JPH0831220B2 - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPH0831220B2
JPH0831220B2 JP60181351A JP18135185A JPH0831220B2 JP H0831220 B2 JPH0831220 B2 JP H0831220B2 JP 60181351 A JP60181351 A JP 60181351A JP 18135185 A JP18135185 A JP 18135185A JP H0831220 B2 JPH0831220 B2 JP H0831220B2
Authority
JP
Japan
Prior art keywords
film
optical recording
dielectric
magneto
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60181351A
Other languages
Japanese (ja)
Other versions
JPS6242350A (en
Inventor
明 青山
茂 木暮
守 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP60181351A priority Critical patent/JPH0831220B2/en
Priority to US06/819,659 priority patent/US4801499A/en
Publication of JPS6242350A publication Critical patent/JPS6242350A/en
Priority to US07/855,442 priority patent/US6077585A/en
Publication of JPH0831220B2 publication Critical patent/JPH0831220B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光記録媒体に関する。Description: TECHNICAL FIELD The present invention relates to an optical recording medium.

〔従来の技術〕[Conventional technology]

従来の光記録媒体は、磁気記録層に集光した集光した
レーザ光を照射することにより磁化反転をおこさせ情報
を記録する方法、あるいは記録層にレーザ光を照射し、
記録層の結晶構造を変化させる(結晶から非晶質又はそ
の逆、あるいは六方晶から立方晶又はその逆等)つまり
相変態により情報を記録する方法、あるいは記録層にレ
ーザ光を照射することにより穴を開ける。またはバブル
を形成するなどの記録部分の形状を変化させ情報を記録
する方法がある。
A conventional optical recording medium is a method of recording information by causing magnetization reversal by irradiating a focused laser beam focused on a magnetic recording layer, or irradiating a laser beam on a recording layer,
By changing the crystal structure of the recording layer (crystal to amorphous or vice versa, or hexagonal to cubic or vice versa), that is, by recording information by phase transformation, or by irradiating the recording layer with laser light. Make a hole. Alternatively, there is a method of recording information by changing the shape of a recording portion such as forming a bubble.

特に従来の光磁気記録媒体は第3図に示すように、案
内溝がついたプラスチツク基板(PMMA、PC、エポキシ樹
脂等)31上に、TbFe,GdTbFe,GdTbFeCo,TbFeCo等の光磁
気記録層32が成膜されており、さらにその上に保護膜と
してSiO2等の誘電体膜33が成膜されている。また、プラ
スチツク基板以外にガラスを用いたものもあり、第4図
に示すような構造になつている。41はガラス基板で、42
はガラス基板上に案内溝を形成するために設けられた紫
外線硬化樹脂層である。43,44は第3図と同様の光磁気
記録層,誘電体膜である。しかし、プラスチツク基板、
紫外線硬化樹脂層は吸湿性およびガス透過度が高く、膜
側にSiO2等の保護膜はあつても光磁気記録層は非常に酸
化しやすいため基板側から酸化され、磁気特性の劣化,
膜バゲ等問題が大きかつた。そこで基板側にも誘電体膜
を形成し、光磁気記録層をサンドイツチした構造が第5
図で、51は第3図と同様のプラスチツク基板2は第4図
と同様の紫外線硬化樹脂付きガラス基板であり、その基
板上に52としてSiO2等の誘電体膜が成膜されており、5
3,54は第3図、第4図と同様の光磁気記録層、SiO2等誘
電体層である。
Particularly, as shown in FIG. 3, the conventional magneto-optical recording medium has a magneto-optical recording layer 32 of TbFe, GdTbFe, GdTbFeCo, TbFeCo, etc. on a plastic substrate (PMMA, PC, epoxy resin, etc.) 31 having guide grooves. Is formed, and a dielectric film 33 such as SiO 2 is further formed thereon as a protective film. In addition to the plastic substrate, there is one using glass, which has a structure as shown in FIG. 41 is a glass substrate, 42
Is an ultraviolet curable resin layer provided to form a guide groove on the glass substrate. 43 and 44 are magneto-optical recording layers and dielectric films similar to those in FIG. However, the plastic board,
The UV curable resin layer has high hygroscopicity and gas permeability, and even if there is a protective film such as SiO 2 on the film side, the magneto-optical recording layer is very easy to oxidize, so it is oxidized from the substrate side, resulting in deterioration of magnetic characteristics.
Problems such as film baldness were significant. Therefore, a structure in which a dielectric film is formed on the substrate side and the magneto-optical recording layer is sandwiched is the fifth.
In the figure, 51 is the same plastic substrate 2 as in FIG. 3 is the same glass substrate with UV curable resin as in FIG. 4, and a dielectric film such as SiO 2 is deposited as 52 on the substrate. Five
3, 54 are magneto-optical recording layers and dielectric layers such as SiO 2 similar to those in FIGS. 3 and 4.

さらには第5図の構造に反射膜を設けた構造も見られ
る。その構造を示したのが第6図であるが、この反射膜
は耐候性向上も目的よりも、むしろ磁気光学効果のエン
ハンス効果を計つたものである。61が反射膜としてのア
ルミニウム、銅などである。しかしこのサンドイツチ構
造により、第3図,第4図に示す構造よりは耐候性は向
上したが、実用的にはまだまだ不十分である。これはSi
O2等の誘電体膜自身が酸化物であるため、遊離酸素が光
磁気記録層を酸化してしまうためである。そこで、遊離
酸素の発光しない非酸化系誘電体を用いれば良いが、プ
ラスチツク基板(PMMA、PC、エポキシ樹脂等)又は紫外
線硬化樹脂付きガラス基板にはSiO2,TiO2,Al2O3等酸
化物系誘電体膜しか付着せず、窒化シリコン,窒化アル
ミニウム,硫化亜鉛等の非酸化物系誘電体膜は、成膜中
にクラツクが発生するか、もしくは耐候性試験中にクラ
ツクが発生するかのどちらかでいずれにしても実用化で
きなかつた。そのため実用化に向けて耐候性の向上を計
るため光磁気記録層そのものに耐候性をもたせる(日本
応用磁気学会誌、Vo18、No.2、1984、P105、第8回日本
応用磁気学会学術講演概要集P125等)、あるいは保護膜
をAl,Ti等の金属にして耐候性をもたせる(第8回日本
応用磁気学会学術講演概要集P148)などがある。これら
の改良も基板側からの酸化を防止することは不可能であ
り、それ故基板そのものをガラスだけにすることも試み
られており、案内溝自身もガラスで作られている(第7
回日本応用挾持学会学術講演概要集P155、第8回日本応
用磁気学会学術講演概要集P239)。しかし、これは耐候
性も十分実用に耐えうるものの、ガラスに案内溝を作製
することが量産的でなく、コストが非常に高くつき実用
化できる手法でない。
Furthermore, a structure in which a reflective film is provided in the structure shown in FIG. 5 can be seen. The structure is shown in FIG. 6, and this reflective film is not for improving the weather resistance but for enhancing the magneto-optical effect. Reference numeral 61 is aluminum, copper or the like as the reflection film. However, although this weatherproof structure has improved weather resistance as compared with the structure shown in FIGS. 3 and 4, it is still insufficient in practical use. This is Si
This is because the dielectric film such as O 2 itself is an oxide and free oxygen oxidizes the magneto-optical recording layer. Therefore, a non-oxidizing dielectric that does not emit free oxygen may be used. However, for plastic substrates (PMMA, PC, epoxy resin, etc.) or glass substrates with UV curable resin, SiO 2 , TiO 2 , Al 2 O 3, etc. If only non-oxide dielectric film such as silicon nitride, aluminum nitride, zinc sulfide, etc. adheres only to the physical dielectric film, does cracking occur during film formation or cracking during weathering test? Either way, it could not be put to practical use. Therefore, in order to improve the weather resistance for practical use, the magneto-optical recording layer itself has weather resistance (Journal of the Japan Society for Applied Magnetics, Vo18, No.2, 1984, P105, 8th Annual Meeting of the Japan Society for Applied Magnetics). (P. pp. 125, etc.), or using a metal such as Al, Ti, etc. for the protective film to provide weather resistance (8th Annual Meeting of the Japan Society for Applied Magnetics, P. 148). Even with these improvements, it is impossible to prevent oxidation from the side of the substrate, and therefore it has been attempted to use only glass for the substrate itself, and the guide groove itself is also made of glass (No. 7).
Proceedings of the Annual Meeting of the Japan Society for Applied Magnetics P155, P8) However, although this has sufficient weather resistance and can be practically used, it is not mass-produced to form the guide groove in the glass, and the cost is very high, and it is not a method that can be put to practical use.

〔発明が解決しようとする問題点及び目的〕[Problems and objects to be solved by the invention]

そこで本発明はこのような上述してきた問題点を解決
するもので、その目的とするところは、プラスチツク基
板(PMMA、PC、エポキシ樹脂等)又は紫外線硬化樹脂付
きガラス基板に非酸化物系誘電体膜をクラツクの発生な
く付着せしめ、安価で耐候性に優れた光記録媒体を提供
することにある。
Therefore, the present invention is to solve the above-mentioned problems, and an object thereof is to provide a non-oxide dielectric on a plastic substrate (PMMA, PC, epoxy resin, etc.) or a glass substrate with an ultraviolet curable resin. It is an object of the present invention to provide an optical recording medium which is inexpensive and has excellent weather resistance by adhering the film without cracking.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の光記録媒体は、円盤状基板に、少なくとも誘
電体膜と光磁気記録膜と反射膜とを積層してなる光記録
媒体であって、前記誘電体膜は、窒化アルミニウムと、
窒化チタン、窒化ジルコニウム、窒化ハフニウムおよび
硫化亜鉛よりなる群から選択された少なくとも1つとの
複合膜であることを特徴とする。
The optical recording medium of the present invention is an optical recording medium in which at least a dielectric film, a magneto-optical recording film, and a reflective film are laminated on a disk-shaped substrate, and the dielectric film is aluminum nitride,
It is characterized in that it is a composite film with at least one selected from the group consisting of titanium nitride, zirconium nitride, hafnium nitride and zinc sulfide.

〔作用〕[Action]

従来、透明デイスク基板(特にプラスチツク基板)上
に非酸化物誘電体膜を成膜すれば、成膜中にクラツクが
発生するか、もしくは耐候性試験中にクラツクが発生し
てしまうために実用化できなかつた。しかし、膜厚が薄
ければ成膜中にはクラツクは発生せず、しかもクラツク
が発生した場合のクラツクの発生方向が、誘電体膜の成
分により、周方向の場合と径方向の場合があることが判
明した。
Conventionally, if a non-oxide dielectric film is formed on a transparent disk substrate (particularly a plastic substrate), cracks will occur during the film formation, or cracks will occur during the weather resistance test. I couldn't do it. However, if the film thickness is thin, cracks do not occur during film formation, and when cracks occur, the direction of cracks may be circumferential or radial depending on the components of the dielectric film. It has been found.

そこで、本発明の上記構成によれば、発生する方向
が、周方向になる場合の誘電体の成分と径方向になる場
合の誘電体の成分を少なくとも2成分以上混合した複合
誘電体膜を設けることにより、クラツクの発生しない耐
候性に優れた光記録媒体ができる。
Therefore, according to the above configuration of the present invention, a composite dielectric film is provided in which at least two components of a dielectric component in the case where the direction is the circumferential direction and at least two components in the case where the direction is the radial direction are mixed are provided. As a result, an optical recording medium having excellent weather resistance without cracking can be obtained.

〔提案例1〕 第1図は、本発明の誘電体膜を3層に積層した光磁気
記録媒体の構造図であつて、1は溝付きPMMA基板で溝ピ
ツチ1.6μm、溝幅0.8μm、溝深さ700Åのものであ
る。このPMMA基板の溝側に誘電体膜を形成したのが2・
3・4で、本発明によるものである。2は窒化アルミニ
ウム膜250Å、3は窒化シリコン膜500Å、4は窒化アル
ミニウム膜250Åである。さらにその上5として光磁気
記録層GdTbFe膜300Åを成膜し、6は非晶質シリコン膜1
50Åで光磁気記録層5を通つてきたレーザ光の偏光面を
エンハンスさせている。そして反射膜としてアルミニウ
ム膜7を300Å形成した。
[Proposed Example 1] FIG. 1 is a structural diagram of a magneto-optical recording medium in which the dielectric films of the present invention are laminated in three layers. 1 is a PMMA substrate with a groove, a groove pitch is 1.6 μm, a groove width is 0.8 μm, It has a groove depth of 700Å. The dielectric film formed on the groove side of this PMMA substrate is 2.
3 and 4 according to the present invention. 2 is an aluminum nitride film 250Å, 3 is a silicon nitride film 500Å, 4 is an aluminum nitride film 250Å. Further, a magneto-optical recording layer GdTbFe film 300Å is formed as 5 thereon, and 6 is an amorphous silicon film 1
The polarization plane of the laser light that has passed through the magneto-optical recording layer 5 is enhanced at 50 Å. Then, an aluminum film 7 having a thickness of 300 Å was formed as a reflection film.

この本発明による構造の光磁気記録媒体と従来の構造
つまり、第1図における2・3・4の誘電体がSiO21000
Åで置き換つたものや、さらには窒化シリコン1000Åで
置き換つたものを作成し、60℃90%RHの恒温槽中での加
速試験結果を第7図に示す。縦軸は反射率の平方根と力
−回転角の積で一般に性能指数と呼ばれ、媒体のC/Nに
ほぼ比例するものであり、高いほど良い。横軸は加速試
験を行なつた時間である。80は本発明の光磁気記録媒
体、81は誘電体に窒化シリコンのみを用いたもの、82は
誘電体に窒化アルミニウムのみを用いたもの、83は誘電
体にSiO2のみを用いたものである。この図から解る様に
本発明による光磁気記録媒体は、性能が全く劣化せず実
用に耐えうるものである。一方誘電体がSiO2はずぐに酸
化されてしまい、実用できない。そして誘電体に窒化物
を用いた81・82の媒体でも性能の劣化がかなりあり実用
には問題があり、さらに今までにも述べたように窒化物
はプラスチツク基板には付着しにくくクラツクが発生し
やすく、この耐候性の実験においても10時間ほど経過し
てからクラツクが発生し始め、性能指数はSiO2ほど悪く
ならないもののすぐクラツクが発生するため実用できな
い。一方、当然のことながら本発明の媒体80は1000時間
を超えてもクラツクの発生はない。
The magneto-optical recording medium having the structure according to the present invention and the conventional structure, that is, the dielectric of 2.3.4 in FIG. 1 is SiO 2 1000.
Fig. 7 shows the results of accelerated tests in a constant temperature bath at 60 ° C and 90% RH, prepared by replacing with Å and further by replacing with 1000Å of silicon nitride. The vertical axis is the product of the square root of the reflectance and the force-rotation angle and is generally called the figure of merit, which is almost proportional to the C / N of the medium, and the higher the better. The horizontal axis is the time when the acceleration test was performed. 80 is the magneto-optical recording medium of the present invention, 81 is a dielectric using only silicon nitride, 82 is a dielectric using only aluminum nitride, and 83 is a dielectric using only SiO 2. . As can be seen from this figure, the magneto-optical recording medium according to the present invention does not deteriorate in performance at all and can be used practically. Meanwhile dielectric is oxidized to SiO 2 Hazugu, impractical. And even in the 81/82 medium using nitride as the dielectric, there is considerable deterioration in performance and there is a problem in practical use.Furthermore, as mentioned above, nitride is difficult to adhere to the plastic substrate and cracks occur. In this weather resistance experiment, cracking starts to occur after about 10 hours, and the performance index is not so bad as that of SiO 2, but cracking occurs immediately, which is not practical. On the other hand, as a matter of course, the medium 80 of the present invention does not cause cracking even after 1000 hours.

ここで、81,82の媒体の窒化シリコン、窒化アルミニ
ウムを1000Å厚としたのは、本発明媒体80の誘電体層の
総厚と同じとする目的以外に、窒化シリコン,窒化アル
ミニウムともプラスチツク基板(PMMA、PC、エポキシ樹
脂等)及び紫外線硬化樹脂付きガラス基板には膜厚が20
00Åを超えると、その時点でクラツクが発生するためで
ある。
Here, the reason why the silicon nitride and aluminum nitride of the medium of 81 and 82 are set to 1000 Å thickness is the same as the total thickness of the dielectric layer of the medium 80 of the present invention, in addition to the silicon nitride and aluminum nitride plastic substrates ( The film thickness is 20 for glass substrates with PMMA, PC, epoxy resin, etc.) and UV curable resin.
This is because if it exceeds 00Å, a crack will occur at that point.

尚、本実験以外に81,82の媒体で窒化シリコン、窒化
アルミニウムの膜厚を1500Å,2000Åとしたものも60℃9
0%RHの恒温恒湿槽中の加速試験で第7図と同様すぐク
ラツクが発生し、実用できるものではなかつた。
Other than this experiment, 81,82 media with silicon nitride and aluminum nitride film thickness of 1500Å and 2000Å are also at 60 ° C.
In an accelerated test in a constant temperature and humidity chamber of 0% RH, a crack was generated immediately as in Fig. 7, which was not practical.

第8図(a),(b),(c)に、第7図で示した加
速試験後の媒体80′,81′,82′の様子を模式的に示す。
80′,81′,82′はそれぞれ80,81,82に対応する。80′は
本発明による誘電体に窒化アルミニウムと窒化シリコン
の積層膜を用いた媒体で、クラツクは全く発生していな
い(a)。81′は誘電体に窒化シリコンのみを用いた媒
体で、周方向にクラツクが発生している(b)。82′は
誘電体に窒化アルミニウムのみを用いた媒体で、径方向
にクラツクが発生している(c)。本実験の基板は、直
径12cmサイズのものであり、1/4にカツトしたものを用
いた。さらに耐候性試験(60℃90%RH)によりBit Erro
r Rateがどのように増加するのかを調べた効果が第9図
であり、80″,81″,82″,83″は80,81,82,83に対応する
構造で80″は本発明による第1図に示す構造の媒体で、
81″は誘電体に窒化シリコンを用いたもの、82″は誘電
体に窒化アルミニウムを用いたもの、83″は誘電体にSi
O2を用いたものである。縦軸はBit Error Rate、横軸は
耐候性試験経過時間である。この図から明らかなように
本発明による媒体80″には、BERの増加は見られない
が、他の構造による媒体ではBERの増加が激しく、特に8
3″に示す媒体の劣化が激しく、破線で示している所
は、測定不可能なぼどBERが増加したことを示してい
る。この加速試験結果による本発明媒体は、10年以上の
信頼性を保障できるものである。
8 (a), (b) and (c) schematically show the states of the media 80 ', 81' and 82 'after the acceleration test shown in FIG.
80 ', 81', 82 'correspond to 80, 81, 82, respectively. 80 'is a medium in which a laminated film of aluminum nitride and silicon nitride is used for the dielectric according to the present invention, and no crack is generated (a). Reference numeral 81 'is a medium in which only silicon nitride is used as a dielectric, and cracks are generated in the circumferential direction (b). Reference numeral 82 'is a medium in which only aluminum nitride is used for the dielectric, and cracks are generated in the radial direction (c). The substrate used in this experiment had a diameter of 12 cm and was cut to 1/4. In addition, a weather resistance test (60 ° C 90% RH) shows Bit Erro
The effect of investigating how the r Rate increases is shown in FIG. 9. 80 ″, 81 ″, 82 ″, 83 ″ is a structure corresponding to 80, 81, 82, 83, and 80 ″ is according to the present invention. In the medium having the structure shown in FIG. 1,
81 ″ is the one using silicon nitride as the dielectric, 82 ″ is the one using aluminum nitride as the dielectric, and 83 ″ is the one using Si as the dielectric.
It uses O 2 . The vertical axis represents the Bit Error Rate and the horizontal axis represents the weather resistance test elapsed time. As is clear from this figure, the BER does not increase in the medium 80 ″ according to the present invention, but the BER increases sharply in the medium having other structures.
The medium shown in 3 ″ is severely deteriorated, and the part indicated by the broken line shows that the BER which cannot be measured is increased. The medium of the present invention based on the results of this accelerated test has a reliability of 10 years or more. Can be guaranteed.

〔提案例2〕 次に、種々の誘電体膜をPMMA基板に1000Å成膜し、耐
候性試験をおこなつた結果のクラツクの発生方法を調べ
た。その結果が表1である。
[Proposed Example 2] Next, various dielectric films were formed on a PMMA substrate in an amount of 1000 liters, and a weathering test was performed. The results are shown in Table 1.

そこで径方向にクラツクの発生する誘電体と、周方向
にクラツクの発生する誘電体を、PMMA上に500Åずつ積
層し、60℃90%RH1000時間の加速試験でクラツクが発生
するかどうか調べた。その結果が表2である。
Therefore, a dielectric that causes cracks in the radial direction and a dielectric that causes cracks in the circumferential direction were laminated on PMMA by 500Å each, and it was investigated whether or not the cracks would occur in an acceleration test at 60 ° C, 90% RH, 1000 hours. The results are shown in Table 2.

以上の結果から、径方向にクラツクの発生する誘電体
と周方向にクラツクの発生する誘電体を積層することに
より、クラツクの発生しない誘電体が出来ることがわか
つた。そして、表2に示す積層誘電体膜を用いた光磁気
記録媒体は、性能指数、BERとも加速試験で劣化がなく1
0年以上の信頼性を保障できるものであつた。又、当然
のことながら3層,4層と多層化しても何ら問題なく、さ
らにこの実施例2では最初にクラツクの発生する方向が
径方向の誘電体膜を成膜しているが、これを周方向にク
ラツクの発生する誘電体膜にしても何らさしつかえな
い。又、本発明はPMMA基板以外に、PC基板、エポキシ樹
脂基板、紫外線硬化樹脂付きガラス基板でも有効であ
る。
From the above results, it was found that a dielectric without cracking can be formed by laminating a dielectric with cracking in the radial direction and a dielectric with cracking in the circumferential direction. The magneto-optical recording medium using the laminated dielectric film shown in Table 2 showed no deterioration in the performance index and BER in the accelerated test.
It was able to guarantee reliability for over 0 years. Further, as a matter of course, there is no problem even if the number of layers is three or four, and in the second embodiment, a dielectric film whose cracks are generated in the radial direction is formed first. There is no problem even if the dielectric film is cracked in the circumferential direction. In addition to the PMMA substrate, the present invention is also effective for PC substrates, epoxy resin substrates, and glass substrates with an ultraviolet curable resin.

〔実施例〕〔Example〕

次に示す第2図は、本発明における光磁気記録層と透
明基板の間に複合誘電体膜を設けた光磁気記録媒体の断
面図である。8は溝付きPC基板で溝ピツチ1.6μm、溝
幅0.8μm、溝深さ700Åのものである。このPC基板の溝
側に複合誘電体膜を1000Å形成したのが9で、窒化アル
ミニウムと硫化亜鉛の複合である。その上に10として光
磁気記録層GdTbFeCo膜300Åを成膜し、11は非晶質シリ
コン150Åで、12は反射膜としてアルミニウム膜300Åを
作成した。この媒体で60℃90%RHの加速試験をおこなつ
た結果、多層誘電体膜を用いた媒体と同様に1000時間経
過後もクラツクの発生もなく、性能指数、BERとも変化
がなかつた。
Next, FIG. 2 is a cross-sectional view of a magneto-optical recording medium in which a composite dielectric film is provided between the magneto-optical recording layer and the transparent substrate in the present invention. 8 is a PC board with a groove having a groove pitch of 1.6 μm, a groove width of 0.8 μm, and a groove depth of 700 Å. It is 9 that 1000 liters of composite dielectric film is formed on the groove side of this PC substrate, which is a composite of aluminum nitride and zinc sulfide. A magneto-optical recording layer GdTbFeCo film 300Å was formed thereon as 10, an amorphous silicon 150Å was formed as 11 and an aluminum film 300Å was formed as 12 as a reflective film. As a result of conducting an accelerated test at 60 ° C and 90% RH on this medium, no crack was generated even after 1000 hours, and neither the figure of merit nor the BER was changed, as with the medium using a multilayer dielectric film.

このことより複合誘電体膜を用いても媒体の信頼性を
10年保障できることがわかつた。さらに、その他の複合
誘電体膜をPC基板上に1000Å成膜し、加速試験1000時間
後のクラツク発生の有無を調べた。
Therefore, even if a composite dielectric film is used, the reliability of the medium will be improved.
I knew that I could guarantee for 10 years. Furthermore, 1000 liters of other composite dielectric films were formed on the PC substrate, and the presence or absence of cracks was investigated after 1000 hours of the accelerated test.

その結果が表3である。 The results are shown in Table 3.

の結果から、径方向にクラツクの発生する誘電体と周方
向にクラツクの発生する誘電体を複合化させることによ
り、クラツクの発生しない誘電体が出来ることがわかつ
た。これらの複合誘電体膜の作成は、同時スパツタリン
グ、もしくは共蒸着、もしくは複合誘電体をターゲツト
としたスパツタあるいは反応性スパツタのいずれでもさ
しつかえない。さらに、基板もPC基板以外に、PMMA基
板、エポキシ樹脂基板を用いてもよく、紫外線硬化樹脂
付きガラス基板を用いても何らさしつかえない。そし
て、表3に示す複合誘電体膜を用いた光磁気記録媒体
は、性能指数、BERとも加速試験で劣化がなく、10年以
上の信頼性を保障できるものであつた。
From the results, it was found that a dielectric without cracks can be formed by combining a dielectric with cracks in the radial direction and a dielectric with cracks in the circumferential direction. These composite dielectric films may be formed by simultaneous sputtering, co-evaporation, or sputtering using composite dielectrics as targets or reactive sputtering. Further, as the substrate, other than the PC substrate, a PMMA substrate or an epoxy resin substrate may be used, and a glass substrate with an ultraviolet curable resin may be used without any problem. The magneto-optical recording medium using the composite dielectric film shown in Table 3 has no deterioration in the performance index and the BER in the accelerated test, and can guarantee the reliability for 10 years or more.

尚、本発明による複合誘電体膜を用いた実施例は、光
磁気記録層にGdTbFeCoを用いたが、TbFe,TbFeCo,GdFe,G
dCo,TbCo,TbDyFeCo等の重希士類遷移金属型光磁気記録
層を用いても何ら本発明をそこなわせるものでなく、さ
らにSm,Nd等の軽希士類を添加してもさしつかえない。
又、本実施例では光磁気記録媒体を述べたが、記録層の
結晶構造を変化させ(結晶から非晶質、又はその逆、あ
るいは六方晶から立方晶又はその逆など)つまり相変態
をおこさせて反射率差を信号とする書き換え可能型光記
録媒体あるいは記録層に穴を開ける。バブルを形成す
る、相変態をおこさせるなどによる追記型光記録媒体に
も本発明は有効である。
In the example using the composite dielectric film according to the present invention, GdTbFeCo was used for the magneto-optical recording layer, but TbFe, TbFeCo, GdFe, G
Even if a heavy rare earth transition metal type magneto-optical recording layer such as dCo, TbCo or TbDyFeCo is used, the present invention is not damaged at all, and light rare earth metals such as Sm and Nd may be added. .
Although the magneto-optical recording medium is described in this embodiment, the crystal structure of the recording layer is changed (crystal to amorphous, or vice versa, or hexagonal to cubic, or vice versa), that is, phase transformation occurs. Then, a hole is formed in the rewritable optical recording medium or recording layer using the reflectance difference as a signal. The present invention is also effective for a write-once type optical recording medium by forming bubbles or causing phase transformation.

〔発明の効果〕〔The invention's effect〕

本発明の光記録媒体は、クラツクが発生しない誘電体
を形成することができ、信頼性の高い光記録媒体を提供
できるという効果を奏する。
INDUSTRIAL APPLICABILITY The optical recording medium of the present invention has an effect that it is possible to form a dielectric material which does not cause cracks and provide a highly reliable optical recording medium.

【図面の簡単な説明】[Brief description of drawings]

第1図は多層誘電体膜を用いた光磁気記録媒体の断面図
である。第2図は複合誘電体膜を用いた光磁気記録媒体
の断面図である。第3図は従来の光磁気記録媒体の断面
図である。第4図はガラス基板を用いた従来の光磁気記
録媒体の断面図である。第5図は光磁気記録層を誘電体
膜でサンドイツチした従来の光磁気記録媒体の断面図で
ある。第6図は反射膜を設けた従来の光磁気記録媒体の
断面図である。第7図は60℃90%RHの恒温恒湿槽中での
加速試験図である。第8図(a)は誘電体に窒化アルミ
ニウムと窒化シリコンの積層膜を用いた加速試験後の媒
体の模式図で、第8図(b)は誘電体に窒化シリコンを
用いた加速試験後の媒体の模式図、そして第8図(c)
は誘電体に窒化アルミニウムを用いた加速試験後の媒体
の模式図である。第9図は60℃90%RHの耐候性試験によ
るBERの経時変化図である。 1……溝付きPMMA基板 2……窒化アルミニウム膜250Å 3……窒化シリコン膜500Å 4……窒化アルミニウム膜250Å 5……光磁気記録層GaTbFe膜300Å 6……非晶質シリコン膜150Å 7……反射膜アルミニウム膜300Å 8……溝付きPC基板 9……窒化アルミニウムと硫化亜鉛の複合誘電体膜1000
Å 10……光磁気記録層GdTbFeCo膜300Å 11……非晶質シリコン150Å 12……反射膜アルミニウム膜300Å 31……案内溝付きプラスチツク基板(PMMA、PC、エポキ
シ樹脂等) 32……光磁気記録層 33……SiO2等誘電体膜 41……ガラス基板 42……紫外線硬化樹脂層 43……光磁気記録層 44……誘電体層 51……プラスチツク基板又は紫外線硬化樹脂付きガラス
基板 52……SiO2等誘電体膜 53……光磁気記録層 54……SiO2等誘電体層 61……反射膜アルミニウム、銅など 80……本発明の光磁気記録媒体 81……誘電体に窒化アルミニウムのみを用いたもの 82……誘電体に窒化アルミニウムのみを用いたもの 83……誘電体にSiO2のみを用いたもの 80′……80に対応 81′……81に対応 82′……82に対応 80″……80に対応 81″……81に対応 82″……82に対応 83″……83に対応
FIG. 1 is a sectional view of a magneto-optical recording medium using a multilayer dielectric film. FIG. 2 is a sectional view of a magneto-optical recording medium using a composite dielectric film. FIG. 3 is a sectional view of a conventional magneto-optical recording medium. FIG. 4 is a sectional view of a conventional magneto-optical recording medium using a glass substrate. FIG. 5 is a sectional view of a conventional magneto-optical recording medium in which the magneto-optical recording layer is sandwiched with a dielectric film. FIG. 6 is a sectional view of a conventional magneto-optical recording medium provided with a reflective film. FIG. 7 is an acceleration test diagram in a constant temperature and humidity chamber at 60 ° C. and 90% RH. FIG. 8 (a) is a schematic diagram of a medium after an acceleration test using a laminated film of aluminum nitride and silicon nitride as a dielectric, and FIG. 8 (b) is a diagram after the acceleration test using silicon nitride as a dielectric. Schematic diagram of medium, and FIG. 8 (c)
FIG. 3 is a schematic diagram of a medium after an acceleration test using aluminum nitride as a dielectric. FIG. 9 is a time-dependent change diagram of BER by a weather resistance test at 60 ° C. and 90% RH. 1 ... Grooved PMMA substrate 2 ... Aluminum nitride film 250Å 3 …… Silicon nitride film 500Å 4 …… Aluminum nitride film 250Å 5 …… Magneto-optical recording layer GaTbFe film 300Å 6 …… Amorphous silicon film 150Å 7 …… Reflective film Aluminum film 300Å 8 …… PC substrate with groove 9 …… Composite dielectric film of aluminum nitride and zinc sulfide 1000
Å 10 …… Magneto-optical recording layer GdTbFeCo film 300 Å 11 …… Amorphous silicon 150 Å 12 …… Reflective film Aluminum film 300 Å 31 …… Plastic substrate with guide groove (PMMA, PC, epoxy resin, etc.) 32 …… Magneto-optical recording Layer 33 …… Dielectric film such as SiO 2 41 …… Glass substrate 42 …… UV curable resin layer 43 …… Magneto-optical recording layer 44 …… Dielectric layer 51 …… Plastic substrate or glass substrate with UV curable resin 52 …… Dielectric film 53 such as SiO 2 ...... Magneto-optical recording layer 54 ...... Dielectric layer such as SiO 2 61 ...... Reflective film Aluminum, copper, etc. 80 ...... Magneto-optical recording medium of the present invention 81 ...... Only aluminum nitride as dielectric Using only aluminum nitride as the dielectric material 83 Using only SiO 2 as the dielectric material 80 Corresponding to 80 '... 81 Corresponding to 81' ... 81 82 '... 82 Compatible with 80 ″ …… 80 Compatible with 81 ″ …… 81 Compatible with 82 ″ …… 82 Compatible with 83 ″ …… 83

フロントページの続き (56)参考文献 特開 昭61−80640(JP,A) 特開 昭61−92459(JP,A) 特開 昭61−92456(JP,A) 特開 昭61−22458(JP,A)Continuation of front page (56) Reference JP 61-80640 (JP, A) JP 61-92459 (JP, A) JP 61-92456 (JP, A) JP 61-22458 (JP , A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】円盤状基板に、少なくとも誘電体膜と光磁
気記録膜と反射膜とを積層してなる光記録媒体であっ
て、 前記誘電体膜は、窒化アルミニウムと、窒化チタン、窒
化ジルコニウム、窒化ハフニウムおよび硫化亜鉛よりな
る群から選択された少なくとも1つとの複合膜であるこ
とを特徴とする光記録媒体。
1. An optical recording medium in which at least a dielectric film, a magneto-optical recording film, and a reflective film are laminated on a disk-shaped substrate, wherein the dielectric film is aluminum nitride, titanium nitride, or zirconium nitride. An optical recording medium, which is a composite film with at least one selected from the group consisting of hafnium nitride, and zinc sulfide.
JP60181351A 1985-01-24 1985-08-19 Optical recording medium Expired - Lifetime JPH0831220B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60181351A JPH0831220B2 (en) 1985-08-19 1985-08-19 Optical recording medium
US06/819,659 US4801499A (en) 1985-01-24 1986-01-17 Optical recording medium
US07/855,442 US6077585A (en) 1985-01-24 1992-03-19 Optical recording medium and method of preparing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60181351A JPH0831220B2 (en) 1985-08-19 1985-08-19 Optical recording medium

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2387395A Division JPH07254181A (en) 1995-02-13 1995-02-13 Optical recording medium

Publications (2)

Publication Number Publication Date
JPS6242350A JPS6242350A (en) 1987-02-24
JPH0831220B2 true JPH0831220B2 (en) 1996-03-27

Family

ID=16099189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60181351A Expired - Lifetime JPH0831220B2 (en) 1985-01-24 1985-08-19 Optical recording medium

Country Status (1)

Country Link
JP (1) JPH0831220B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0681174B1 (en) * 1991-02-06 1999-08-04 Honda Giken Kogyo Kabushiki Kaisha Motor vehicle vibrating system
JP3131295B2 (en) * 1992-08-06 2001-01-31 本田技研工業株式会社 Road simulation device
JPH07254181A (en) * 1995-02-13 1995-10-03 Seiko Epson Corp Optical recording medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011355A (en) * 1983-06-30 1985-01-21 日東電工株式会社 Manufacture of overlay flitch
JP2551403B2 (en) * 1984-07-09 1996-11-06 京セラ株式会社 Magneto-optical recording element
JPS6174797A (en) * 1984-09-20 1986-04-17 Nippon Steel Corp Baked flux for sumberged arc welding
JPS6180640A (en) * 1984-09-28 1986-04-24 Canon Inc Optical recording medium
JPS6192456A (en) * 1984-10-11 1986-05-10 Canon Inc Optical recording medium
JPS6192459A (en) * 1984-10-11 1986-05-10 Canon Inc Optical recording medium

Also Published As

Publication number Publication date
JPS6242350A (en) 1987-02-24

Similar Documents

Publication Publication Date Title
US4801499A (en) Optical recording medium
US4711821A (en) Opto-magnetic recording medium
JPH0831220B2 (en) Optical recording medium
US4994330A (en) Magnetooptic recording medium containing a multilayer protection film with at least one transition zone between the protection layers
JPH029040A (en) Manufacture of magneto-optical multilayer recording material
JP2504946B2 (en) Magneto-optical recording medium
US5340647A (en) Optomagnetic recording medium
US5019462A (en) Sheet-like, multilayer magneto-optical recording material
JPS62289948A (en) Magneto-optical recording medium
JPS62204455A (en) Optical recording medium
JP2826726B2 (en) Manufacturing method of optical recording medium
JPH03156753A (en) Optical recording medium
JPH07254181A (en) Optical recording medium
JP2523180B2 (en) Optical recording medium and manufacturing method thereof
JPS62192949A (en) Optical recording medium
JPS61170939A (en) Photorecording medium
JPS62192948A (en) Optical recording medium
JPH0370297B2 (en)
KR970001976B1 (en) Magneto-optical recording medium
JPH0660452A (en) Magneto-optical recording medium
JPH0576763B2 (en)
JPS62289946A (en) Magneto-optical recording medium
JP2541236B2 (en) Method of manufacturing magneto-optical disk
KR100194131B1 (en) Optical recording media
JPS5960745A (en) Photomagnetic recording medium

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term