JPH0370297B2 - - Google Patents

Info

Publication number
JPH0370297B2
JPH0370297B2 JP61074797A JP7479786A JPH0370297B2 JP H0370297 B2 JPH0370297 B2 JP H0370297B2 JP 61074797 A JP61074797 A JP 61074797A JP 7479786 A JP7479786 A JP 7479786A JP H0370297 B2 JPH0370297 B2 JP H0370297B2
Authority
JP
Japan
Prior art keywords
optical recording
medium
refractive index
silicon nitride
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61074797A
Other languages
Japanese (ja)
Other versions
JPS6231052A (en
Inventor
Akira Aoyama
Mamoru Sugimoto
Masahiro Yatake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of JPS6231052A publication Critical patent/JPS6231052A/en
Publication of JPH0370297B2 publication Critical patent/JPH0370297B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光記録媒体に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to optical recording media.

〔従来の技術〕[Conventional technology]

従来の光記録媒体は、垂直磁気記録層に集光し
たレーザ光を照射することにより磁化反転をおこ
させ情報を記録する方法、あるいは記録層にレー
ザ光を照射し、記録層の結晶構造を変化させる
(結晶から非結晶質又はその逆、あるいは六方晶
から立法晶又はその逆等)つまり相変態により情
報を記録する方法、あるいは記録層にレーザ光を
照射することにより穴を開ける。またはバルブを
形成するなどの記録部分の形状を変化させ情報を
記録する方法がある。
Conventional optical recording media record information by irradiating the perpendicular magnetic recording layer with focused laser light to cause magnetization reversal, or by irradiating the recording layer with laser light to change the crystal structure of the recording layer. (from crystal to amorphous or vice versa, or from hexagonal to cubic crystal or vice versa), that is, information is recorded by phase transformation, or holes are made by irradiating the recording layer with laser light. Alternatively, there is a method of recording information by changing the shape of the recording part, such as by forming a bulb.

特に従来の光磁気記録媒体は、基板に案内溝の
ついたプラスチツク基板(PC、PMMA、エポキ
シ樹脂等)を使用することが多い。これは射出成
型が可能であり、安価で大量生産ができるためで
ある。しかしプラスチツク基板は、吸湿性、ガス
透明度が高く、光磁気記録層であるGdTbFe、
TbFeCo、GdTbFeCo、DyFeCo、NdDyFeCo等
の希土類遷移金属合金膜が容易におかされてしま
い、磁気特性の劣化が激しい。そこで、プラスチ
ツク基板と光磁気記録層の間にSiO2、SiO等の酸
化分誘電体膜を一層設けることにより基板側から
の耐食性の向上をはかつた。しかし、これら誘電
体は酸化物であるため、遊離酸素が光磁気記録層
を酸化させてしまうために保護効果は十分でなか
つた。そして次に考えられたのが、窒化シリコ
ン、窒化アルミニウム、硫化亜鉛等の非酸化物誘
電体膜をプラスチツク基板上に成膜することであ
つた。しかし、これら非酸化物系誘電体膜は基板
との密着力がなく、又は密着力はあつてもすぐク
ラツクが発生するなど実用的でなかつた。
In particular, conventional magneto-optical recording media often use plastic substrates (PC, PMMA, epoxy resin, etc.) with guide grooves on the substrate. This is because injection molding is possible and mass production is possible at low cost. However, plastic substrates have high hygroscopicity and gas transparency, and the magneto-optical recording layer GdTbFe.
Rare earth transition metal alloy films such as TbFeCo, GdTbFeCo, DyFeCo, and NdDyFeCo are easily damaged, resulting in severe deterioration of magnetic properties. Therefore, an attempt was made to improve the corrosion resistance from the substrate side by providing a layer of an oxidized dielectric film such as SiO 2 or SiO between the plastic substrate and the magneto-optical recording layer. However, since these dielectrics are oxides, free oxygen oxidizes the magneto-optical recording layer, resulting in an insufficient protective effect. The next idea was to form a non-oxide dielectric film such as silicon nitride, aluminum nitride, or zinc sulfide on a plastic substrate. However, these non-oxide-based dielectric films have no adhesion to the substrate, or even if they do have adhesion, they easily crack, making them impractical.

そこで本発明者らは鋭意研究の結果、特願昭60
−89452で示しているごとく、窒化アルミニウム
と窒化シリコンの複合膜が光磁気記録層の完璧な
保護膜となり得ることを示した。そして、さらな
る研究の結果、本願発明者らは窒化アルミニウム
と窒化シリコンの複合膜のうちでも膜質の違いに
より光磁気記録層の保護効果に差異が生ずること
を発見した。
As a result of intensive research, the inventors of the present invention obtained a patent application in 1983.
-89452, we showed that a composite film of aluminum nitride and silicon nitride can serve as a perfect protective film for the magneto-optical recording layer. As a result of further research, the inventors of the present application discovered that even among composite films of aluminum nitride and silicon nitride, differences in film quality caused differences in the protective effect of the magneto-optical recording layer.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

そこで本発明は、本発明者らが特願昭60−
89452で示した窒化アルミニウムと窒化シリコン
の複合膜のうちでも、さらに保護効果のすぐれた
完全無欠の光記録媒体を提供することにある。
Therefore, the present invention was developed by the present inventors in a patent application filed in 1983.
Among the composite films of aluminum nitride and silicon nitride shown in No. 89452, the object of the present invention is to provide a perfect optical recording medium with an even better protective effect.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の光記録媒体は、透明基板の片面に光記
録層を形成し、光記録層に集光したレーザ光を照
射することにより、記録、再生及び消去をする光
記録媒体において、光記録層と透明基板の間に、
主たる成分が窒化アルミニウムと窒化シリコンの
2成分からなり、窒化アルミニウムと窒化シリコ
ンの組成比が(窒化アルミニウム)x(窒化シリ
コン)100−xで表すと10≦x≦70mol%で表さ
れる複合誘電体膜が設けられており、しかも複合
誘電体膜の屈折率が2.15以下、1.70以上であるこ
とを特徴とする。
The optical recording medium of the present invention is an optical recording medium in which an optical recording layer is formed on one side of a transparent substrate, and recording, reproduction, and erasing are performed by irradiating the optical recording layer with a focused laser beam. and the transparent substrate,
A composite dielectric whose main components are aluminum nitride and silicon nitride, and the composition ratio of aluminum nitride and silicon nitride is 10≦x≦70mol%, expressed as (aluminum nitride) x (silicon nitride) 100−x. The composite dielectric film has a refractive index of 2.15 or less and 1.70 or more.

〔作用〕[Effect]

本発明の上記の構成によれば、窒化アルミニウ
ムと窒化シリコンの複合誘電体膜でも、屈折率が
2.15以下1.70以上のものが、より一層の保護効果
がある。これは、屈折率が2.15より大きいという
のはアルミニウムあるいはシリコンが窒素と十分
に反応していないということであり、未反応のア
ルミニウムやシリコンが膜中に存在することにな
り、耐候性試験(加速試験)中に光学定数が変つ
てしまうことになるため光磁気記録媒体の経時変
化を生ずることになる。又、屈折率が1.70未満で
あるというのは誘電体膜の密度が疎(ポーラス)
になつた状態のことであり保護膜としての効果が
劣るため磁気記録層の劣化を生ぜしめることにな
る。そのため屈折率は2.15以下1.70以上である必
要が出てくるのである。
According to the above configuration of the present invention, even a composite dielectric film of aluminum nitride and silicon nitride has a refractive index.
A value of 2.15 or lower and 1.70 or higher provides greater protection. This is because a refractive index greater than 2.15 means that aluminum or silicon has not sufficiently reacted with nitrogen, and unreacted aluminum or silicon will exist in the film, resulting in the weather resistance test (accelerated Since the optical constants change during the test), the magneto-optical recording medium changes over time. Also, if the refractive index is less than 1.70, it means that the density of the dielectric film is sparse (porous).
This is a state in which the magnetic recording layer becomes deteriorated and is less effective as a protective film, resulting in deterioration of the magnetic recording layer. Therefore, the refractive index needs to be 2.15 or less and 1.70 or more.

以下に本発明の効果を実施例をもとに具体的に
詳述する。
The effects of the present invention will be specifically explained in detail below based on Examples.

〔実施例〕〔Example〕

第1図は、本発明における光磁気記録媒体の断
面図であり、1は溝付きPC基板で溝ピツチ1.6μ
m、溝幅0.8μm、溝深さ700Åのものである。こ
のPC基板の溝側に窒化アルミニウムと窒化シリ
コンの複合誘電体膜1000Åを形成したのが2であ
る。そして窒化アルミニウムと窒化シリコンの比
は、特願昭60−89452で示した範囲であり、窒化
アルミニウム:窒化シリコン=20:80ml%であ
る。その上に3として光磁気記録層
NdDyFeCoTi膜430Åを成膜し、さらに2と同じ
窒化アルミニウムと窒化シリコンの複合誘電体膜
1000Åを4として成膜した。
FIG. 1 is a sectional view of a magneto-optical recording medium according to the present invention, and 1 is a grooved PC board with a groove pitch of 1.6 μm.
m, groove width 0.8 μm, and groove depth 700 Å. In No. 2, a composite dielectric film of aluminum nitride and silicon nitride with a thickness of 1000 Å was formed on the groove side of this PC board. The ratio of aluminum nitride to silicon nitride is within the range shown in Japanese Patent Application No. 1989-89452, and is aluminum nitride: silicon nitride = 20:80 ml%. On top of that, there is a magneto-optical recording layer as 3.
A NdDyFeCoTi film of 430 Å was deposited, and a composite dielectric film of aluminum nitride and silicon nitride, the same as in 2, was formed.
The film was formed with a thickness of 1000 Å as 4.

成膜方法は、スパツタ法を用い複合誘電体膜を
成膜するにあたり、窒化アルミニウム=20:80ml
%の焼結ターゲツトを用いAr+N2ガスを導入し
てRF反応スパツタリングで成膜した。第2図は、
複合誘電体膜を成膜するに当り、スパツタリング
条件を変えて成膜した場合の屈折率変化を見たも
のである。RFパワー500W一定、膜厚1000Å一
定、N2分圧20%一定とした。横軸がスパツタ全
圧、縦軸が屈折率であり、スパツタ全圧が高信な
るほど屈折率が低くなつていくのがわかる。そし
て次に、N2分圧を変えて成膜した場合の屈折率
変化が第3図である。この場合、RFパワー500W
一定、膜厚1000Å一定、スパツタ全圧4mTorr
一定とした、横軸はN2分圧、縦軸が屈折率であ
り、N2分圧が高くなるほど屈折率が低くなつて
いくのがわかる。そしてさらに第2図、第3図で
示した窒化アルミニウムと窒化シリコンの複合誘
電体膜全サンプルの膜質の評価を緩衝フツ酸液に
よるエツチングテストによりおこなつた。液温は
23℃固定とした。エツチング時間が長いほど膜質
は良い、つまり緻密さらに反応が完全にされてい
ることになる。
The film formation method was to form a composite dielectric film using the sputtering method, using aluminum nitride = 20:80ml.
% sintered target, Ar+ N2 gas was introduced, and the film was formed by RF reaction sputtering. Figure 2 shows
The graph shows the change in refractive index when forming a composite dielectric film under different sputtering conditions. The RF power was constant at 500W, the film thickness was constant at 1000Å, and the N2 partial pressure was constant at 20%. The horizontal axis is the sputter total pressure, and the vertical axis is the refractive index, and it can be seen that the higher the sputter total pressure, the lower the refractive index. Next, FIG. 3 shows the change in refractive index when a film is formed by changing the N 2 partial pressure. In this case, RF power 500W
Constant, constant film thickness 1000Å, total sputtering pressure 4mTorr
It can be seen that the horizontal axis is the N 2 partial pressure and the vertical axis is the refractive index, which is held constant, and the higher the N 2 partial pressure, the lower the refractive index. Further, the film quality of all samples of the composite dielectric film of aluminum nitride and silicon nitride shown in FIGS. 2 and 3 was evaluated by an etching test using a buffered hydrofluoric acid solution. The liquid temperature is
It was fixed at 23°C. The longer the etching time, the better the film quality, that is, the denser and more complete the reaction.

第4図の横軸は、第2図と同様のスパツタ全
圧、第5図ろ横軸は、第3図と同様のN2分圧で
ある。縦軸は第4図、第5図ともエツチング時間
である。第4図、第5図からわかるようにエツチ
ング時間が極端に短かい所があり、これを第2
図、第3図と照らし合わせると、屈折率が、2.15
より大きい所と1.70より小さい所がエツチング時
間の短い領域である。つまり屈折率が2.15以下
1.70以上の領域の本発明複合誘電体膜の膜質が良
く、保護効果もすぐれていると考えられる。
The horizontal axis in FIG. 4 is the sputter total pressure as in FIG. 2, and the horizontal axis in FIG. 5 is the N 2 partial pressure as in FIG. 3. The vertical axis in both FIGS. 4 and 5 is the etching time. As can be seen from Figures 4 and 5, there are places where the etching time is extremely short, and this is
When compared with Figure 3, the refractive index is 2.15.
Areas where the etching time is shorter are areas where the value is larger than 1.70 and areas where the etching time is smaller than 1.70. In other words, the refractive index is 2.15 or less
It is considered that the film quality of the composite dielectric film of the present invention in the range of 1.70 or more is good and the protective effect is also excellent.

そこで、第1図に示す媒体構造図で、窒化アル
ミニウムと窒化シリコンの複合誘電体膜の屈折率
の異なる光磁気記録媒体を作成し、60℃90%RH
の恒温恒湿度化に置き加速試験を試みた。
Therefore, we created a magneto-optical recording medium with a composite dielectric film of aluminum nitride and silicon nitride with different refractive indexes using the medium structure diagram shown in Figure 1.
An accelerated test was performed under constant temperature and humidity conditions.

第6図に示したのは、媒体の基板側より見たカ
ー回転角の経時変化図である。横軸は経過時間、
縦軸は経過時間tに対するカー回転角θkr(t)
と成膜直後のカー回転角θkr(o)の比を示して
いる。5は複合誘電体膜の屈折率nが2.15、
2.01、1.90、1.85、1.80、1.70の媒体で、6はnが
2.24の媒体で、7はnが2.31の媒体、8はnが
1.69、1.65の媒体で、9はnが1.63、1.60の媒体
である。この図からわかるように、本発明による
屈折率が2.15以下1.70以上の媒体では経時変化が
全くなく5000hr以上経過しても全く変動がない。
一方屈折率が2.15より大きい媒体6,7では、加
速試験初期(10〜30hr)に変化生じ、その後一定
している。これは屈折率2.15より大きい誘電体膜
は未反応のAlやSiを含んでいるため、加速試験
中に未反応成分が、安定な酸化物等へ変化してい
くことをを示している。その結果θkr(t)が変
化するものであり、媒体の記録再生特性(C/
N)に重大な変化をきたす。又、屈折率が1.70よ
り小さい媒体8,9では、加速試験後100hr程度
から変化が生じ、徐々に変化していき最後はθkr
(t)がoに近づいていく。これは屈折率1.70よ
り小さい誘電体膜は膜質が密でない、つまり疎で
あるため、加速試験中に水分や反応性ガスが侵入
してくることを示している。その結果、光磁気記
録層の劣化を進行させθkr(t)が変化するもの
である。これも又、媒体の記録再生特性(C/
N)に重大な変化をきたす。
FIG. 6 shows a graph of the Kerr rotation angle over time as seen from the substrate side of the medium. The horizontal axis is the elapsed time,
The vertical axis is the Kerr rotation angle θkr(t) with respect to the elapsed time t.
and the Kerr rotation angle θkr(o) immediately after film formation. 5, the refractive index n of the composite dielectric film is 2.15,
2.01, 1.90, 1.85, 1.80, 1.70 medium, 6 is n
2.24 medium, 7 is medium with n of 2.31, 8 is n is medium
1.69, 1.65, and 9 is a medium with n of 1.63, 1.60. As can be seen from this figure, the medium according to the present invention having a refractive index of 2.15 or less and 1.70 or more shows no change over time and does not change at all even after 5000 hours or more.
On the other hand, in the media 6 and 7 whose refractive index is larger than 2.15, a change occurs at the beginning of the accelerated test (10 to 30 hours), and then remains constant. This indicates that since the dielectric film with a refractive index higher than 2.15 contains unreacted Al and Si, the unreacted components change into stable oxides and the like during the accelerated test. As a result, θkr(t) changes, and the recording/reproducing characteristics (C/
N) causes a significant change. In addition, for media 8 and 9 whose refractive index is smaller than 1.70, a change occurs from about 100 hours after the accelerated test, and the change gradually changes until θkr
(t) approaches o. This indicates that the dielectric film with a refractive index of less than 1.70 is not dense, that is, it is sparse, allowing moisture and reactive gases to enter during the accelerated test. As a result, the deterioration of the magneto-optical recording layer progresses and θkr(t) changes. This also depends on the recording/reproducing characteristics of the medium (C/
N) causes a significant change.

次に、第7図に示すのは、媒体の保磁力の経時
変化図である。横軸は経過時間、縦軸は経過時間
tに対する保磁力Hc(t)と成膜直後の保磁力
Hc(o)の比を示している。10は屈折率nが
2.15、2.01、1.90、1.85、1.80、1.70、及び2.24、
2.31の媒体で、11はnが1.69、1.65の媒体で、
12はnが1.63、1.60の媒体である。この図から
屈折率nが1.70より小さい媒体の保磁力が時間と
ともに変化するのがわかる。
Next, FIG. 7 shows a diagram of the change in coercive force of the medium over time. The horizontal axis is the elapsed time, and the vertical axis is the coercive force Hc (t) versus the elapsed time t and the coercive force immediately after film formation.
It shows the ratio of Hc(o). 10 has a refractive index n
2.15, 2.01, 1.90, 1.85, 1.80, 1.70, and 2.24,
2.31 medium, 11 is n 1.69, 1.65 medium,
12 is a medium with n of 1.63 and 1.60. From this figure, it can be seen that the coercive force of a medium with a refractive index n smaller than 1.70 changes with time.

これは、上述した誘電体膜の膜質が疎であるた
めに光磁気記録層の劣化によるものである。(光
磁気記録層は遷移金属richの組成)一方、nが
1.70以上の媒体の保磁力は長時間にわたり変化が
ない。しかしnが2.15より大きい媒体は第6図の
方から保護膜としては適さない。
This is due to deterioration of the magneto-optical recording layer due to the sparse quality of the dielectric film mentioned above. (The magneto-optical recording layer has a composition rich in transition metals.) On the other hand, n is
The coercive force of a medium above 1.70 does not change over a long period of time. However, a medium with n greater than 2.15 is not suitable as a protective film, as shown in FIG.

本実施例においては、基板にPCを用いたが、
PMMA、エポキシ樹脂等のプラスチツク基板で
も本発明は有効であり、成膜方法もスパツタ法に
限定されるものでなく、蒸着、CVD等でも何ら
さしつかえない。さらにターゲツトも窒化アルミ
ニウムと窒化シリコンの比が20:80mol%のもの
を使用したが特願昭60−89452に示している組成
範囲であれば何ら問題はない。しかもターゲツト
もセラミツクでなく、アルミニウムとシリコンの
メタルターゲツトを用いても本発明は同様の効果
を発揮する。
In this example, a PC was used as the board, but
The present invention is also effective on plastic substrates such as PMMA and epoxy resin, and the film forming method is not limited to the sputtering method, but vapor deposition, CVD, etc. are also suitable. Furthermore, although the target used had a ratio of aluminum nitride to silicon nitride of 20:80 mol %, there would be no problem as long as the composition was within the range shown in Japanese Patent Application No. 60-89452. Moreover, the present invention exhibits the same effect even when a metal target of aluminum and silicon is used instead of a ceramic target.

さらに、本発明は光磁気記録媒体の保護膜に適
するばかりでなく、プラスチツク基板からのガ
ス、水分を封じる目的に対して全てに有効であ
り、相変態型光記媒体にも有効である。
Furthermore, the present invention is not only suitable for use as a protective film for magneto-optical recording media, but is also effective for sealing off gas and moisture from plastic substrates, and is also effective for phase-change optical recording media.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明による光記録媒体にお
いて、長期間(50年以上)にわたり信頼性を保証
できる媒体が提供できることになる。
As described above, the optical recording medium according to the present invention can provide a medium whose reliability can be guaranteed for a long period of time (50 years or more).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明における光磁気記録媒体の断
面図である。第2図は、屈折率のスパツタ全圧依
存性図。第3図は、屈折率のスパツタN2分圧依
存性図。第4図は、エツチング時間のスパツタ全
圧依存性図。第5図は、エツチング時間のスパツ
タN2分圧依存性図。第6図は、60℃90%RHの加
速試験によるカー回転角の経時変化図。第7図
は、60℃90%RHの加速試験による保磁力の経時
変化図。 1……溝付きPC基板、2……窒化アルミニウ
ムと窒化シリコンの複合誘電体膜、3……光磁気
記録層NdDyFeCoTi膜、4……窒化アルミニウ
ムと窒化シリコンの複合誘電体膜、5……複合誘
電体膜の屈折率nが2.15、2.01、1.90、1.85、
1.80、1.70の媒体、6……nが2.24の媒体、7…
…nが2.31の媒体、8……nが1.69、1.65の媒体、
9……nが1.63、1.60の媒体、10……nが2.15、
2.01、1.90、1.85、1.80、1.70、及び2.24、2.31の
媒体、11……nが1.69、1.65の媒体、12……
nが1.63、1.60の媒体。
FIG. 1 is a sectional view of a magneto-optical recording medium according to the present invention. FIG. 2 is a diagram showing the dependence of the refractive index on the sputter total pressure. Figure 3 shows the dependence of the refractive index on the sputter N2 partial pressure. FIG. 4 is a diagram showing the dependence of etching time on sputter total pressure. Figure 5 shows the dependence of etching time on sputter N2 partial pressure. Figure 6 shows the change in Kerr rotation angle over time during an accelerated test at 60°C and 90% RH. Figure 7 is a diagram of the change in coercive force over time during an accelerated test at 60°C and 90% RH. 1... Grooved PC substrate, 2... Composite dielectric film of aluminum nitride and silicon nitride, 3... Magneto-optical recording layer NdDyFeCoTi film, 4... Composite dielectric film of aluminum nitride and silicon nitride, 5... Composite The refractive index n of the dielectric film is 2.15, 2.01, 1.90, 1.85,
1.80, 1.70 medium, 6...medium where n is 2.24, 7...
...Medium where n is 2.31, 8...Medium where n is 1.69, 1.65,
9...n is 1.63, medium of 1.60, 10...n is 2.15,
2.01, 1.90, 1.85, 1.80, 1.70, 2.24, 2.31 media, 11...medium where n is 1.69, 1.65, 12...
Medium with n of 1.63 and 1.60.

Claims (1)

【特許請求の範囲】 1 透明基板の片面に光記録層を形成し、前記光
記録層に集光したレーザ光を照射することによ
り、記録、再生及び消去をする光記録媒体におい
て、前記光記録層と前記透明基板の間に、主たる
成分が窒化アルミニウムと窒化シリコンの2成分
からなり、窒化アルミニウムと窒化シリコンの組
成比が (窒化アルミニウム)x(窒化シリコン)100−x 10≦x≦70mol% で表される複合誘電体膜が設けられており、しか
も前記複合誘電体膜の屈折率が2.15以下1.70以上
であることを特徴とする光記録媒体。
[Scope of Claims] 1. An optical recording medium in which an optical recording layer is formed on one side of a transparent substrate, and recording, reproduction, and erasing are performed by irradiating the optical recording layer with focused laser light. Between the layer and the transparent substrate, the main components are aluminum nitride and silicon nitride, and the composition ratio of aluminum nitride and silicon nitride is (aluminum nitride) x (silicon nitride) 100−x 10≦x≦70 mol%. 1. An optical recording medium characterized in that a composite dielectric film represented by: is provided, and the refractive index of the composite dielectric film is 2.15 or less and 1.70 or more.
JP7479786A 1985-04-25 1986-04-01 Optical recording medium Granted JPS6231052A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8945285 1985-04-25
JP60-89452 1985-04-25

Publications (2)

Publication Number Publication Date
JPS6231052A JPS6231052A (en) 1987-02-10
JPH0370297B2 true JPH0370297B2 (en) 1991-11-07

Family

ID=13971080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7479786A Granted JPS6231052A (en) 1985-04-25 1986-04-01 Optical recording medium

Country Status (1)

Country Link
JP (1) JPS6231052A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2551403B2 (en) * 1984-07-09 1996-11-06 京セラ株式会社 Magneto-optical recording element
JPS6271042A (en) * 1985-09-24 1987-04-01 Sharp Corp Optical memory element
EP0297910B1 (en) * 1987-07-01 1993-09-29 Sharp Kabushiki Kaisha An optical memory device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114141A (en) * 1985-11-14 1987-05-25 Sharp Corp Magnetooptic memory element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114141A (en) * 1985-11-14 1987-05-25 Sharp Corp Magnetooptic memory element

Also Published As

Publication number Publication date
JPS6231052A (en) 1987-02-10

Similar Documents

Publication Publication Date Title
JP2551403B2 (en) Magneto-optical recording element
US4975339A (en) Magneto-optical recording medium with at least one protective layer containing platinum and/or palladium
JPH0335734B2 (en)
JPH0370297B2 (en)
JPH0332144B2 (en)
JPS6350931A (en) Optical recording medium
JP2593206B2 (en) Optical recording medium
JP2826726B2 (en) Manufacturing method of optical recording medium
JPS6350930A (en) Optical recording medium
JPH0785314B2 (en) Protective film for magneto-optical recording medium
JPH03156753A (en) Optical recording medium
US6077585A (en) Optical recording medium and method of preparing same
JPH03122845A (en) Optical recording medium
US5514468A (en) Magneto-optical recording medium
JPH0831220B2 (en) Optical recording medium
JPS62192949A (en) Optical recording medium
JPH0283836A (en) Production of optical recording medium
JPH039544B2 (en)
JPS61278061A (en) Photomagnetic recording medium
JPS62121943A (en) Optical recording medium
JP2918628B2 (en) optical disk
JP2740814B2 (en) Magneto-optical recording medium
KR940007286B1 (en) Optical-magnetic medium
JP2528173B2 (en) Optical recording medium
JP2704186B2 (en) Magneto-optical storage medium

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term