. Of these, the upper limit of 5to2II, CaF
The lower limit of 2il (5chi) is important.

(TiO系)T1027〜30チ、SiO□10〜30
%、AtO5〜40%、CaF25〜35%この他Ca
025%以下、Mg025%以下、BaO30チ以下、
MnO15チ以下のうち1種又は2種以上を50チ以下
添加でき、さらにZ ro 2、FeOあるいはNIL
20、N20などのアルカリ酸化物など合計で15チ以
下で添加可能である。
(TiO type) T1027~30chi, SiO□10~30
%, AtO5-40%, CaF25-35%Other Ca
025% or less, Mg 025% or less, BaO 30% or less,
It is possible to add up to 50 T of one or more of MnO of up to 15 T, and also Z ro 2, FeO or NIL.
Alkaline oxides such as 20 and N20 can be added in a total of 15 or less.

(非TlO2系) 810210〜40 %、 CaF
’25〜50チ、kt2035〜45%、C為05〜4
5チ、この他Mg030%以下、Ba030%以下、M
n015 ’j以下のうち1橿又は2種以上を40%以
下添加テき、さらにTiO2、Z rO2、F’eOあ
るいはNa2O,に20などのアルカリ酸化物など合計
15%以下で添加可能である。
(Non-TlO2-based) 810210-40%, CaF
'25~50chi, kt2035~45%, C 05~4
5chi, other Mg030% or less, Ba030% or less, M
It is possible to add one or more of the following in an amount of 40% or less, and further add an alkali oxide such as TiO2, ZrO2, F'eO or Na2O in a total amount of 15% or less.

このうちTiO2はスラグはく離性の点より5チ以下に
制限される。
Among these, TiO2 is limited to 5 or less from the viewpoint of slag releasability.

フラックス粒度は12メツシユ以下のものが使用できる
A flux particle size of 12 mesh or less can be used.

以上のようなワイヤ及びフラックスの組合せを用いて、
通常の手段によシ潜弧溶接を行なうものである。望まし
い条件としてはワイヤ径は1.6mφ〜6.4mφを用
い、電極数は1〜5、溶接電流は1電極当、9200O
A以下を用い、入熱量は15万J/cm以下で片面1層
および多層溶接や両面1層および多層溶接で使用できる
Using the above combination of wire and flux,
Submerged arc welding is performed by conventional means. The desirable conditions are to use a wire diameter of 1.6 mφ to 6.4 mφ, the number of electrodes to be 1 to 5, and a welding current of 9200 O per electrode.
It can be used for single-layer and multi-layer welding on one side and single-layer and multi-layer welding on both sides with a heat input of 150,000 J/cm or less.

(実施例) 以下、実施例によυ本発明の効果をさらに具体的に示す
(Example) Hereinafter, the effects of the present invention will be illustrated in more detail with reference to Examples.

第1表に示す化学成分の板厚25wmの市販の50HT
 、 60HTおよび80HT鋼に対し、潜弧溶接材料
として第2表に示すワイヤ(○印は本発明要件を満す材
料で、その他は比較材料、ワイヤ径は4.8■φ)と第
3表に示すフラックス(Q印は本発明要件を満す材料そ
の他は比較材料)を組合せて第1図に示す開先形状及び
累層法によシm接試験板1.1を開先角度θ−20’、
ルートギャップg=16smの開先を用い、溶接試験板
と同じ鋼板の裏当金を用いて、1層2ノ譬スふシ分は多
層盛直接を行ない、溶接金属3から第2図に示す採取要
領によ1)を12,5簡の位置から、丸棒試験片4(J
ISAI号)およびVノツチシャルピー衝撃試験片5(
JI84号)を採取し、それぞれ試験を行なった。なお
、6はノツチ位置である。又、溶接条件は750A、3
2V、50cpm、予熱なし、パス間温度150℃の単
電極溶接である。
Commercially available 50HT with a plate thickness of 25 wm and the chemical components shown in Table 1
, For 60HT and 80HT steel, the wire shown in Table 2 as a latent arc welding material (○ marks are materials that meet the requirements of the present invention, the others are comparative materials, wire diameter is 4.8 φ) and the wire shown in Table 3 The flux shown in Fig. 1 (marked with Q is a material that satisfies the requirements of the present invention, and the others are comparative materials) was combined with the groove shape shown in Fig. 1 and the laminated layer method. 20',
Using a groove with a root gap g = 16 sm and a backing metal made of the same steel plate as the welding test plate, multi-layer stacking was performed for 1 layer and 2 layers, as shown in Figure 2 from weld metal 3. According to the sampling procedure, take round bar test piece 4 (J) from 12.5 points.
ISAI) and V-notch Charpy impact test piece 5 (
JI No. 84) were collected and tested. Note that 6 is the notch position. Also, the welding conditions are 750A, 3
Single electrode welding at 2V, 50cpm, no preheating, and interpass temperature of 150°C.

ワイヤおよびフラックスの組合せおよびそれらによる各
種試験結果を第4表に示した。表中(区分)○印は本発
明例を示す組合せであり、その他は比較例である。
Table 4 shows the combinations of wire and flux and the various test results using them. In the table (categories), the ○ marks indicate combinations representing examples of the present invention, and the others are comparative examples.

本発明法によって得られた溶接金属のN2Rはいづれも
ワイヤ成分にはソ近い値で、衝撃弧マE−75,c値)
はいづれも良好(vE−751:> 4.8 kgf−
m )な値を示しているが、本発明要件を満たさない比
較例はvE−75T:、値あるいはvE−60’Cで不
満足な値を示している。すなわち、比較例2.5および
8はフラックスにAtF 、が添加されておらず、m接
金属のN2Jiiがワイヤ中のN2社より0.0023
〜0.00301増加し、低靭性を示し、比較例3およ
び10はワイヤ中にすてKN2il10.0068〜0
.0073%と高く、低靭性を示している。
The N2R of the weld metal obtained by the method of the present invention is close to that of the wire component, and the impact arc value is E-75, c value).
All are good (vE-751: > 4.8 kgf-
Comparative examples that do not meet the requirements of the present invention show unsatisfactory values of vE-75T:, or vE-60'C. That is, in Comparative Examples 2.5 and 8, AtF was not added to the flux, and the N2Jii of the m weld metal was 0.0023 from N2 Company in the wire.
~0.00301 increase, indicating low toughness, Comparative Examples 3 and 10 were discarded in the wire KN2il10.0068~0
.. 0073%, indicating low toughness.

比較例6はフラックスの塩基度が0.77と低く、溶接
金属中の酸素量が増加し、Ti 、 Bの効果がみられ
ず、低靭性を示した。
In Comparative Example 6, the basicity of the flux was as low as 0.77, the amount of oxygen in the weld metal increased, and the effects of Ti and B were not observed, resulting in low toughness.

比較例11は(B1式の値が0.61%、(C)式の値
が0.0128%と高く、T1過剰のみならずB過剰の
ため、高温割れが発生し、試験全中止した。比較例13
は(B)式の値が0.64チと高(Ti過剰により、硬
化とともに低靭性を示している。
In Comparative Example 11, the value of formula (B1) was as high as 0.61% and the value of formula (C) was as high as 0.0128%, and due to not only excess T1 but also excess B, hot cracking occurred and the test was completely discontinued. Comparative example 13
The value of formula (B) is as high as 0.64 cm (excessive Ti indicates hardening and low toughness).

比較例14はフラックスへのAtF’3添加以が過剰で
アークが不安定となり溶接ビード形状不良で、試験を中
止した。
In Comparative Example 14, the addition of AtF'3 to the flux was excessive, resulting in unstable arc and poor weld bead shape, and the test was discontinued.

(発明の効果) 以上の実施例からも明らかなごとく、本発明法によれば
従来作業性の良好な溶融型フラックスでのTiまたはT
i−B系溶材で例えば−75℃の低温靭性が溶接金悶中
へのN2増加によって劣化するのを作業性を全く劣化さ
せずに高靭性化することが可能となり、今後、より厳し
い低温靭性が要求されつつある各種溶接施工に貢献する
ところ極めて大である。
(Effects of the Invention) As is clear from the above examples, according to the method of the present invention, Ti or T
For example, the low-temperature toughness of i-B weld metals at -75°C deteriorates due to the increase in N2 during welding, but it is now possible to increase the toughness without any deterioration in workability, and in the future, we will be able to improve the toughness at even more severe temperatures at -75°C. This will greatly contribute to the various types of welding work that are becoming increasingly required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例で採用した溶接試験板の開先形状、累層
方法を示す図、第2図は実施例で採用した各種試験片採
取要領を示す図である。 1・・・溶接試験板    2・・・裏当金3・・・溶
接金属     4・・・引張試験片5・・・衝撃試験
片    6・・・ノツチ位置。 第1図 第2図 ゛
FIG. 1 is a diagram showing the groove shape and layering method of the welding test plate used in the example, and FIG. 2 is a diagram showing the various test piece collection procedures used in the example. 1... Welding test plate 2... Backing metal 3... Welding metal 4... Tensile test piece 5... Impact test piece 6... Notch position. Figure 1 Figure 2 ゛

Claims (2)

【特許請求の範囲】[Claims] (1)軟鋼および高張力鋼を溶接するに当り、重量%で
N_2を0.0055%以下に制限したワイヤと下記(
A)式で計算される塩基度が1.0以上で且つフッ化ア
ルミニウムを1〜15%添加混合した溶融型フラックス
とを用い、さらにワイヤもしくはフラックスの少くとも
一方にTiもしくはTi化合物を下記(B)式で計算し
て0.5%以下含有せしめて潜弧溶接することを特徴と
する高靭性溶接金属の得られる潜弧溶接方法。 但し、 [CaO+MgO+BaO+CaF_2+Na_2O+
K_2O+1/2MnO]/[SiO_2+1/2(A
l_2O_3+TiO_2)]・・・(A) (但し、各成分は重量%) Ti%(ワイヤ中)+[TiO_2換算値%(フラック
ス中)]/50・・・(B) (但し、各成分は重量%)
(1) When welding mild steel and high-strength steel, wire with N_2 limited to 0.0055% or less by weight and the following (
A) A molten flux with a basicity calculated by formula 1.0 or more and 1 to 15% aluminum fluoride is used, and Ti or a Ti compound is added to at least one of the wire or flux as shown below ( B) A submerged arc welding method for obtaining a high-toughness weld metal, characterized in that submerged arc welding is performed with a content of 0.5% or less as calculated by formula. However, [CaO+MgO+BaO+CaF_2+Na_2O+
K_2O+1/2MnO]/[SiO_2+1/2(A
l_2O_3+TiO_2)]...(A) (However, each component is weight%) Ti% (in wire) + [TiO_2 conversion value % (in flux)]/50...(B) (However, each component is weight%) %)
(2)軟鋼および高張力鋼を溶接するに当り、重量%で
N_2を0.0055%以下に制限したワイヤと下記(
A)式で計算される塩基度が1.0以上で且つフッ化ア
ルミニウムを1〜15%添加混合した溶融型フラックス
とを用い、さらにワイヤもしくはフラックスの少くとも
一方にTiもしくはTi化合物を下記(B)式で計算し
て0.5%以下含有せしめ、さらに、ワイヤもしくはフ
ラックスの少くとも一方にBもしくはB化合物を下記(
C)式で計算して0.010%以下含有せしめて潜弧溶
接することを特徴とする高靭性溶接金属の得られる潜弧
溶接方法。 但し、 [CaO+MgO+BaO+CaF_2+Na_2O+
K_2O+1/2MnO]/[SiO_2+1/2(A
l_2O_3+TiO_2)]・・・(A) (但し、各成分は重量%) Ti%(ワイヤ中)+[TiO_2換算値%(フラック
ス中)]/50・・・(B) (但し、各成分は重量%) B%(ワイヤ中)+[B_2O_3換算値%(フラック
ス中)]/100・・・(C) (但し、各成分は重量%)
(2) When welding mild steel and high-strength steel, wire with N_2 limited to 0.0055% or less by weight and the following (
A) A molten flux with a basicity calculated by formula 1.0 or more and 1 to 15% aluminum fluoride is used, and Ti or a Ti compound is added to at least one of the wire or flux as shown below ( Calculated using formula B), the content is 0.5% or less, and at least one of the wire or flux contains B or a B compound as shown below (
C) A submerged arc welding method for obtaining a high-toughness weld metal, characterized in that submerged arc welding is performed with a content of 0.010% or less as calculated by formula. However, [CaO+MgO+BaO+CaF_2+Na_2O+
K_2O+1/2MnO]/[SiO_2+1/2(A
l_2O_3+TiO_2)]...(A) (However, each component is weight%) Ti% (in wire) + [TiO_2 conversion value % (in flux)]/50...(B) (However, each component is weight%) %) B% (in wire) + [B_2O_3 conversion value % (in flux)]/100...(C) (However, each component is weight%)
JP17223185A 1985-08-05 1985-08-05 Submerged arc welding method by which high-toughness weld metal is obtained Pending JPS6233091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17223185A JPS6233091A (en) 1985-08-05 1985-08-05 Submerged arc welding method by which high-toughness weld metal is obtained

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17223185A JPS6233091A (en) 1985-08-05 1985-08-05 Submerged arc welding method by which high-toughness weld metal is obtained

Publications (1)

Publication Number Publication Date
JPS6233091A true JPS6233091A (en) 1987-02-13

Family

ID=15938031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17223185A Pending JPS6233091A (en) 1985-08-05 1985-08-05 Submerged arc welding method by which high-toughness weld metal is obtained

Country Status (1)

Country Link
JP (1) JPS6233091A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07276080A (en) * 1994-03-31 1995-10-24 Kobe Steel Ltd Welding wire for high-tensile steel
KR100709521B1 (en) * 2001-11-13 2007-04-20 제이에프이 스틸 가부시키가이샤 Welding joint of large heat input welding and welding method thereof
JP2014210287A (en) * 2013-04-04 2014-11-13 Jfeスチール株式会社 Fused flux to be used for submerged arc welding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07276080A (en) * 1994-03-31 1995-10-24 Kobe Steel Ltd Welding wire for high-tensile steel
KR100709521B1 (en) * 2001-11-13 2007-04-20 제이에프이 스틸 가부시키가이샤 Welding joint of large heat input welding and welding method thereof
JP2014210287A (en) * 2013-04-04 2014-11-13 Jfeスチール株式会社 Fused flux to be used for submerged arc welding

Similar Documents

Publication Publication Date Title
JP4834191B2 (en) Flux-cored wire for gas shielded arc welding that can be welded in all positions
JP3758040B2 (en) Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel
KR102244428B1 (en) Flux cored wire, manufacturing method of welded joint, and welded joint
KR100920549B1 (en) Flux-cored wire for gas shielded arc welding
JP2010110817A (en) Low-hydrogen coated electrode
JP5438663B2 (en) Flux cored wire
JP5097499B2 (en) Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel
WO2018051823A1 (en) Wire for electroslag welding, flux for electroslag welding and welded joint
JP5438664B2 (en) Flux cored wire
JP6901868B2 (en) Electroslag welding wire, electroslag welding flux and welded joints
JP5744816B2 (en) Bond flux for submerged arc welding
JP2687006B2 (en) Flux-cored wire for gas shielded arc welding for refractory steel
KR100502571B1 (en) Flux cored wire for co2 gas shielded arc welding
JPS6233091A (en) Submerged arc welding method by which high-toughness weld metal is obtained
JP7332946B2 (en) Manufacturing method of flux-cored wire and welded joint
JP7469597B2 (en) Flux-cored wire and method for manufacturing welded joint
JPS632592A (en) Flux cored wire for low alloy heat resistant steel welding
JP2022157587A (en) Manufacturing method for flux-cored cut wire and weld joint
JP2528296B2 (en) Composite wire for electrogas arc welding
JP3208556B2 (en) Flux-cored wire for arc welding
JPH09262693A (en) Flux cored wire for arc welding
JP2017170515A (en) Flux-cored wire for gas shield arc welding
JPH0378197B2 (en)
JP7485895B2 (en) Flux-cored wire and method for manufacturing welded joint
JP3163838B2 (en) Bond flux for submerged arc welding