JPH0457438B2 - - Google Patents

Info

Publication number
JPH0457438B2
JPH0457438B2 JP19704484A JP19704484A JPH0457438B2 JP H0457438 B2 JPH0457438 B2 JP H0457438B2 JP 19704484 A JP19704484 A JP 19704484A JP 19704484 A JP19704484 A JP 19704484A JP H0457438 B2 JPH0457438 B2 JP H0457438B2
Authority
JP
Japan
Prior art keywords
amount
weld metal
flux
metal
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19704484A
Other languages
Japanese (ja)
Other versions
JPS6174797A (en
Inventor
Isao Sugioka
Saneji Nishimura
Akitomo Sueda
Masao Kamata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19704484A priority Critical patent/JPS6174797A/en
Publication of JPS6174797A publication Critical patent/JPS6174797A/en
Publication of JPH0457438B2 publication Critical patent/JPH0457438B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、サブマージアーク溶接用焼成型フラ
ツクスに関し、特に耐熱鋼および低温用鋼などの
各種低合金鋼の溶接に使用され、溶接作業性が良
好で、かつ低水素高靱性の溶接金属が得られるサ
ブマージアーク溶接用焼成型フラツクスに関す
る。 (従来の技術) 最近の耐熱鋼および低温用鋼などの各種低合金
鋼の溶接構造物への安全性面からの要求レベルの
高度化にともない、特に脆性破壊の問題に関して
溶接金属に要求される靱性レベルは極めて高いも
のになりつつある。このような要求に応えるため
には溶接金属の酸素量を低減し高靱性を得ること
ができる高塩基性成分系のフラツクスが必要とな
る。従来より種々成分系の高塩基性溶融型フラツ
クスあるいは高塩基性焼成型フラツクスが使用さ
れているが、溶融型フラツクスにおいては高塩基
性の成分系にすると溶融製造時に水素を多量に内
蔵するようになり、溶接金属の拡散性水素量が増
加し、低温割れが発生しやすくなることが問題と
なる。一方、焼成型フラツクにおいてはCaCO3
MgCO3などの金属炭酸塩をフラツクス成分とし
て含有させることが可能で、溶接時のそれら金属
炭酸塩の分解反応によつて発生するCO2ガスによ
りアーク雰囲気中の水蒸気分圧を下げ溶接金属の
拡散性水素量を著しく低減することができるため
に予熱およびパス間温度を溶融型フラツクスを使
用した場合に比べかなり低くできること、また溶
接後の脱水素を目的とする後熱処理を簡略化でき
ることなど施工上のメリツトが大きい。 ところで、焼成型フラツクスの金属炭酸塩の含
有量を増加していくと、溶接金属の拡散性水素量
は次第に減少するが、溶接作業性上のビード表面
欠陥であるポツクマークの発生が顕著となり、ま
た溶接金属の酸素量が増加し靱性が低下するとい
う問題が生じる。このことは金属炭酸塩の分解反
応によつて発生するCO2ガスがアーク雰囲気中の
水蒸気分圧を下げるという効果を示す反面、CO2
ガスが高温化において酸化性ガスとして働くこと
による。 このようなCO2ガスの酸化性による悪影響を防
止するために、この種の金属炭酸塩を多量に含有
する焼成型フラツクスには通常、脱酸剤として脱
酸性元素を添加、含有させることが必要になる。
例えば特開昭58−135792号において提案された極
低水素の狭開先溶接用焼成型フラツクスはSiおよ
びMnをそれぞれ5%以下含有し、また特開昭58
−77790号において提案された高張力鋼用の焼成
型フラツクスはSi及び/又はAlを3%以下含有
するものである。同様に、金属炭酸塩を多量に含
有する市販の各種成分系の焼成型フラツクスにお
いても脱酸性元素が含有されており、その場合、
特にSiは従来より最も一般的に使われている脱酸
性元素である。 しかし、Siを主体にした脱酸剤を添加した焼成
型フラツクスを使用することによつてポツクマー
クの発生がなく、かつ溶接金属の酸素量を高塩基
性溶融型フラツクスを使用した場合と同程度にま
で低減しようとした場合、金属炭酸塩の含有量あ
るいは組合せて使用するワイヤの化学成分(特に
Si量)によつては多量のそれら脱酸剤の添加が必
要になつてくる。そのような焼成型フラツクスを
使用した場合のあらたな問題点として第1に著し
いスラグ焼付きの発生によるビード外観不良およ
びスラグ剥離性不良の他、小入熱溶接においては
脱酸反応が十分に行なわれずスラグが浮上しきれ
ないで溶接金属中に残留(スラグ巻込み発生)す
る場合があることなど溶接作業性が極めて不良と
なる。第2にフラツクス中にSiを多量に添加する
ことは溶接金属中へのSiの歩留り量を大きくし、
この溶接金属のSi量の増加は強度の上昇をもたら
し靱性を低下させる。さらに最近の各種溶接金属
の靱性におよぼすSi量の影響を調査した文献等に
よれば、溶接金属の低Si化がCr−Mo鋼の溶接金
属の焼戻し脆化の軽減に顕著な効果があることは
以前から知られているが、Alキルド低温用鋼の
SR脆化の軽減にも低Si化が有効なことが明らか
になつてきている。本発明者らが高塩基性溶融型
フラツクスを使用して行なつた実験によつても、
21/4Cr−1Mo鋼の溶接金属においてSi量が0.2% を超えるとSR後および脆化処理(ステツプクー
リング処理)後とも衝撃値(−40℃〜−60℃)が
著しく低下し、好ましくは0.10%程度までSi量を
低くした場合に高靱性が得られること、また
50HTや60HT低温用鋼の溶接金属においてもSi
量が0.40〜0.50%を超えると特にSR後の衝撃値
(−60℃〜−80℃)が急激に低下するという知見
を得ている。そして、この時の溶接金属の酸素量
については、21/4Cr−1Mo鋼の溶接金属で 300ppm以下、50HTや60HT低温用鋼の溶接金属
で250ppm以下にしないと上記Si量を低く抑えた
場合においても高靱性を得ることは困難である。
つまり、高靱性の溶接金属を得るためには、酸素
量の低減とともに低Si化が必須の条件であり、従
来のSiを主体にした脱酸剤を添加してなる焼成型
フラツクスを使用した場合、どうしても溶接金属
のSi量の増加が問題となり、溶融型フラツクスを
使用した場合の靱性レベルを得ることは極めて困
難であつた。 なお、溶接金属のSi量の増加を少なくしようと
して、Siの添加量を少なくしてMn,Al,Tiなど
の脱酸性元素を同時に添加した場合においても、
ポツクマークの発生をなくし、溶接金属の酸素量
を溶融型フラツクスを使用した場合と同等近くま
で低減した段階においては、上記Siを主体に添加
した場合と同様に、スラグ焼付きの発生が著し
く、さらに溶接金属中にそれらMn,Al,Tiが過
剰に歩留ることにより靱性を低下させる。また、
Zrの添加は溶接金属の酸素量の低減に効果的で
はあるが、ビード表面のざらつきおよびスラグ焼
付きを助長させるものであり、添加量が制限され
る。 このように、低温割れの防止を考慮して金属炭
酸塩を多量に含有する高塩基性焼成型フラツクス
においては、発生するCO2ガスの酸化性によるポ
ツクマークの発生および溶接金属の酸素量の増加
が問題となる。これに対し、従来の焼成型フラツ
クスは脱酸剤としてSiを主体に添加したものが一
般的であつて、スラグ焼付きの発生に代表される
溶接作業性の悪化とともに、溶接金属のSi量が増
加することにより最近の高い靱性レベルの要求を
十分に満足できる高靱性の溶接金属を得ることに
は限界があつた。 (発明が解決しようとする問題点) そこで、本発明は耐熱鋼および低温用鋼などの
各種低合金鋼の溶接に使用して、溶接金属の拡散
性水素量が低く低温割れが発生しにくく、かつポ
ツクマークやスラグ焼付きの発生などがなく溶接
作業性が良好で、さらに現在、市販の各種低合金
鋼用のワイヤと組合せて使用した場合においても
溶接金属のSi量およびMn,Al,Ti量の増加を抑
えたまま酸素量を高塩基性溶融型フラツクスを使
用した場合と同等もしくは同等以下にまで低減す
ることによつて低温高靱性の溶接金属が得られる
サブマージアーク溶接用焼成型フラツクスの提供
を目的とする。 (問題点を解決するための手段) 本発明の要旨は、重量%で、金属炭酸塩をCO2
量換算値で3.5〜12%含有し、下記(1)式で表わさ
れる塩基度Bが1.50〜3.00である焼成型フラツク
スにおいて、C0.05〜0.50%でかつ金属炭酸塩含
有量のCO2量換算値に対するC量の比(C%/CO2%) が0.010〜0.050、CaもしくはMgの1種または2
種の合計0.5〜5.0%を含有し、かつSi2.0%以下、
Mn2.0%以下、Al1.0%以下、Ti1.5%以下、Zr1.0
%以下の1種以上の合計3.0%以下含有すること
を特徴とするサブマージアーク溶接用焼成型フラ
ツクスである。 (1)式;塩基度B=CaO%+MgO%+CaF2%/SiO2
%+0.5Al2O3%(重量%) 本発明者らは、種々の成分系および添加する脱
酸性元素の種類と添加量を変化させた焼成型フラ
ツクスを試作し、詳細に検討した。その結果、低
温割れの発生防止および溶接作業性の点から金属
炭酸塩の含有量を限定し、また溶接金属の酸素量
レベルを低く維持するためおよび溶接作業性の点
から塩基度を限定した焼成型フラツクスにおい
て、脱酸剤として金属炭酸塩含有量のCO2ガス発
生量に見合つた量に限定されるC、および多量に
添加した場合でもSiのように溶接作業性および溶
接金属の性能に悪影響をおよぼさないCaまたは
MgをCと同時に添加することにより溶接金属の
酸素量を著しく低減できることを見出し、さら
に、Si,Mn,Al,TiおよびZrの添加量を制限す
ることによつて、従来の脱酸剤としてSiを主体に
添加してなるこの種の高塩基性焼成型フラツクス
を使用した場合の前記問題点を解決したものであ
る。 (発明の作用) 以下、本発明を作用とともに詳述する。 金属炭酸塩;溶接金属の拡散性水素量を低くし
て低温割れの発生を防止するためには、CaCO3
MgCO3,BaCO3などの金属炭酸塩をCO2量換算
値(CO2ガス発生量に同じ)で、3.5%以上含有
させなければならない。なお、この場合の
WES1003(ガスクロマトグラフ法)による拡散性
水素量は大気中4hr程度の放置後においても溶接
金属100g当り4.5c.c.以下となり高塩基性溶融型フ
ラツクスを使用した場合に比べ、予熱およびパス
間温度の低下とともに溶接後の脱水素処理は大幅
に簡略化でき、50HT鋼の溶接金属などでは省略
することもできる。しかし、金属炭酸塩の含有量
がCO2量換算値で12%を超えるとCO2ガス発生量
が過剰となり、アーク不安定、スラグ吹上げ、ビ
ード形状不良など溶接作業性が不良となる。 塩基度B;下記(1)式で表わす塩基度Bが1.50〜
3.00でなければならない。塩基度Bが1.50未満で
は溶接金属の酸素量レベルが高くなり高靱性の溶
接金属を得ることはできない。また、塩基度Bが
3.00を超えて高くなるとアーク不安定、ビード形
状不良など溶接作業性が不良となる。 (1)式;塩基度B=CaO%+MgO%+CaF2%/SiO2
%+0.5Al2O3%(重量%) なお、(1)式においてCaOおよびMgOについて
は、金属炭酸塩として含有されるCaCO3および
MgCO3の各酸化物量換算値(CaCO3%×0.56,
MgCO3×0.48)に相当する量を含めた量を示す。
また、本発明フラツクスにおいて、金属炭酸塩以
外の主要成分としては主にCaO,MgO,CaF2
SiO2,Al2O3を含有するが他にTiO2(6%以下)、
MnO(5%以下)、BaO(15%以下)、ZrO2(10%
以下)、Na2O+K2O+Li2O3(合計6%以下)な
どの金属酸化物およびCaF2以外のMgF2,BaF2
NaF,Na3AlF6などの金属弗化物が含有されて
いてもよい。 このような金属炭酸塩を3.5〜12%含有し、塩
基度Bが1.50〜3.00である焼成型フラツクスに脱
酸剤として、以下の脱酸性元素を金属粉または合
金粉で添加含有させる。 C;Cは金属炭酸塩含有量のCO2ガス発生量に
見合つた量を必要とし、金属炭酸塩をCO2量換算
値で3.5%〜12%含有する本発明フラツクスにお
いてはポツクマークの発生および溶接金属の酸素
量の増加を抑えるために、0.05%以上0.50%以下
の範囲で金属炭酸塩含有量のCO2量換算値に対す
るC量の比(C%/CO2%)が0.010〜0.050となるよう に添加しなければならない。さらに、このCの添
加およびCO2ガス発生量による添加量の限定は溶
接金属中にCを有効に補給し、靱性を向上すると
いう効果を示す。 金属炭酸塩を含有する焼成型フラツクスを使用
した場合、発生するCO2ガスは高温下において
CO2→CO+Oの反応により酸化性ガスとして働
き、ポツクマークの発生や酸素量を増加させるこ
との他、溶融金属中のCと反応することにより溶
接金属のC量が高塩基性溶融型フラツクスを使用
した場合に比べ低下するという現象を示し、焼入
性不足による靱性低下および強度低下が問題とな
る。この傾向はCO2ガス発生量が多くなるにつれ
て顕著となるものであるが、上記限定されたC量
の添加により溶接金属のC量の低下を防止し、焼
入性の維持および強度の調整が可能となる。しか
し、Cが0.05%未満あるいはC%/CO2%が0.010未満 の場合、C添加の効果は明らかでなくポツクマー
クが発生し、溶接金属の酸素量が高くなり、また
C量の低下が見られ靱性が低下する。一方、Cの
添加量が0.50%を超え、あるいはC%/CO2%が0.050 を超えた場合には高温割れが発生しやすくなると
ともに、溶接金属のC量の増加が大きくなり強度
が上昇し靱性が低下する。なお、添加するCの形
態はC粉の他、Si−CなどのC合金、Fe−Mn,
Fe−Si中に含有されるC、炭化物などでもよく
特に限定するものではないが、脱酸剤として添加
するものであつて、スラグ形成剤として配合され
る各種の原材料中に微量含有される場合のCを含
むものではない。 CaおよびMg;CaもしくはMgの1種または2
種の合計で0.5〜5.0%の範囲で添加しなければな
らない。 CaおよびMgは、ポツクマークの発生を抑え溶
接金属の酸素量を低減する。しかも、これら元素
は多量に添加した場合においてもSi,Mn,Al,
Tiなどの脱酸性元素を添加した場合のような著
しいスラグ焼付きが発生することもなく、また溶
接金属中へのCa,Mgの歩留りは極めて微少また
はほとんど認められず、溶接金属の強度上昇によ
る靱性低下、あるいは溶接後の熱処理による焼戻
し脆化やSR脆化などの悪影響をおよぼすことは
ない。 さらに、本発明フラツクスが、上記CとCaも
しくはMg(またはCa,Mgの両方)を必須の脱酸
性元素として同時に添加することは、溶接金属の
酸素量を高塩基性溶融型フラツクスを使用した場
合と同等、もしくは同等以下にまで容易に低減す
ることを可能にしたものである。このCとCaも
しくはMgの同時添加による溶接金属の著しい酸
素量の低減効果は、アーク雰囲気中ワイヤ先端か
ら溶融池に落下するまでの溶滴の移行段階におけ
る溶滴表面の過度の酸化を防止し、また溶融池の
脱酸反応段階における十分な脱酸反応を促進する
ことによる相乗効果によるものであると考えられ
る。つまり、金属炭酸塩を多量に含有する焼成型
フラツクスを使用した場合、ワイヤ先端から溶融
離脱した溶滴はアーク雰囲気を移行中に金属炭酸
塩の分解反応によつて発生したCO2ガスの酸化性
により過度にその表面が酸化され、溶融金属中の
酸素量を富化し、溶接金属の酸素量を増加させ
る。これに対し、まずCは溶接金属中に溶解し、
溶融池における脱酸反応を行ない、この時発生す
る還元性ガスであるCOガスはアーク雰囲気中の
酸素分圧を下げ溶滴表面の酸化を抑制する。ま
た、CaおよびMgは弗点が低いのに加えて、融点
においても高い蒸気厚をもつているためにアーク
雰囲気中の酸素分圧を下げ、Cと同様に溶滴表面
の酸化の抑制に働く。次に、溶融池の脱酸反応段
階においてCは溶融金属が凝固に至る過程のその
高温度域においても十分な脱酸反応を行なうこと
ができ、同時に添加したCa,Mgは酸素との親和
力が極めて大きい元素であり溶融金属の凝固直前
の低温度域においてまで協力な脱酸反応を行なう
ことができる。さらにこの時の反応により生ずる
激しい沸騰攪拌はワイヤ中あるいは鋼板中の化学
成分としてまたは脱酸剤として少量添加された
Si,Mn,Al,Tiなどの脱酸反応および生成した
酸化物の浮上を促進する。このようにCとCa及
び/又はMgを同時に添加することにより、アー
ク雰囲気中での溶滴表面の酸化を抑制し、かつ溶
融池での脱酸反応を促進し、溶接金属の酸素量を
容易に著しく低減することを可能とした。 なお、上記CaまたはMgの添加量がCaもしく
はMgの1種または2種の合計で0.5%未満の場合
にはポツクマークの発生防止および溶接金属の酸
素量の低減に対し有効に作用しない。一方、Ca
もしくはMgの1種または2種の合計が5.0%を超
えるとアーク不安定、ビードの乱れなど溶接作業
性が不良となる。 さらに本発明フラツクスはCおよびCaもしく
はMg以外の脱酸性元素を添加する場合、Si2.0%
以下、Mn2.0%以下、Al1.0%以下、Ti1.5%以
下、Zr1.0%以下の1種以上の合計が3.0%以下で
なければならない。これら元素はポツクマークの
発生および溶接金属の酸素量の増加を抑えるが、
上記限定範囲を超えて多量に添加した場合、スラ
グ焼付きの発生とともに溶接金属中のSi,Mn,
Al,Ti量が増加し、強度上昇による靱性低下お
よび溶接後の熱処理による焼戻し脆化およびSR
脆化が顕著となり、本発明の目的を達成すること
はできない。なお、Zrの多量の添加は溶接作業
性に悪影響をおよぼすので好ましくない。 Si;ワイヤ中のSi量によつて2.0%以下の範囲
で添加してもよいが2.0%を超えて添加した場合、
スラグ焼付きの発生および溶接金属のSi量が増加
し靱性が低下する。 Mn,Al,Ti;各々上記の限定範囲内において
添加してもよいが、過剰に添加した場合、Siと同
様にスラグ焼付き発生および靱性を低下させる元
素であり、添加量をできるだけ少なくなることが
好ましい。なお、Tiの少量添加は脱酸剤として
作用するとともに、Alキルド低温用鋼の溶接金
属においてTi化あるいはTi−B化のための合金
元素として靱性の改善に有効に働く。 Zr;1.0%以下の添加で溶接金属の酸素量の低
減に効果的であるが、1.0%を超えて添加した場
合、ビード表面のざらつきおよびスラグ焼付きの
発生が問題となる。 以上のように本発明は金属炭酸塩を多量に含有
する高塩基性焼成型フラツクスに添加する脱酸剤
として、従来のこの種の焼成型フラツクスにおい
て通常、一般的に行なわれているSiを主体にした
脱酸剤系を添加する方法に代わるCとCa及び/
又はMgの同時添加という新しい脱酸剤系を添加
することによつて、溶接作業性が良好で、かつ溶
接金属のSi量およびMn,Al,Ti量を低く抑えた
まま、酸素量を高塩基性溶融型フラツクスを使用
した場合と同等もしくは同等以下にまで著しく低
減し、従来にない極めて高靱性の溶接金属を得る
ことを可能にしたものである。 (実施例) 以下、実施例により具体的に示す。 実施例 1 第1表に示す成分の本発明フラツクス(B1,
B4,B7,B9)および比較フラツクス(B10)を
300℃×1hr保持の条件で再乾燥し、その直後およ
び大気中(気温32℃〜33℃、湿度80〜82%)に
4hr放置後、WES1003(ガスクロマトグラフ法)
に準じて溶接金属の拡散性水素量を測定した。第
4表に結果を示す。 試験No.1〜4に本発明フラツクスを使用した場
合で、大気中4hr放置においても溶着金属100g当
りの拡散性水素量は4.2c.c.以下という低い値を示
したのに対し、No.5はフラツクスB10の金属炭酸
塩の含有量が少なくCO2量換算値が3.5%未満で
あるために上記本発明フラツクスを使用した場合
に比べ著しく高い値を示した。 実施例 2 第2表に示す化学成分の板厚t1=25mmの
A387Gr.22鋼を第1図aに示す形状でα=20°、tR
=16mmの裏当金付きの開先とし、第3表に示す化
学成分のワイヤW1(ワイヤ径4.0mm〓)を第1表
に示す成分の本発明フラツクス(B3〜B5,B7〜
B9)および比較フラツクス(B11〜B21)と組合
せて、第1図bに示す累層法により多層盛溶接試
験を行なつた。溶接条件はA.C電源550Amp-26
27Volt−30cm/min、予熱温度200℃、パス間温
度200℃である。なお、溶接後の脱水素処理とし
て予熱用のガスバーナーを用いて約3分間の加熱
処理(300℃以下)を行なつた。溶接時の溶接作
業性の観察とともに、690℃×10hr保持(炉冷)
のSR処理後、および脆化処理(G.E.Step
Cooling処理)後の溶接金属について、第1図b
に示すように板厚方向t2=10mmを中心にして溶接
金属中心にノツチBを入れたJIS4号2mmVノツチ
衝撃試験片AおよびJISA1号引張試験片C、同引
張試験片より採取した分析試料により各々試験に
供した。これら結果を第5表に示す。 試験No.1〜6は本発明フラツクス(B3〜B5,
B7〜B9)を使用した場合でいずれも良好な溶接
作業性とともにSR後および脆化処理後とも高レ
ベルの衝撃値を示している。なお、この時の溶接
金属のSi量は0.18%以下、または酸素量は
260ppm以下であつた。No.7〜No.17は比較フラツ
クスを使用した場合である。No.7はフラツクス
B11の金属炭酸塩の含有量が多すぎるためにアー
ク不安定、ビード形状不良、No.8はフラツクス
B12の塩基度が低すぎるために溶接金属の酸素量
が増加し衝撃値が著しく低下、No.9はフラツクス
B13の塩基度が高すぎるためにアーク不安定、ビ
ード形状不良、No.10はフラツクスB14の脱酸剤の
添加量が少ないためにポツクマークが多発、No.11
はフラツクスB15のSiの添加量が多すぎるために
著しいスラグ焼付き発生、および衝撃値が低下、
No.12はフラツクスB16のSi添加量を抑えMn,Al,
Tiの添加量を多くしたが同様にスラグ焼付き発
生、No.13はフラツクスB17のCの添加量が少ない
ために溶接金属のC量の低下および酸素量が増加
し衝撃値が低下、No.14はフラツクスB18のCの添
加量が多すぎるためにクレーター部に高温割れ発
生、No.15はフラツクスB19のMgの添加量が少な
すぎるためにポツクマークが発生し、また溶接金
属の酸素量が増加し衝撃値が低下、No.16はフラツ
クスB20のCaとMgの添加量の合計が多すぎたた
めにアーク不安定、ビードの乱れによる外観不
良、No.17はフラツクスB21のCおよびMg以外の
Si,Al,Ti,Zrの添加量の合計が多すぎるため
にスラグ焼付き発生および衝撃値が低下。 実施例 3 第2表に示す化学成分の板厚t1=20mmのSM−
50B鋼を第2図aに示す形状でα=20°、tR=16mm
の裏当金付きの開先とし、第3表に示す化学成分
のワイヤW2(ワイヤ径4.0mm〓)を第1表に示す
成分の本発明フラツクス(B1,B2,B5,B6,
B7)および比較フラツクス(B12,B14,B15,
B17,B18,B19,B21)と組合せて、第2図b
に示す累層法により多層盛溶接試験を行なつた。 溶接条件はA.C電源650Amp−28Volt−30cm/
min、予熱なしでパス間温度は150℃である。溶
接時の溶接作業性の観察とともに、溶接のまま
(AW)および600℃×6hr保持(炉冷)のSR処理
後の溶接金属について、第2図bに示すように板
厚方向t2=10mmを中心にして溶接金属中心にノツ
チBを入れたJIS4号2mmVノツチ衝撃試験片Aお
よびNK10mm〓丸棒引張試験片C、同引張試験片
より採取した分析試料により各々試験に供した。
これら結果を第6表に示す。 試験No.1〜5は本発明フラツクス(B1,B2,
B5,B6,B7)を使用した場合で、いずれも良好
な溶接作業性とともに溶接金属のSi量および酸素
量とも低く、AWおよびSR後とも高レベルの衝
撃値を示している。これに対し、No.6はフラツク
スB12の塩基度が低すぎるために溶接金属の酸素
量が増加し衝撃値が低下、No.7はフラツクスB14
の脱酸剤の添加量が少ないためにポツクマークが
発生し、また溶接金属の酸素量が増加し衝撃値が
低下、No.8はフラツクスB15のSiの添加量が多す
ぎるためにスラグ焼付きが発生し、また溶接金属
の酸素量は低下したがSi量が増加し強度の上昇に
よる衝撃値の低下および著しいSR脆化、No.9は
フラツクスB17のCの添加量が少なすぎるため
に、溶接金属の酸素量の増加およびC量低下によ
り焼入性不足となり衝撃値が低下、No.10はフラツ
クスB18のCの添加量が多すぎるために強度が上
昇し衝撃値が低下、No.11はフラツクスB19のMg
の添加量が少なく溶接金属の酸素量が増加し衝撃
値が低下、No.12はフラツクスB21のSi,Al,Ti,
Zrの添加量の合計が多すぎるためにスラグ焼付
きが発生し、また溶接金属の強度上昇による衝撃
値の低下および著しいSR脆化。
(Field of Industrial Application) The present invention relates to a fired flux for submerged arc welding, which is particularly used for welding various low-alloy steels such as heat-resistant steel and low-temperature steel, and which has good welding workability and a low hydrogen content. The present invention relates to a sintered flux for submerged arc welding that provides a tough weld metal. (Prior art) As the safety requirements for welded structures of various low-alloy steels such as heat-resistant steel and low-temperature steel have recently become more sophisticated, the requirements for weld metals have increased, especially with regard to brittle fracture problems. Toughness levels are becoming extremely high. In order to meet these demands, a flux with a highly basic component is required, which can reduce the amount of oxygen in the weld metal and provide high toughness. Conventionally, highly basic molten fluxes or highly basic sintered fluxes with various component systems have been used, but in molten fluxes, high basic component systems tend to contain a large amount of hydrogen during melt production. This causes a problem in that the amount of diffusible hydrogen in the weld metal increases and cold cracking becomes more likely to occur. On the other hand, in calcined flakes, CaCO 3 ,
It is possible to contain metal carbonates such as MgCO 3 as a flux component, and the CO 2 gas generated by the decomposition reaction of these metal carbonates during welding lowers the water vapor partial pressure in the arc atmosphere and diffuses the weld metal. This has many advantages in terms of construction, such as the fact that the preheating and inter-pass temperatures can be significantly lower than when using fused flux because the amount of hydrogen generated by the welding process can be significantly reduced, and the post-heat treatment for dehydrogenation after welding can be simplified. The benefits are great. By the way, as the content of metal carbonate in the fired flux increases, the amount of diffusible hydrogen in the weld metal gradually decreases, but the occurrence of pockmarks, which are bead surface defects that affect welding workability, becomes noticeable. A problem arises in that the amount of oxygen in the weld metal increases and the toughness decreases. This indicates that CO 2 gas generated by the decomposition reaction of metal carbonates has the effect of lowering the water vapor partial pressure in the arc atmosphere, but on the other hand, CO 2
This is because the gas acts as an oxidizing gas at high temperatures. In order to prevent such negative effects due to the oxidizing properties of CO 2 gas, it is usually necessary to add or contain a deoxidizing element as a deoxidizing agent to calcined fluxes that contain a large amount of this type of metal carbonate. become.
For example, an ultra-low hydrogen sintered flux for narrow gap welding proposed in JP-A No. 58-135792 contains 5% or less of Si and Mn each.
The sintered flux for high-strength steel proposed in No. 77790 contains 3% or less of Si and/or Al. Similarly, commercially available calcined fluxes of various compositions containing large amounts of metal carbonates also contain deoxidizing elements;
In particular, Si is the most commonly used deoxidizing element. However, by using a fired flux to which a Si-based deoxidizing agent is added, there is no occurrence of spot marks, and the amount of oxygen in the weld metal can be reduced to the same level as when using a highly basic molten flux. If you try to reduce the metal carbonate content or the chemical composition of the wire used in combination (especially
Depending on the Si content), it may be necessary to add a large amount of these deoxidizers. New problems when using such sintered fluxes include, firstly, poor bead appearance and poor slag removability due to the occurrence of severe slag burning, as well as insufficient deoxidation reaction in low heat input welding. Welding workability is extremely poor, as the slag may not fully float up and remain in the weld metal (slag entrainment occurs). Second, adding a large amount of Si to the flux increases the amount of Si in the weld metal.
This increase in the amount of Si in the weld metal increases the strength and reduces the toughness. Furthermore, according to recent literature investigating the effect of Si content on the toughness of various weld metals, reducing the Si content of weld metal has a remarkable effect on reducing temper embrittlement of weld metal of Cr-Mo steel. has been known for a long time, but Al-killed low-temperature steel
It is becoming clear that reducing Si is effective in reducing SR embrittlement. According to experiments conducted by the present inventors using a highly basic molten flux,
If the Si content exceeds 0.2% in the weld metal of 21/4Cr-1Mo steel, the impact value (-40°C to -60°C) will decrease significantly both after SR and after embrittlement treatment (step cooling treatment), and preferably 0.10%. High toughness can be obtained when the Si content is reduced to about
Si is also present in the weld metal of 50HT and 60HT low-temperature steel.
It has been found that when the amount exceeds 0.40 to 0.50%, the impact value (-60°C to -80°C) after SR decreases rapidly. At this time, the amount of oxygen in the weld metal must be kept below 300 ppm for weld metal of 21/4Cr-1Mo steel, and below 250 ppm for weld metal of 50HT and 60HT low-temperature steel, even if the above Si content is kept low. However, it is difficult to obtain high toughness.
In other words, in order to obtain a high-toughness weld metal, a reduction in the amount of oxygen and a reduction in Si are essential conditions. However, an increase in the amount of Si in the weld metal inevitably became a problem, and it was extremely difficult to obtain the same level of toughness as when using molten flux. Furthermore, in an attempt to reduce the increase in the amount of Si in the weld metal, even if the amount of Si added is reduced and deoxidizing elements such as Mn, Al, and Ti are added at the same time,
At the stage where the occurrence of pockmarks has been eliminated and the amount of oxygen in the weld metal has been reduced to almost the same level as when using fused flux, slag seizure occurs significantly, as in the case where Si is mainly added, and Excessive retention of Mn, Al, and Ti in the weld metal reduces toughness. Also,
Although the addition of Zr is effective in reducing the amount of oxygen in the weld metal, it promotes roughness on the bead surface and slag seizure, so the amount added is limited. In this way, in highly basic sintered fluxes that contain a large amount of metal carbonate in order to prevent low-temperature cracking, the occurrence of pockmarks due to the oxidizing properties of the generated CO2 gas and an increase in the amount of oxygen in the weld metal can be avoided. It becomes a problem. On the other hand, conventional fired fluxes generally contain mainly Si as a deoxidizing agent, which deteriorates welding workability as typified by slag seizure and increases the amount of Si in the weld metal. Due to this increase, there has been a limit to the ability to obtain a high-toughness weld metal that can sufficiently satisfy recent demands for high toughness levels. (Problems to be Solved by the Invention) Therefore, the present invention can be used for welding various low-alloy steels such as heat-resistant steel and low-temperature steel, so that the amount of diffusible hydrogen in the weld metal is low and low-temperature cracking is less likely to occur. It also has good welding workability without the occurrence of spot marks or slag seizures, and even when used in combination with wires for various low alloy steels currently available on the market, the amount of Si, Mn, Al, and Ti in the weld metal is reduced. To provide a sintered flux for submerged arc welding that can obtain a weld metal with low temperature and high toughness by reducing the amount of oxygen to the same level or lower than that when using a highly basic molten flux while suppressing an increase in With the goal. (Means for Solving the Problems) The gist of the present invention is to convert metal carbonates into CO 2
In a calcined flux that contains 3.5 to 12% in terms of amount and has a basicity B of 1.50 to 3.00 expressed by the following formula (1), the amount of CO 2 that is C 0.05 to 0.50% and metal carbonate content. The ratio of the amount of C to the converted value (C%/CO 2 %) is 0.010 to 0.050, one type or two of Ca or Mg
Contains a total of 0.5 to 5.0% of seeds and 2.0% or less of Si,
Mn2.0% or less, Al1.0% or less, Ti1.5% or less, Zr1.0
% or less in a total amount of 3.0% or less. Formula (1); Basicity B = CaO% + MgO% + CaF 2 %/SiO 2
%+0.5Al 2 O 3 % (wt%) The present inventors prototyped firing type fluxes having various component systems and varying the types and amounts of deoxidizing elements added and conducted detailed studies. As a result, the metal carbonate content was limited to prevent cold cracking and to improve welding workability, and the basicity of the weld metal was limited in order to maintain a low oxygen level in the weld metal and to improve welding workability. In mold flux, C as a deoxidizing agent is limited to an amount commensurate with the amount of CO 2 gas generated due to the metal carbonate content, and even when added in large amounts, like Si, it has an adverse effect on welding workability and the performance of the weld metal. Ca or
It was discovered that the amount of oxygen in the weld metal could be significantly reduced by adding Mg and C at the same time.Furthermore, by limiting the amounts of Si, Mn, Al, Ti, and Zr added, Si This solution solves the above-mentioned problems when using this type of highly basic sintered flux containing mainly . (Actions of the Invention) The present invention will be described in detail below along with its effects. Metal carbonate: In order to reduce the amount of diffusible hydrogen in the weld metal and prevent the occurrence of cold cracking ,
Metal carbonates such as MgCO 3 and BaCO 3 must be contained in an amount of 3.5% or more in terms of CO 2 amount (same as the amount of CO 2 gas generated). In addition, in this case
The amount of diffusible hydrogen determined by WES1003 (gas chromatography method) is less than 4.5 cc per 100 g of weld metal even after being left in the atmosphere for about 4 hours, compared to when a highly basic melting type flux is used. Dehydrogenation treatment after welding can be greatly simplified and can be omitted in cases such as weld metal of 50HT steel. However, if the metal carbonate content exceeds 12% in terms of CO 2 amount, the amount of CO 2 gas generated will be excessive, resulting in poor welding workability such as arc instability, slag blow-up, and poor bead shape. Basicity B: Basicity B expressed by the following formula (1) is 1.50 ~
Must be 3.00. If the basicity B is less than 1.50, the oxygen content level of the weld metal becomes high, making it impossible to obtain a weld metal with high toughness. In addition, basicity B is
If it exceeds 3.00, welding workability will be poor, such as arc instability and poor bead shape. Formula (1); Basicity B = CaO% + MgO% + CaF 2 %/SiO 2
% + 0.5Al 2 O 3 % (weight %) In equation (1), CaO and MgO are replaced by CaCO 3 and MgO contained as metal carbonates.
Converted value of each oxide amount of MgCO 3 (CaCO 3 % x 0.56,
The amount includes the amount equivalent to MgCO 3 ×0.48).
In addition, in the flux of the present invention, main components other than metal carbonates are mainly CaO, MgO, CaF 2 ,
Contains SiO 2 , Al 2 O 3 but also TiO 2 (6% or less),
MnO (5% or less), BaO (15% or less), ZrO2 (10%
(below), metal oxides such as Na 2 O + K 2 O + Li 2 O 3 (total 6% or less), and MgF 2 , BaF 2 , other than CaF 2 ,
Metal fluorides such as NaF and Na 3 AlF 6 may be contained. A calcined flux containing 3.5 to 12% of such metal carbonates and having a basicity B of 1.50 to 3.00 is added with the following deoxidizing elements in the form of metal powder or alloy powder as a deoxidizing agent. C: C requires an amount commensurate with the amount of CO 2 gas generated based on the metal carbonate content, and in the flux of the present invention containing 3.5% to 12% of metal carbonate in terms of CO 2 amount, generation of pockmarks and welding. In order to suppress the increase in the amount of oxygen in the metal, the ratio of the amount of C to the CO 2 amount equivalent value of the metal carbonate content (C%/CO 2 %) is 0.010 to 0.050 in the range of 0.05% to 0.50%. must be added accordingly. Furthermore, the addition of C and the limitation of the amount added depending on the amount of CO 2 gas generated have the effect of effectively replenishing C into the weld metal and improving toughness. When using a calcined flux containing metal carbonates, the CO2 gas generated is
By the reaction of CO 2 → CO + O, it acts as an oxidizing gas, causing pockmarks and increasing the amount of oxygen. In addition, by reacting with C in the molten metal, the amount of C in the weld metal is high. This phenomenon shows a phenomenon in which the hardness decreases compared to the case where the hardenability is insufficient, and the decrease in toughness and strength due to insufficient hardenability becomes a problem. This tendency becomes more noticeable as the amount of CO 2 gas generated increases, but by adding the limited amount of C mentioned above, it is possible to prevent a decrease in the amount of C in the weld metal, maintain hardenability, and adjust the strength. It becomes possible. However, if C is less than 0.05% or C%/CO 2 % is less than 0.010, the effect of C addition is not obvious and pockmarks occur, the oxygen content of the weld metal increases, and the C content decreases. Toughness decreases. On the other hand, if the amount of C added exceeds 0.50% or the C%/CO 2 % ratio exceeds 0.050, hot cracking is likely to occur, and the increase in the amount of C in the weld metal increases, resulting in an increase in strength. Toughness decreases. In addition to C powder, C alloys such as Si-C, Fe-Mn,
It may be C, carbide, etc. contained in Fe-Si, but is not particularly limited, but it is added as a deoxidizing agent and is contained in trace amounts in various raw materials blended as a slag forming agent. It does not contain C. Ca and Mg; one or two of Ca or Mg
Must be added in the range of 0.5-5.0% of total seeds. Ca and Mg suppress the occurrence of pockmarks and reduce the amount of oxygen in the weld metal. Moreover, even when these elements are added in large quantities, Si, Mn, Al,
Significant slag seizure does not occur when deoxidizing elements such as Ti are added, and the yield of Ca and Mg in the weld metal is extremely small or almost non-existent, resulting in increased strength of the weld metal. There will be no adverse effects such as a decrease in toughness, or temper embrittlement or SR embrittlement due to post-weld heat treatment. Furthermore, the flux of the present invention simultaneously adds the above-mentioned C and Ca or Mg (or both Ca and Mg) as essential deoxidizing elements. This makes it possible to easily reduce the amount to the same level as, or even less than, the same level. The effect of significantly reducing the amount of oxygen in the weld metal due to the simultaneous addition of C and Ca or Mg prevents excessive oxidation of the droplet surface during the transition stage of the droplet from the tip of the wire in the arc atmosphere to falling into the molten pool. This is also thought to be due to the synergistic effect of promoting sufficient deoxidation reaction in the deoxidation reaction stage of the molten pool. In other words, when a fired flux containing a large amount of metal carbonate is used, the droplets melted and separated from the wire tip are oxidized by CO 2 gas generated by the decomposition reaction of the metal carbonate while moving through the arc atmosphere. This excessively oxidizes the surface of the weld metal, enriching the amount of oxygen in the molten metal and increasing the amount of oxygen in the weld metal. On the other hand, C first dissolves in the weld metal,
A deoxidizing reaction takes place in the molten pool, and the reducing gas CO gas generated at this time lowers the oxygen partial pressure in the arc atmosphere and suppresses oxidation of the droplet surface. In addition, Ca and Mg have a low gaseous temperature and a high vapor thickness at their melting point, which lowers the oxygen partial pressure in the arc atmosphere and, like C, works to suppress oxidation on the droplet surface. . Next, in the deoxidation reaction stage of the molten pool, C can perform a sufficient deoxidation reaction even in the high temperature range during the process of solidification of the molten metal, and Ca and Mg added at the same time have an affinity for oxygen. It is an extremely large element and can carry out a powerful deoxidation reaction even in the low temperature range just before solidification of molten metal. Furthermore, the violent boiling stirring caused by the reaction at this time may be caused by a small amount added as a chemical component or deoxidizer in the wire or steel plate.
It promotes the deoxidation reaction of Si, Mn, Al, Ti, etc. and the floating of the generated oxides. By adding C and Ca and/or Mg simultaneously in this way, oxidation of the droplet surface in the arc atmosphere is suppressed, and the deoxidation reaction in the molten pool is promoted, making it easier to reduce the amount of oxygen in the weld metal. This made it possible to significantly reduce the Note that if the amount of Ca or Mg added is less than 0.5% in total of one or both of Ca or Mg, it will not work effectively to prevent the occurrence of pockmarks and reduce the amount of oxygen in the weld metal. On the other hand, Ca
Alternatively, if the total amount of one or two types of Mg exceeds 5.0%, welding workability will be poor, such as arc instability and bead disturbance. Furthermore, when the flux of the present invention is added with deoxidizing elements other than C and Ca or Mg, Si2.0%
Below, the total of one or more of Mn 2.0% or less, Al 1.0% or less, Ti 1.5% or less, and Zr 1.0% or less must be 3.0% or less. These elements suppress the occurrence of pockmarks and increase in the amount of oxygen in the weld metal, but
If added in large amounts exceeding the above limited range, slag seizure will occur and Si, Mn, and
As the amount of Al and Ti increases, toughness decreases due to increased strength, and tempering embrittlement and SR occur due to heat treatment after welding.
The embrittlement becomes significant, and the object of the present invention cannot be achieved. It should be noted that addition of a large amount of Zr is not preferable since it has an adverse effect on welding workability. Si: Depending on the amount of Si in the wire, it may be added within a range of 2.0% or less, but if it is added in excess of 2.0%,
Slag seizure occurs and the amount of Si in the weld metal increases, reducing toughness. Mn, Al, Ti: Each may be added within the above limited range, but if added in excess, these elements will cause slag seizure and reduce toughness, just like Si, so the amount added should be kept as small as possible. is preferred. Incidentally, addition of a small amount of Ti acts as a deoxidizing agent and also works effectively to improve toughness as an alloying element for Ti or Ti-B in the weld metal of Al-killed low-temperature steel. Zr: Adding 1.0% or less is effective in reducing the amount of oxygen in the weld metal, but adding more than 1.0% causes problems such as roughness on the bead surface and slag seizure. As described above, the present invention uses Si as a deoxidizing agent to be added to a highly basic calcined flux containing a large amount of metal carbonate, which is commonly used in conventional calcined fluxes of this type. C and Ca and/or
Alternatively, by adding a new deoxidizer system that simultaneously adds Mg, welding workability is good, and the amount of oxygen can be reduced to a high base while keeping the amount of Si, Mn, Al, and Ti in the weld metal low. This significantly reduces the flux to the same or lower level than when using a molten flux, making it possible to obtain a weld metal with extremely high toughness that has never been seen before. (Example) The following is a concrete example. Example 1 The flux of the present invention (B1,
B4, B7, B9) and comparative flux (B10).
Redry at 300℃ x 1hr, then immediately after drying and in the atmosphere (temperature 32℃~33℃, humidity 80~82%)
After leaving for 4 hours, WES1003 (gas chromatography method)
The amount of diffusible hydrogen in the weld metal was measured according to . Table 4 shows the results. When the flux of the present invention was used in Test Nos. 1 to 4, the amount of diffusible hydrogen per 100 g of weld metal showed a low value of 4.2 cc or less even after being left in the atmosphere for 4 hours, whereas in No. 5, the flux showed a low value of 4.2 cc or less per 100 g of weld metal. Since the metal carbonate content of B10 was low and the CO 2 equivalent value was less than 3.5%, it showed a significantly higher value than when the above-mentioned flux of the present invention was used. Example 2 Plate thickness t 1 = 25 mm with chemical components shown in Table 2
A387Gr.22 steel in the shape shown in Figure 1 a, α = 20°, t R
Wire W1 (wire diameter: 4.0 mm) with the chemical composition shown in Table 3 was prepared with a bevel with a backing metal of =16 mm, and the flux of the present invention (B3~B5, B7~
B9) and comparative fluxes (B11 to B21), a multilayer welding test was conducted by the layered method shown in FIG. 1b. Welding conditions are AC power supply 550Amp -26 ~
27Volt-30cm/min, preheating temperature 200℃, and interpass temperature 200℃. Note that as a dehydrogenation treatment after welding, a heat treatment (300° C. or less) was performed for about 3 minutes using a preheating gas burner. In addition to observing welding workability during welding, holding at 690℃ x 10 hours (furnace cooling)
After SR treatment and embrittlement treatment (GEStep
Figure 1b shows the weld metal after cooling treatment.
JIS No. 4 2 mm V-notch impact test specimen A and JISA No. 1 tensile test specimen C, in which a notch B was placed in the center of the weld metal with the plate thickness direction t 2 = 10 mm as the center, as shown in , and analysis samples taken from the same tensile test specimens. Each was subjected to a test. These results are shown in Table 5. Test Nos. 1 to 6 were conducted using the fluxes of the present invention (B3 to B5,
B7 to B9) showed good welding workability and high impact values both after SR and after embrittlement treatment. In addition, the amount of Si in the weld metal at this time is 0.18% or less, or the amount of oxygen is
It was below 260ppm. No. 7 to No. 17 are cases where comparison flux was used. No.7 is flux
Arc instability due to excessive metal carbonate content in B11, poor bead shape, No. 8 flux
Because the basicity of B12 is too low, the amount of oxygen in the weld metal increases and the impact value decreases significantly, and No. 9 is a flux.
Arc instability and poor bead shape due to too high basicity of B13; No. 10 has frequent pockmarks due to the small amount of deoxidizing agent added to flux B14; No. 11
Because the amount of Si added to flux B15 was too large, significant slag seizure occurred and the impact value decreased.
No. 12 suppresses the amount of Si added in flux B16, allowing for Mn, Al,
Although the amount of Ti added was increased, slag seizure occurred as well.For No. 13, the amount of C added in flux B17 was small, so the amount of C in the weld metal decreased and the amount of oxygen increased, resulting in a decrease in impact value. In No. 14, high-temperature cracking occurred in the crater area due to the addition of too much C in flux B18, and in No. 15, spot marks occurred due to the addition of too little Mg in flux B19, and the amount of oxygen in the weld metal increased. In No. 16, the total amount of Ca and Mg added in flux B20 was too high, resulting in unstable arc and poor appearance due to bead disturbance. In No. 17, the addition amount of Ca and Mg in flux B21 was too high, resulting in poor appearance.
Slag seizure occurs and the impact value decreases because the total amount of Si, Al, Ti, and Zr added is too large. Example 3 SM- with chemical components shown in Table 2 and plate thickness t 1 = 20 mm
50B steel in the shape shown in Figure 2 a, α = 20°, t R = 16mm
The wire W2 (wire diameter 4.0 mm) with the chemical composition shown in Table 3 was treated with the flux of the present invention (B1, B2, B5, B6,
B7) and comparative fluxes (B12, B14, B15,
B17, B18, B19, B21) in combination with Figure 2b
Multilayer welding tests were conducted using the layered method shown in Figure 1. Welding conditions are AC power supply 650Amp-28Volt-30cm/
min, the interpass temperature is 150℃ without preheating. In addition to observing welding workability during welding, weld metal as welded (AW) and after SR treatment at 600°C x 6 hours (furnace cooling) was examined in the plate thickness direction t 2 = 10 mm as shown in Figure 2b. A JIS No. 4 2 mm V-notch impact test piece A, in which a notch B was placed in the center of the weld metal with a notch B in the center, and a NK 10 mm round bar tensile test piece C, and analytical samples taken from the same tensile test pieces were used for testing.
These results are shown in Table 6. Test Nos. 1 to 5 were conducted using the fluxes of the present invention (B1, B2,
B5, B6, B7), all showed good welding workability, low Si content and low oxygen content in the weld metal, and high impact values after AW and SR. On the other hand, in No. 6, the basicity of flux B12 is too low, so the amount of oxygen in the weld metal increases and the impact value decreases, and in No. 7, the basicity of flux B12 is too low.
Pockmarks occur due to the small amount of deoxidizing agent added in No. 8, and the impact value decreases due to an increase in the amount of oxygen in the weld metal. In No. 8, slag seizure occurs due to the addition of too much Si in flux B15. In addition, although the amount of oxygen in the weld metal decreased, the amount of Si increased, resulting in a decrease in impact value and significant SR embrittlement due to the increase in strength. The increase in the amount of oxygen and the decrease in the amount of C in the metal lead to insufficient hardenability and a decrease in the impact value.For No. 10, the strength increased due to the addition of too much C in flux B18, resulting in a decrease in the impact value. Flux B19 Mg
No. 12 has flux B21 Si, Al, Ti, and
Slag seizure occurs because the total amount of Zr added is too large, and the impact value decreases and significant SR embrittlement occurs due to the increased strength of the weld metal.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 (発明の効果) 本発明は、耐熱鋼および低温用鋼をはじ低温高
靱性が要求される各種低合金鋼の溶接構造物をサ
ブマージアーク溶接によつて製造する場合、溶接
金属の拡散性水素量が低く低温割れが発生しにく
いという焼成型フラツクスの特性を失なうことな
く、溶接作業性が良好で、従来にない高靱性の溶
接金属を得ることを可能にしたサブマージアーク
溶接用焼成型フラツクスであり工業的実用性は極
めて高いものである。
[Table] (Effects of the Invention) The present invention provides a method for dispersion of weld metal when manufacturing welded structures of heat-resistant steel and low-temperature steel as well as various low-alloy steels that require high low-temperature toughness by submerged arc welding. For submerged arc welding, it has good welding workability and makes it possible to obtain a weld metal with unprecedented high toughness without losing the characteristics of the fired flux, which has a low hydrogen content and is resistant to cold cracking. It is a sintered flux and has extremely high industrial practicality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ実施例2、実施例3
におけるaは開先形状、bは累層法および衝撃試
験片と引張試験片の採取位置を示す説明図であ
る。
Figures 1 and 2 are Example 2 and Example 3, respectively.
In the figure, a shows the groove shape, and b shows the stacked layer method and the sampling positions of the impact test piece and the tensile test piece.

Claims (1)

【特許請求の範囲】 1 重量%で、金属炭酸塩をCO2量換算値で3.5
〜12%含有し、下記(1)式で表わされる塩基度Bが
1.50〜3.00である焼成型フラツクスにおいて、
C0.05〜0.50%でかつ金属炭酸塩含有量のCO2
換算値に対するC量の比(C%/CO2%)が0.010〜 0.050、CaもしくはMgの1種または2種の合計
0.5〜5.0%を含有し、かつSi2.0%以下、Mn2.0%
以下、Al1.0%以下、Ti1.5%以下、Zr1.0以下の
1種以上の合計3.0%以下含有することを特徴と
するサブマージアーク溶接用焼成型フラツクス。 (1)式;塩基度B=CaO%+MgO%+CaF2%/SiO2
+0.5Al2O3%(重量%)
[Claims] At 1% by weight, the amount of metal carbonate is 3.5 in terms of CO 2 amount.
~12%, and the basicity B expressed by the following formula (1) is
In the firing type flux which is 1.50 to 3.00,
C0.05 to 0.50%, and the ratio of C amount to the CO 2 amount conversion value of metal carbonate content (C%/CO 2 %) is 0.010 to 0.050, the sum of one or two of Ca or Mg.
Contains 0.5 to 5.0%, and Si2.0% or less, Mn2.0%
The following is a sintered flux for submerged arc welding characterized by containing at least 3.0% in total of one or more of Al 1.0% or less, Ti 1.5% or less, and Zr 1.0 or less. Formula (1); Basicity B = CaO% + MgO% + CaF 2 %/SiO 2
+0.5Al 2 O 3 % (weight%)
JP19704484A 1984-09-20 1984-09-20 Baked flux for sumberged arc welding Granted JPS6174797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19704484A JPS6174797A (en) 1984-09-20 1984-09-20 Baked flux for sumberged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19704484A JPS6174797A (en) 1984-09-20 1984-09-20 Baked flux for sumberged arc welding

Publications (2)

Publication Number Publication Date
JPS6174797A JPS6174797A (en) 1986-04-17
JPH0457438B2 true JPH0457438B2 (en) 1992-09-11

Family

ID=16367781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19704484A Granted JPS6174797A (en) 1984-09-20 1984-09-20 Baked flux for sumberged arc welding

Country Status (1)

Country Link
JP (1) JPS6174797A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831220B2 (en) * 1985-08-19 1996-03-27 セイコーエプソン株式会社 Optical recording medium
US7727339B2 (en) * 2005-06-06 2010-06-01 Lincoln Global, Inc. Submerged arc flux
FR2939340B1 (en) * 2008-12-09 2010-12-31 Air Liquide FLOW AND WIRE FOR SUBMERGED ARC WELDING OF CRMOV STEELS.
JP6054286B2 (en) * 2013-12-20 2016-12-27 日鐵住金溶接工業株式会社 Submerged arc welding method for 780 MPa class high strength steel

Also Published As

Publication number Publication date
JPS6174797A (en) 1986-04-17

Similar Documents

Publication Publication Date Title
US4571480A (en) Flux cored wire electrodes for self-shielded arc welding
US20040020912A1 (en) Flux-cored wire for gas-shielded arc welding
US4764224A (en) Baked flux for submerged arc welding
GB2068813A (en) Welding electrode
JP2018192518A (en) Flux-cored wire for gas shield arc welding, and manufacturing method of weld joint
KR100502571B1 (en) Flux cored wire for co2 gas shielded arc welding
JPS62252695A (en) Submerged arc welding method for low temperature steel
JPH0457438B2 (en)
EP0067494B1 (en) Welding electrode
WO2021090953A1 (en) Fluxed core wire and method for manufacturing weld joint
US4719330A (en) Welding electrode
JPS632592A (en) Flux cored wire for low alloy heat resistant steel welding
JPS6336879B2 (en)
JPH07171695A (en) Method for submerged arc welding of 960mpa high tensile steel
JPH0378197B2 (en)
JP3550770B2 (en) Flux for sub-mark welding
JPH03294096A (en) Combined wire for electrogas arc welding
JPS6352794A (en) Baked flux for submerged arc welding
JPS59191590A (en) Submerged arc welding method of cr-mo alloy steel
JPH0542390A (en) Low hydrogen type coated electrode for welding 9cr steel
KR100615686B1 (en) A metal cored wire with superior low temperature toughness
SU1759229A3 (en) Flux for welding carbon and low-alloy steels
JPS62220300A (en) Low hydrogen type coated arc electrode
JPH04351290A (en) Coated electrode of 'hastelloy(r)' system for steel for cryogenic service having excellent ductility and fracture resistance characteristic
SU1726183A1 (en) Ceramic flux for welding